JPH0417259A - Battery - Google Patents
BatteryInfo
- Publication number
- JPH0417259A JPH0417259A JP2120252A JP12025290A JPH0417259A JP H0417259 A JPH0417259 A JP H0417259A JP 2120252 A JP2120252 A JP 2120252A JP 12025290 A JP12025290 A JP 12025290A JP H0417259 A JPH0417259 A JP H0417259A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- gas diffusion
- diffusion electrode
- air intake
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000001301 oxygen Substances 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims abstract description 19
- 238000009792 diffusion process Methods 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 13
- 239000011148 porous material Substances 0.000 claims abstract description 10
- 239000011149 active material Substances 0.000 claims abstract description 6
- 239000002131 composite material Substances 0.000 claims description 40
- 239000010408 film Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 3
- 239000012982 microporous membrane Substances 0.000 claims 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 38
- 239000001569 carbon dioxide Substances 0.000 abstract description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 abstract description 19
- 239000003792 electrolyte Substances 0.000 abstract description 15
- 230000007774 longterm Effects 0.000 abstract description 12
- 239000007864 aqueous solution Substances 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 230000007935 neutral effect Effects 0.000 abstract description 4
- 150000003839 salts Chemical class 0.000 abstract description 3
- 150000001875 compounds Chemical class 0.000 abstract 5
- 239000003513 alkali Substances 0.000 abstract 1
- 239000002585 base Substances 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 abstract 1
- 238000009413 insulation Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 15
- 239000012528 membrane Substances 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 8
- 230000035699 permeability Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Separators (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、酸素を活物質に用いるガス拡散電極と、アル
カリ水溶液からなる電解液と、亜鉛、マグネシウム、ア
ルミニウム等の金属、もしくはアルコール、ヒドラジン
、水素等の負極活物質とを備えた電池を製造する場合に
有効な水蒸気及び二酸化炭素選択バリヤー性複合材に関
するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas diffusion electrode using oxygen as an active material, an electrolytic solution consisting of an alkaline aqueous solution, and a metal such as zinc, magnesium, or aluminum, or alcohol, hydrazine, or hydrogen. The present invention relates to a water vapor and carbon dioxide selective barrier composite material that is effective in manufacturing batteries with negative electrode active materials such as .
従来の技術
ガス拡散電極を備え、酸素を活物質とする電池としては
、空気電池、燃料電池等がある。特にアルカリ水溶液、
中性塩水溶液を電解質として使用する電池においては、
ガス拡散電極(酸素極)より内部の蒸気圧に応じて水蒸
気の出入りがあり、電池内電解液の濃度変化9体積変化
が起こり、これが電池の緒特性に影響を与えていた。BACKGROUND OF THE INVENTION BACKGROUND ART Batteries equipped with gas diffusion electrodes and using oxygen as an active material include air cells, fuel cells, and the like. Especially alkaline aqueous solution,
In batteries that use a neutral salt aqueous solution as the electrolyte,
Water vapor flows in and out from the gas diffusion electrode (oxygen electrode) depending on the internal vapor pressure, causing changes in the concentration and volume of the electrolyte in the battery, which affected the battery's performance characteristics.
ボタン形空気電池を例にとり、第2図を用いてその状況
を説明する。図中、■は酸素極(空気極)、2はガス拡
散性はあるが、液体の透過は阻止するポリテトラフルオ
ロエチレン(PTFE)よりなり酸素極1を支持する多
孔性撥水膜である。3は外部からの空気取入れ孔、4は
空気の拡散を行う多孔体、5,6はセパレータ、7は負
極亜鉛で、これらに含浸保持されるアルカリ電解液には
水酸化カリウム水溶液を使用し、その濃度は30〜35
重量%としている。このため相対湿度が47〜59%よ
り高いと外部の湿気を取り込み、電解液濃度の低下と体
積膨張とが起こり、放電性能の低下、電解液の漏液を生
じていた。Taking a button-type air battery as an example, the situation will be explained using FIG. 2. In the figure, ■ is an oxygen electrode (air electrode), and 2 is a porous water-repellent membrane that supports the oxygen electrode 1 and is made of polytetrafluoroethylene (PTFE), which has gas diffusivity but blocks liquid permeation. 3 is an air intake hole from the outside, 4 is a porous body for air diffusion, 5 and 6 are separators, 7 is a negative electrode zinc, and the alkaline electrolyte impregnated and held in these is a potassium hydroxide aqueous solution, Its concentration is 30-35
It is expressed as weight%. For this reason, when the relative humidity is higher than 47 to 59%, external moisture is taken in, resulting in a decrease in electrolyte concentration and volumetric expansion, resulting in a decrease in discharge performance and leakage of the electrolyte.
方、相対湿度が前記以下の場合には電解液の蒸発が起こ
り、内部抵抗の増大や放電性能の低下をもたらしていた
。従って、環境雰囲気による影響を受は易いため、長期
間保存後の電池特性に問題が生じ、これが空気電池や燃
料電池を特定の分野での使用に制約し、その汎用化を図
る上で大きな課題を有していた。なお、図中8は負極亜
鉛7を収容した負極容器、9は絶縁ガスケット、10は
正極容器である。On the other hand, when the relative humidity is below the above range, evaporation of the electrolytic solution occurs, resulting in an increase in internal resistance and a decrease in discharge performance. Therefore, since they are easily affected by the environmental atmosphere, problems arise with battery characteristics after long-term storage.This restricts the use of air cells and fuel cells in specific fields, and poses a major challenge in making them more versatile. It had In the figure, 8 is a negative electrode container containing the negative electrode zinc 7, 9 is an insulating gasket, and 10 is a positive electrode container.
発明が解決しようとする課題
これらの課題を改善するため、従来より種々の提案がな
されてきた。例えば、空気孔周辺の一部に電解液と反応
する物質を挿入し、電池外部への電解液漏出を防止する
。あるいは紙または高分子材料よりなる不織布等の電解
液吸収材を設けて、電池外部への電解液漏出を防止する
。さらには空気孔を極端に小さくして酸素の供給量を制
限してまでも、水蒸気や二酸化炭素の電池内部への進入
を防止する等の提案がなされている。しかし、いずれの
方法も漏液防止や放電性能、特に長時間放電での性能に
大きな問題を残していた。これらの主要原因は空気中の
水蒸気の電池内への進入によるアルカリ電解液の希釈と
体積膨張、及び二酸化炭素の進入による炭酸塩の生成に
基づ(放電反応の阻害と空気流通経路の閉塞によるもの
で、外気が低湿度の場合には逆に電解液中の水分の逸散
が性能低下の原因となっていた。この原因を取り除くた
め、近年では、水蒸気や二酸化炭素の透過量を制御し、
選択的に酸素を優先して透過させる膜を介して空気を酸
素極に供給する方法、例えばポリジメチルシロキサン系
の内孔性の均一な薄膜や金属酸化物、あるいは金属元素
を含有する有機化合物の薄膜と適宜な多孔性膜とを一体
化させた膜を用いる方法が提案されている。Problems to be Solved by the Invention Various proposals have been made in the past in order to improve these problems. For example, a substance that reacts with the electrolyte is inserted into a portion around the air hole to prevent the electrolyte from leaking to the outside of the battery. Alternatively, an electrolyte absorbing material such as a nonwoven fabric made of paper or a polymeric material is provided to prevent leakage of the electrolyte to the outside of the battery. Furthermore, proposals have been made to prevent water vapor and carbon dioxide from entering the inside of the battery, even by making the air holes extremely small to limit the amount of oxygen supplied. However, both methods had major problems in preventing liquid leakage and discharge performance, especially in long-term discharge performance. The main causes of these are the dilution and volumetric expansion of the alkaline electrolyte due to the entry of water vapor from the air into the battery, and the formation of carbonates due to the entry of carbon dioxide (due to inhibition of the discharge reaction and blockage of the air flow path). Conversely, when the outside air is low humidity, the loss of moisture in the electrolyte causes a decline in performance.In order to eliminate this cause, in recent years, efforts have been made to control the amount of water vapor and carbon dioxide that permeate. ,
A method of supplying air to the oxygen electrode through a membrane that selectively allows oxygen to permeate, such as a polydimethylsiloxane-based homogeneous porous thin film, a metal oxide, or an organic compound containing a metal element. A method using a membrane that integrates a thin film and a suitable porous membrane has been proposed.
しかしながら、現在までのところ、充分に有効な水蒸気
及び二酸化炭素阻止能と酸素透過能を合わせ持つ材料が
得られないことから、電池として長期の使用や貯蔵に耐
えられないので、その実用化に至っていなかった。However, to date, it has not been possible to obtain a material that has both sufficiently effective water vapor and carbon dioxide blocking ability as well as oxygen permeability, so it cannot withstand long-term use or storage as a battery, so it has not been put into practical use. It wasn't.
そこで本発明は上記の電池の貯蔵性、長期使用における
性能を改善すると共に、軽負荷から重負荷に至る広い放
電条件で満足な放電性能を得るために、大気中の酸素を
充分な速度で電池内に取り入れると共に、水蒸気の電池
への出入りと、大気中の二酸化炭素の電池内への進入を
長期にわたり防止する有効な手段を提供することを目的
にするものである。Therefore, the present invention improves the storability and long-term use performance of the above-mentioned battery, and also aims to remove atmospheric oxygen from the battery at a sufficient rate in order to obtain satisfactory discharge performance under a wide range of discharge conditions from light loads to heavy loads. The purpose of this invention is to provide an effective means for preventing water vapor from entering and exiting the battery and carbon dioxide from the atmosphere from entering the battery over a long period of time.
課題を解決するための手段
上記の目的を達成するため、本発明は酸素を活物質とす
るガス拡散電極と、外気に通じる空気取入れ孔を有する
電池容器を備えた電池のガス拡散電極の空気取入れ側と
電池容器内面との間に、0.1μm以下の孔径をもっ微
多孔基材上に、0.01〜1.0μmの厚さのペロブス
カイト型複合酸化物薄膜を介在させたものである。Means for Solving the Problems In order to achieve the above objects, the present invention provides an air intake system for a gas diffusion electrode of a battery comprising a gas diffusion electrode using oxygen as an active material and a battery container having an air intake hole communicating with outside air. A perovskite composite oxide thin film with a thickness of 0.01 to 1.0 μm is interposed between the side and the inner surface of the battery container on a microporous base material with a pore size of 0.1 μm or less.
本発明は、ペロブスカイト型複合酸化物薄膜よりなる複
合材のもつ大きな水蒸気及び二酸化炭素選択阻止能を見
い出したものである。The present invention is based on the discovery of the large water vapor and carbon dioxide selective blocking ability of a composite material made of a perovskite type composite oxide thin film.
さらにまたこの複合材が、重負荷での満足な放電性能を
得るために必要な酸素透過能と、長期保存や低湿度下あ
るいは、高湿度雰囲気下での長期放電に耐えるだけの水
蒸気及び二酸化炭素に対する透過阻止能とを持ち、この
複合材を適用した電池の性能がきわめて優れていること
を見い出し、完成させたものである。Furthermore, this composite material has the oxygen permeability necessary to obtain satisfactory discharge performance under heavy loads, and the water vapor and carbon dioxide permeability sufficient to withstand long-term storage and long-term discharge under low humidity or high humidity atmospheres. They found that the performance of batteries using this composite material is extremely excellent, and they have completed it.
作用
この構成による複合材は、後述の実施例における電池試
験の結果からも明らかなように、電池用としての良好な
酸素透過速度と、空気中の水蒸気や二酸化炭素の電池内
への進入を遮断する効果を共に満足すべき状態に保て、
実用的な電池に要求される重負荷放電性能と、高湿度や
低湿度の雰囲気下で長時間放電した場合の性能も共に満
足することとなる。Function: As is clear from the results of the battery test in the Examples described below, the composite material with this structure has a good oxygen permeation rate for batteries and blocks water vapor and carbon dioxide from entering the battery. Keep the effects of
This satisfies both the heavy load discharge performance required of a practical battery and the performance when discharging for a long time in an atmosphere of high or low humidity.
実施例
実施例1〜12
平均孔径0.015μmの微細孔が均一に分布する多孔
性ポリカーボネート膜(厚み6μm)の片面に、第1表
に示す厚み0.3μmの各種ペロブスカイト型複合酸化
物薄膜をスパッター法にて作製した、複合材を用いたも
の。Examples Examples 1 to 12 Various perovskite composite oxide thin films with a thickness of 0.3 μm shown in Table 1 were coated on one side of a porous polycarbonate film (6 μm thick) in which micropores with an average pore diameter of 0.015 μm were uniformly distributed. Made using a composite material made using the sputtering method.
実施例13〜24
平均孔径0. OO4μmの微細孔が均一に分布する多
孔性ガラス(コーニング社製)を研磨して、板厚を調整
したのち、その片面に厚み0.3μmの各種ペロブスカ
イト型複合酸化物薄膜をスパッター法にて作製した複合
材料を用いたもの。Examples 13-24 Average pore size 0. After polishing porous glass (manufactured by Corning) with uniformly distributed micropores of OO4μm to adjust the plate thickness, a 0.3μm thick perovskite composite oxide thin film of various types was fabricated on one side by sputtering. made of composite material.
比較例1
ポリジメチルシロキサンと不織布を一体化した複合材を
用いたもの。Comparative Example 1 A composite material in which polydimethylsiloxane and nonwoven fabric were integrated was used.
比較例2
熱さ25μmのフッ素樹脂系のFEPフィルムを用いた
もの。Comparative Example 2 A fluororesin-based FEP film with a temperature of 25 μm was used.
比較例3 従来と全く同じで、撥水性の多孔膜のみを用いたもの。Comparative example 3 Exactly the same as the conventional model, using only a water-repellent porous membrane.
本発明の効果を確認するために、実施例1〜24のペロ
ブスカイト型複合酸化物よりなる複合材及び比較例1,
2の膜のガス透過速度を評価し、さらに、これらを用い
て比較例3と共に、電池を試作評価した。In order to confirm the effects of the present invention, composite materials made of perovskite type composite oxides of Examples 1 to 24 and Comparative Example 1,
The gas permeation rate of the membrane of No. 2 was evaluated, and furthermore, using these and Comparative Example 3, a battery was prototyped and evaluated.
まず、前記複合材を用いない比較例3の場合は第2図と
全く同一の構成とした。次に、実施例1〜24及び比較
例1.2の電池は、第1図に示すようにPTFEの多孔
膜2と、酸素の流れを分散しかつ均一化させる多孔体4
との間にそれぞれの複合材が介在した構成である。First, in the case of Comparative Example 3 in which the composite material was not used, the structure was exactly the same as that in FIG. 2. Next, as shown in FIG. 1, the batteries of Examples 1 to 24 and Comparative Example 1.2 include a porous membrane 2 of PTFE and a porous body 4 that disperses and homogenizes the flow of oxygen.
It has a structure in which each composite material is interposed between the two.
試作した電池の寸法はいずれも直径11.6mm。The dimensions of the prototype batteries were 11.6 mm in diameter.
総高5.4++wであり、比較的重負荷(620Ω)で
20℃、常湿(60%RH)での連続放電により電池内
への空気中の酸素取り込み速度の充足性を評価し、比較
的軽負荷(3にΩ)で20℃、高湿度(90%RH)
、および低湿度(20%RH)での長時間連続放電によ
り、長期の放電期間中における雰囲気からの水蒸気の電
池内への取り込みや電池内の水分の蒸発、及び二酸化炭
素の取り込みなど電池性能への影響度を評価した。 電
池試作に用いた複合材あるいは膜の内訳は第1表に示す
通りである。It has a total height of 5.4++w, and the sufficiency of the oxygen uptake rate in the air into the battery was evaluated by continuous discharge at 20℃ and normal humidity (60% RH) under a relatively heavy load (620Ω). 20℃, high humidity (90% RH) with light load (3 to Ω)
, and long-term continuous discharge at low humidity (20% RH), the battery performance may be affected by the incorporation of water vapor from the atmosphere into the battery, evaporation of moisture within the battery, and incorporation of carbon dioxide during the long-term discharge period. The degree of influence was evaluated. The details of the composite materials or membranes used in the battery prototype are shown in Table 1.
ここで、比較例1は、酸素と窒素のガス透過速度比は、
1以上を示す酸素富化膜であるが、酸素と水蒸気のガス
透過速度比は、1以下であり、水蒸気選択バリヤー性は
持っていない。Here, in Comparative Example 1, the gas permeation rate ratio of oxygen and nitrogen is
Although the oxygen-enriched membrane exhibits a gas permeation rate ratio of 1 or more, the gas permeation rate ratio of oxygen to water vapor is 1 or less and does not have water vapor selective barrier properties.
また、比較例2は、水分透過性は低い非多孔膜ではある
が、酸素の透過性も低く選択バリヤー性があるとはいえ
ない。Furthermore, although Comparative Example 2 is a non-porous membrane with low moisture permeability, it also has low oxygen permeability and cannot be said to have selective barrier properties.
しかし、実施例では、水蒸気のバリヤー性は良(、酸素
の透過性は高いので、本発明のペロブスカイト型複合酸
化物からなる複合材は、優れた水蒸気選択バリヤー性を
有していることがわかる。However, in the examples, the water vapor barrier properties were good (and the oxygen permeability was high), so it can be seen that the composite material made of the perovskite-type composite oxide of the present invention has excellent water vapor selective barrier properties. .
また第2表に試作電池の性能試験結果を示す。Table 2 also shows the performance test results of the prototype battery.
(以 下 余 白)
第2表において、放電終止電圧はいずれも0.9vであ
り、重量変化は放電試験前後の増減を示しており、主と
して放電中の水分の取り込み、あるいは蒸発の多少を示
唆する数値である。(Margin below) In Table 2, the end-of-discharge voltage is 0.9V in each case, and the weight change indicates an increase or decrease before and after the discharge test, which mainly suggests the amount of moisture taken in or evaporated during discharge. This is the numerical value.
これらの電池の特性を、本発明による複合材を使用して
いない比較軽1〜3と対比すると最も端的に本発明の詳
細な説明できる。The present invention can be most clearly explained in detail by comparing the characteristics of these batteries with Comparative Lightweights 1 to 3, which do not use the composite material according to the present invention.
まず20℃、常湿での重負荷試験では放電時間が短く、
水分の取り込みや蒸発の影響や二酸化炭素の影響が少な
いので、電池の性能は酸素の供給速度が充分であれば水
分や二酸化炭素の透過阻止はあまり考慮する必要がない
。従って、このような条件下では比較例3でも優れた特
性が得られる。これに対し、前述の実施例はいずれも、
比較例3と同等の放電特性が得られており、複合材を酸
素が透過する速度が放電反応で酸素が消費される速度に
充分追随していることを示している。しかしながら、比
較例2は、酸素透過速度が全く不足していることがわか
る。First, in a heavy load test at 20℃ and normal humidity, the discharge time was short.
Since the influence of moisture uptake and evaporation and the influence of carbon dioxide are small, there is no need to consider blocking the permeation of moisture and carbon dioxide as long as the oxygen supply rate is sufficient for battery performance. Therefore, under such conditions, excellent characteristics can be obtained even in Comparative Example 3. On the other hand, in all the above-mentioned embodiments,
Discharge characteristics equivalent to those of Comparative Example 3 were obtained, indicating that the rate at which oxygen permeates through the composite material sufficiently follows the rate at which oxygen is consumed in the discharge reaction. However, it can be seen that Comparative Example 2 is completely insufficient in oxygen permeation rate.
一方、軽負荷放電の場合は放電時間が長く、しかも外気
が高湿度あるいは低湿度の場合には酸素の供給速度より
も水分や二酸化炭素、特に水分の透過阻止が優れた電池
特性を得るために重要となり、水分や二酸化炭素の透過
阻止機構を持たない比較例1.3の電池は水分の枯渇、
あるいは逆に水分の過剰取入れによる漏液に起因した空
気孔の閉塞などにより、放電の途中で電圧が低下し、重
負荷試験で得られた放電容量の一部分に相当する容量が
得られるに過ぎない。また放電途中での漏液は実用面で
致命的な問題であることはいうまでもない。これに対し
て実施例は極めて優れた性能を示し、これらは重負荷試
験の放電容量とほぼ等しい容量が得られている。これら
の傾向は試験雰囲気が高湿度、低湿度、いずれの場合と
も同様である。このことは、実施例の場合、いずれもペ
ロブスカイト型複合酸化物薄膜よりなる複合材の水蒸気
選択バリヤー性の効果が充分に発揮されていることを示
している。On the other hand, in the case of light load discharge, the discharge time is long, and in addition, when the outside air is high or low humidity, it is necessary to obtain battery characteristics that are better in preventing the permeation of moisture and carbon dioxide, especially moisture, than in the oxygen supply rate. The battery of Comparative Example 1.3, which does not have a mechanism to prevent moisture and carbon dioxide from permeating, suffers from depletion of moisture,
Alternatively, the voltage may drop during discharge due to blockage of the air holes due to leakage due to excessive intake of water, resulting in a capacity equivalent to only a portion of the discharge capacity obtained in the heavy load test. . Furthermore, it goes without saying that liquid leakage during discharge is a fatal problem in practical terms. On the other hand, the Examples showed extremely excellent performance, and a capacity almost equal to the discharge capacity in the heavy load test was obtained. These trends are the same whether the test atmosphere is high humidity or low humidity. This shows that in all of the examples, the water vapor selective barrier effect of the composite material made of the perovskite type composite oxide thin film is fully exhibited.
また、二酸化炭素についても全く同様の効果が確認でき
た。In addition, exactly the same effect was confirmed for carbon dioxide.
以上を総合して、ペロブスカイト型複合酸化物薄膜より
なる複合材は優れた水蒸気及び二酸化炭素選択バリヤー
性を持ち、これを用いると、重負荷特性、軽負荷特性と
も優れ、外部雰囲気の変化にも安定した優れた電池を提
供できることが結論できる。Taking all the above into consideration, composite materials made of perovskite-type composite oxide thin films have excellent water vapor and carbon dioxide selective barrier properties, and when used, they have excellent heavy load characteristics and light load characteristics, and are resistant to changes in the external atmosphere. It can be concluded that a stable and excellent battery can be provided.
しかしながら、ペロブスカイト型複合酸化物薄膜の膜厚
が、0.01μmより小さい場合は、多孔質基材の孔が
完全には埋まらず、水蒸気等のバリヤー性は出てこない
。また、膜厚が1μm以上の場合は、膜にクラックが入
りやすく、孔が埋まらなくなり、同様に、バリヤー性が
な(なるので、膜厚としては、0.01〜1μmが適当
である。However, if the thickness of the perovskite-type composite oxide thin film is less than 0.01 μm, the pores of the porous base material will not be completely filled, and barrier properties against water vapor and the like will not be exhibited. Further, if the film thickness is 1 μm or more, the film is likely to crack, the pores will not be filled, and the barrier properties will be poor. Therefore, the film thickness is preferably 0.01 to 1 μm.
さらには、SiO2を主成分とする多孔質ガラス上に膜
を形成すると、選択性はさらに向上する。Furthermore, the selectivity is further improved when the film is formed on porous glass mainly composed of SiO2.
なおこの効果は、基板の表面層のみSiO2層である多
孔質基材でも同様の効果が確認された。This effect was also confirmed in a porous substrate in which only the surface layer of the substrate was a SiO2 layer.
また、本発明の複合材も上記実施例では電池容器との間
に空気拡散用の多孔体を介して設置したが、本発明の複
合材の機械的強度が充分な場合は、前記空気拡散用の多
孔体を除いても電池特性に差異はない。さらに、上記実
施例では、本発明の複合材を酸素極との間に酸素極を支
持する多孔膜を介して設置したが、酸素極の強度が充分
であれば前記多孔膜は不要にでき、その場合にも電池特
性は変わらない。また、塩化アンモニウム、塩化亜鉛な
どの中性塩の水溶液を電解液に用いた空気電池に対して
も、実施例で示したアルカリ性の電解液を用いた電池と
同様の効果があることも確認している。Furthermore, in the above embodiments, the composite material of the present invention was installed between the battery container and the porous body for air diffusion, but if the composite material of the present invention has sufficient mechanical strength, it is possible to There is no difference in battery characteristics even if the porous material is removed. Furthermore, in the above examples, the composite material of the present invention was installed between the oxygen electrode and the porous membrane that supported the oxygen electrode, but if the oxygen electrode had sufficient strength, the porous membrane could be omitted. Even in that case, the battery characteristics remain unchanged. We also confirmed that an air battery using an aqueous solution of neutral salts such as ammonium chloride or zinc chloride as the electrolyte has the same effect as the battery using an alkaline electrolyte shown in the example. ing.
発明の効果
以上の説明で明らかなように、本発明による複合材によ
れば、中性もしくはアルカリ性の水溶液を電解液とする
電池の重負荷から軽負荷にわたる広い範囲で優れた実用
性能と、優れた耐漏液性。Effects of the Invention As is clear from the above explanation, the composite material according to the present invention has excellent practical performance in a wide range from heavy loads to light loads of batteries using a neutral or alkaline aqueous solution as an electrolyte. Leak resistance.
長期貯蔵性を得ることができるという効果がある。It has the effect of being able to be stored for a long time.
第1図は本発明の実施例及び比較例の検討に用いたボタ
ン形空気亜鉛電池の断面図、第2図は水蒸気及び二酸化
炭素選択バリヤー性複合材を使用していない従来のボタ
ン形空気亜鉛電池の断面図である。
1・・・・・・酸素極(空気極)、2・・・・・・撥水
膜、3・・・・・・空気取入れ孔、4・・・・・・多孔
膜、5,6・・・・・・セノくレータ、7・・・・・・
負極亜鉛、8・・・・・・負極容器、9・・・・・・絶
縁ガスケット、10・・・・・・正極容器、11・・・
・・・水蒸気及び二酸化炭素選択バリヤー性複合材。Figure 1 is a cross-sectional view of a button-type zinc-air battery used to study examples and comparative examples of the present invention, and Figure 2 is a conventional button-type zinc-air battery that does not use a water vapor and carbon dioxide selective barrier composite material. It is a sectional view of a battery. 1... Oxygen electrode (air electrode), 2... Water repellent membrane, 3... Air intake hole, 4... Porous membrane, 5, 6... ...Senokureta, 7...
Negative electrode zinc, 8... Negative electrode container, 9... Insulating gasket, 10... Positive electrode container, 11...
...Water vapor and carbon dioxide selective barrier composite material.
Claims (8)
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、孔径
0.1μm以下の微細孔を有する多孔材料表面に、ペロ
ブスカイト型複合酸化物薄膜を形成した複合材を介在さ
せた電池。(1) A gas diffusion electrode containing oxygen as an active material and a battery container having an air intake hole communicating with the outside air, wherein a hole diameter of 0.1 μm or less is provided between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery in which a composite material in which a perovskite-type composite oxide thin film is formed is interposed on the surface of a porous material having micropores.
請求の範囲第1項記載の電池。(2) The battery according to claim 1, wherein the porous material has SiO_2 as a main component.
La、Co、Oの元素からなる特許請求の範囲第1項ま
たは第2項記載の電池。(3) The battery according to claim 1 or 2, wherein the perovskite-type composite oxide comprises at least the elements La, Co, and O.
である特許請求の範囲第1項、第2項または第3項記載
の電池。(4) The thickness of the composite oxide is 0.01 to 1.0 μm
A battery according to claim 1, 2 or 3.
る空気取入れ孔を有する電池容器を備え、前記ガス拡散
電極の空気取入れ側と前記電池容器内面との間に、前記
複合材を用いた特許請求の範囲第1項から第4項のいず
れかに記載の電池。(5) A battery container having a gas diffusion electrode containing oxygen as an active material and an air intake hole communicating with the outside air, and using the composite material between the air intake side of the gas diffusion electrode and the inner surface of the battery container. A battery according to any one of claims 1 to 4.
器の内面と前記ガス拡散電極に直接接している特許請求
の範囲第5項記載の電池。(6) The battery according to claim 5, wherein the composite material is in direct contact with the inner surface of the battery container having an air intake hole and the gas diffusion electrode.
気拡散多孔体を介在させた特許請求の範囲第5項または
第6項記載の電池。(7) The battery according to claim 5 or 6, wherein an air diffusion porous material such as a nonwoven fabric is interposed between the composite material and the battery container.
フィルムよりなる酸素極を支持する微多孔膜を介在させ
た特許請求の範囲第5項から第7項のいずれかに記載の
電池。(8) The method according to any one of claims 5 to 7, wherein a microporous membrane that supports an oxygen electrode made of a porous film is interposed between the composite material and the gas diffusion electrode. battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2120252A JPH0417259A (en) | 1990-05-10 | 1990-05-10 | Battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2120252A JPH0417259A (en) | 1990-05-10 | 1990-05-10 | Battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0417259A true JPH0417259A (en) | 1992-01-22 |
Family
ID=14781597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2120252A Pending JPH0417259A (en) | 1990-05-10 | 1990-05-10 | Battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0417259A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000011984A (en) * | 1998-06-23 | 2000-01-14 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
US6197445B1 (en) | 1998-03-06 | 2001-03-06 | Rayovac Corporation | Air depolarized electrochemical cells |
JP2009263225A (en) * | 2008-04-14 | 2009-11-12 | Commissariat A L'energie Atomique | Titanate of perovskite or derived structure thereof, and use thereof |
WO2011152464A1 (en) * | 2010-06-04 | 2011-12-08 | 日立造船株式会社 | Metal air battery |
JP2011253789A (en) * | 2010-06-04 | 2011-12-15 | Hitachi Zosen Corp | Metal-air battery |
JP2012104273A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Zosen Corp | Metal-air battery |
JP2012209020A (en) * | 2011-03-29 | 2012-10-25 | Hitachi Zosen Corp | Metal-air battery |
JP2013097968A (en) * | 2011-10-31 | 2013-05-20 | Showa Denko Packaging Co Ltd | Air secondary battery packaging material, air secondary battery packaging material manufacturing method, and air secondary battery |
-
1990
- 1990-05-10 JP JP2120252A patent/JPH0417259A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6197445B1 (en) | 1998-03-06 | 2001-03-06 | Rayovac Corporation | Air depolarized electrochemical cells |
US6203940B1 (en) | 1998-03-06 | 2001-03-20 | Rayovac Corporation | Tubular air depolarized cell |
US6210827B1 (en) | 1998-03-06 | 2001-04-03 | Rayovac Corporation | Elongate air depolarized electrochemical cells |
US6296961B1 (en) | 1998-03-06 | 2001-10-02 | Rayovac Corporation | Composite carbon sheet, and electrochemical cells made therewith |
US6436571B1 (en) | 1998-03-06 | 2002-08-20 | Rayovac Corporation | Bottom seals in air depolarized electrochemical cells |
JP2000011984A (en) * | 1998-06-23 | 2000-01-14 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JP2009263225A (en) * | 2008-04-14 | 2009-11-12 | Commissariat A L'energie Atomique | Titanate of perovskite or derived structure thereof, and use thereof |
WO2011152464A1 (en) * | 2010-06-04 | 2011-12-08 | 日立造船株式会社 | Metal air battery |
JP2011253789A (en) * | 2010-06-04 | 2011-12-15 | Hitachi Zosen Corp | Metal-air battery |
JP2012104273A (en) * | 2010-11-08 | 2012-05-31 | Hitachi Zosen Corp | Metal-air battery |
JP2012209020A (en) * | 2011-03-29 | 2012-10-25 | Hitachi Zosen Corp | Metal-air battery |
JP2013097968A (en) * | 2011-10-31 | 2013-05-20 | Showa Denko Packaging Co Ltd | Air secondary battery packaging material, air secondary battery packaging material manufacturing method, and air secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4483694A (en) | Oxygen gas permselective membrane | |
JPH0417259A (en) | Battery | |
JPH07105991A (en) | Oxygen enriched film for battery | |
JP2782837B2 (en) | Battery | |
JPH0562687A (en) | Oxygen transmitting composite film and cell provided with the composite film | |
JPH04312771A (en) | Air battery | |
JP2817341B2 (en) | Battery | |
JP2778078B2 (en) | Battery | |
JP2817343B2 (en) | Battery | |
JP2757383B2 (en) | Battery | |
JPH042067A (en) | Battery | |
JP2822485B2 (en) | Battery | |
JPH0475253A (en) | Manufacture of battery | |
JPH04162374A (en) | Battery | |
JPH03108258A (en) | Battery | |
JPH03108254A (en) | Battery | |
JPH01267971A (en) | Battery | |
JP2743574B2 (en) | Battery | |
JP2782911B2 (en) | Battery | |
JPH0374047A (en) | Battery | |
JP2734057B2 (en) | Battery manufacturing method | |
JPH01267974A (en) | Battery | |
JPH01267972A (en) | Battery | |
JPH0287459A (en) | Battery | |
JPH01195678A (en) | Cell |