JPH04179824A - Suction control apparatus for internal combustion engine - Google Patents
Suction control apparatus for internal combustion engineInfo
- Publication number
- JPH04179824A JPH04179824A JP2310095A JP31009590A JPH04179824A JP H04179824 A JPH04179824 A JP H04179824A JP 2310095 A JP2310095 A JP 2310095A JP 31009590 A JP31009590 A JP 31009590A JP H04179824 A JPH04179824 A JP H04179824A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- valve
- intake control
- pressure
- open
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 16
- 238000001514 detection method Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 description 18
- 239000000446 fuel Substances 0.000 description 12
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 2
- MMOXZBCLCQITDF-UHFFFAOYSA-N N,N-diethyl-m-toluamide Chemical compound CCN(CC)C(=O)C1=CC=CC(C)=C1 MMOXZBCLCQITDF-UHFFFAOYSA-N 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/08—Modifying distribution valve timing for charging purposes
- F02B29/083—Cyclically operated valves disposed upstream of the cylinder intake valve, controlled by external means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、空気の吸入期間を調整する吸気制御弁を備え
た内燃機関の吸気制御装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake control device for an internal combustion engine that includes an intake control valve that adjusts an air intake period.
従来より第9図に示す様にインテークバルブが開いてい
る期間において吸気制御弁を内燃機関の負荷状態に応じ
て開閉制御し、内燃機関の出力トルクの特性および燃費
の向上を図るものが提案されている(例えば特開昭63
−263220号公報)。Conventionally, as shown in Fig. 9, a system has been proposed in which the intake control valve is controlled to open and close depending on the load condition of the internal combustion engine during the period when the intake valve is open, thereby improving the output torque characteristics and fuel efficiency of the internal combustion engine. (For example, JP-A-63
-263220).
〔発明が解決しようとする8s〕
しかしながら、上述したものにおいては、第9図に示す
如くインテークバルブとエキゾーストバルブの両方が開
くオーバラップ期間において、インテークバルブと吸気
制御弁間の吸気ポートの圧力は負圧となっている。その
ため、オーバラップ期間に排気管内の既燃ガスが吸気ポ
ートに逆流し、次回の燃焼が不安定となりトルク変動が
生じ、運転性が悪化するという問題がある。[8s to be Solved by the Invention] However, in the above-mentioned system, in the overlap period when both the intake valve and the exhaust valve are open, as shown in FIG. 9, the pressure at the intake port between the intake valve and the intake control valve is There is negative pressure. Therefore, during the overlap period, burnt gas in the exhaust pipe flows back into the intake port, making the next combustion unstable, causing torque fluctuations, and deteriorating drivability.
本発明は上記問題を鑑みて、オーバラップ期間に既燃ガ
スが吸気ポートに逆流するのを防止することにより燃焼
を安定させ、運転性を向上させることを目的とする。In view of the above problems, the present invention aims to stabilize combustion and improve drivability by preventing burned gas from flowing back into the intake port during the overlap period.
上記lI!題を解決する手段として、本発明は、内燃機
関の運転状態を検出する運転状態検出手段と、内燃機関
の各気筒と1対1に対応する各吸気ポートに配設され、
この吸気ポートを開閉する吸気制御弁と
この吸気制御弁に対応して各々設けられ前記吸気制御弁
を駆動するアクチュエータと、前記各気筒のインテーク
バルブの開閉状態を検出する検出手段と、
前記インテークバルブの開期間において、前記運転状態
に基づき前記吸気制御弁を開閉して各気筒の吸入行程期
間を制御する制御手段と、前記インテークバルブ閉期間
においても少なくとも1度前記吸気制御弁を開閉するよ
うに前記アクチュエータを制御する副制御手段と
を備えたことを特徴とする内燃機関の吸気制御装置を提
案する。Above lI! As a means for solving the problem, the present invention provides an operating state detection means for detecting the operating state of an internal combustion engine, and a means for detecting an operating state of an internal combustion engine, which is disposed at each intake port in one-to-one correspondence with each cylinder of the internal combustion engine,
An intake control valve that opens and closes the intake port, an actuator that is provided corresponding to each intake control valve and that drives the intake control valve, a detection means that detects the open/closed state of the intake valve of each cylinder, and the intake valve. control means for controlling the intake stroke period of each cylinder by opening and closing the intake control valve based on the operating state during the open period of the intake valve; and a control means for opening and closing the intake control valve at least once during the intake valve closing period. The present invention proposes an intake air control device for an internal combustion engine, characterized by comprising a sub-control means for controlling the actuator.
これにより、各気筒のインテークバルブが開いている状
態の時、各気筒に対応する吸気制御弁は運転状態に基づ
いてアクチュエータにより開閉駆動されて各気筒の吸入
行程期間が制御される。そして、インテークバルブが閉
じている状態においても吸気制御弁は開閉駆動される。As a result, when the intake valve of each cylinder is open, the intake control valve corresponding to each cylinder is driven to open or close by the actuator based on the operating state, and the intake stroke period of each cylinder is controlled. Even when the intake valve is closed, the intake control valve is driven to open and close.
このとき、吸気ポートの圧力は負圧から大気圧近傍に戻
り、インテークバルブとエキゾーストバルブ七が開くオ
ーバラップ時排気管の既燃ガスが吸気ポートに逆流しな
い。At this time, the pressure in the intake port returns from negative pressure to near atmospheric pressure, and when the intake valve and exhaust valve 7 open overlap, the burned gas in the exhaust pipe does not flow back to the intake port.
本発明により、インテークバルブが閉じている期間に吸
気制御弁を開閉させることにより、オーバラップ時吸気
ポートの圧力が大気圧近傍の値となるため、排気管内の
既燃ガスが吸気ポートに逆流せず、燃焼が安定する。し
たがってトルク変動が抑制され運転性が向上するという
優れた効果がある。According to the present invention, by opening and closing the intake control valve while the intake valve is closed, the pressure at the intake port at the time of overlap becomes a value close to atmospheric pressure, so that the burned gas in the exhaust pipe cannot flow back to the intake port. combustion becomes stable. Therefore, there is an excellent effect that torque fluctuation is suppressed and drivability is improved.
以下、図面に基づき本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the drawings.
本実施例の吸気制御装置が搭載されるエンジンシステム
構成を第1図に示す。FIG. 1 shows the configuration of an engine system in which the intake air control device of this embodiment is installed.
第1図において、本システムは、4気筒エンジン1、こ
のエンジンlの吸気系1aに配設された吸気制御部3お
よびこれらを制御する電子制御装置(以下、単にECU
と呼ぶ)4から構成されている。In FIG. 1, this system includes a four-cylinder engine 1, an intake control unit 3 disposed in an intake system 1a of the engine 1, and an electronic control unit (hereinafter simply ECU) that controls these.
4).
エンジン1は、4個の気筒5,6,7.8を備え、各気
筒5.6,7.9には、高速適合カムによって開閉され
るインテークバルブ9,10,11.12が配設され、
また、エキゾーストバルブ13.14,15.16も設
けられている。このエンジン1の吸気系1aには、圧力
調整弁としてのスロットルバルブ40が配設され、この
スロットルバルブ40はスロットルアクチュエータ41
によりその開度が駆動制御される。また、各エキゾース
トバルブ13〜16には排気管1bが接続されている。The engine 1 includes four cylinders 5, 6, 7.8, and each cylinder 5.6, 7.9 is provided with an intake valve 9, 10, 11.12 that is opened and closed by a high-speed adaptive cam. ,
Also provided are exhaust valves 13.14, 15.16. A throttle valve 40 as a pressure regulating valve is disposed in the intake system 1a of the engine 1, and the throttle valve 40 is connected to a throttle actuator 41.
The opening degree is drive controlled by. Further, an exhaust pipe 1b is connected to each of the exhaust valves 13 to 16.
また、吸気系1aから分岐して各気筒5,6゜7.8に
連通する吸気ポート17.1B、19゜20が配設され
ている。吸気ポート17.1B。Further, intake ports 17.1B and 19.degree. 20 are provided which branch from the intake system 1a and communicate with the respective cylinders 5, 6.degree. 7.8. Intake port 17.1B.
19.20には、各々吸気制御弁21,22.23.3
4が配設され、これらの吸気制御弁21゜22,23.
34は、各々開閉駆動手段としてのアクチュエータ25
,26,27.28により各気筒独立に開閉駆動される
。また、17a、18a、19a、20aは吸気ポート
17.1B、19.20の上流部である。この上流部1
7a、18a、19a、20aには燃料を噴射するイン
ジェクタ44,45,46.47が配設されている。19.20, intake control valves 21, 22.23.3, respectively.
4 are arranged, and these intake control valves 21, 22, 23 .
34 are actuators 25 each serving as an opening/closing drive means.
, 26, 27, and 28, each cylinder is independently driven to open and close. Further, 17a, 18a, 19a, and 20a are upstream portions of the intake ports 17.1B and 19.20. This upstream part 1
Injectors 44, 45, 46, and 47 for injecting fuel are arranged at 7a, 18a, 19a, and 20a.
エンジン1には、検出器として、各気筒5,6゜7す8
の図示しないピストンが上死点(TDC)に位置すると
きにパルス信号を出力するクランク角センサ29、所定
のクランク角度毎にパルス信号を出力する回転速度セン
サ30、気筒ごとトルクあるいは燃焼を検出する手段3
1(例えば筒内圧センサ、トルクセンサ、ノックセンサ
)、気筒毎の空気量を検出する手段32(例えば吸気管
内圧力センサ)、負荷状態を検出する負荷検出手段33
(例えばスロットルセンサ、アクセルセンサ)、騒音あ
るいは振動を検出する騒音・振動検出手段34、エミッ
ションの状態を検出するエミッション検出手段35に備
える。The engine 1 has a detector for each cylinder 5, 6, 7, 8.
A crank angle sensor 29 outputs a pulse signal when a piston (not shown) is located at top dead center (TDC), a rotation speed sensor 30 outputs a pulse signal at every predetermined crank angle, and detects torque or combustion for each cylinder. Means 3
1 (for example, cylinder pressure sensor, torque sensor, knock sensor), means 32 for detecting the air amount for each cylinder (for example, intake pipe pressure sensor), and load detection means 33 for detecting the load state.
(for example, a throttle sensor, an accelerator sensor), a noise/vibration detection means 34 for detecting noise or vibration, and an emission detection means 35 for detecting the state of emissions.
また、エンジン1には、インジェクタ44〜48による
噴射量および噴射時期を制御噴射する制御手段36点火
時期を制御する点火時期制御手段37、吸気の過給を行
う過給手段38、運転状態に応じて学習制御を行う学習
制御手段39、吸気の加熱を行う吸気加熱手段42、冷
却水の温度を調整する冷却水温調整手段43が設けられ
ている。The engine 1 also includes a control means 36 for controlling and injecting the injection amount and timing by the injectors 44 to 48, an ignition timing control means 37 for controlling the ignition timing, a supercharging means 38 for supercharging the intake air, and a supercharging means 38 for supercharging the intake air. A learning control means 39 for performing learning control, an intake air heating means 42 for heating intake air, and a cooling water temperature adjusting means 43 for adjusting the temperature of cooling water are provided.
ECU4は、CPU4A、ROM4B、RAM4Cを中
心に論理演算回路として構成され、コモンバス4Dを介
して入出力部4Eに接続され、外部との入出力を行う。The ECU 4 is configured as a logic operation circuit mainly including a CPU 4A, a ROM 4B, and a RAM 4C, and is connected to an input/output section 4E via a common bus 4D to perform input/output with the outside.
各センサからの検出信号及び各制御手段からの信号は入
出力部4EからCPU4Aに入力される。一方、CPU
4Aは、入出力部4Eを介して、アクチュエータ25,
26゜27.2B、スロットルアクチュエータ41、過
給手段38、吸気加熱手段42に制御信号を出力する。Detection signals from each sensor and signals from each control means are input to the CPU 4A from the input/output section 4E. On the other hand, the CPU
4A is connected to the actuator 25, via the input/output section 4E.
26°27.2B, a control signal is output to the throttle actuator 41, supercharging means 38, and intake air heating means 42.
また、ECU4は上記のクランク角センサ29と回転速
度センサ30との信号に基づいて各気筒5〜8のインテ
ークパルプ9〜12の開閉期間を検出している。Further, the ECU 4 detects the opening/closing periods of the intake pulps 9 to 12 of each cylinder 5 to 8 based on the signals from the crank angle sensor 29 and rotational speed sensor 30 described above.
また、吸気制御弁21〜24は、第2図に示すように、
各吸気ポート17〜20内にはバタフライ型の円形弁板
50が設けてあり、この弁板50は支軸51により回動
開閉せしめられる。円形弁板50は第4図に示すように
、吸気ポー)17〜18の壁に対して非常に狭いクリア
ランスを持って非接触で揺動する構造となっている。支
軸51はベアリングにより各吸気ポート17〜20に支
持され、その端部は下方の駆動部52に結合されている
。In addition, the intake control valves 21 to 24, as shown in FIG.
A butterfly-type circular valve plate 50 is provided in each of the intake ports 17 to 20, and this valve plate 50 is rotated to open and close by a support shaft 51. As shown in FIG. 4, the circular valve plate 50 has a structure in which it swings without contact with the walls of the intake ports 17 and 18 with a very narrow clearance. The support shaft 51 is supported by each of the intake ports 17 to 20 by bearings, and its end portion is connected to a lower driving portion 52.
第3図は第2図のA−A断面図である。FIG. 3 is a sectional view taken along the line AA in FIG. 2.
駆動部52のケーシング53内に延びた支軸51の円形
外周には磁石部材54が嵌着されており、この磁石部材
54には周方向対称に異極となるように磁極が形成され
ている。また、ケーシング53の内壁には、磁石部材5
4に対向する一対の電磁コイル55.56と一対の永久
磁石57.58とが配置されている。A magnet member 54 is fitted on the circular outer periphery of the support shaft 51 extending into the casing 53 of the drive unit 52, and magnetic poles are formed in the magnet member 54 so as to have different polarities symmetrically in the circumferential direction. . Further, a magnet member 5 is provided on the inner wall of the casing 53.
A pair of electromagnetic coils 55, 56 and a pair of permanent magnets 57, 58 facing each other are arranged.
第5図は、電磁コイル55.56の制御回路を示してお
り、電磁コイル55.56をプラス側に励磁するように
通電すると、!磁コイル55.56によって形成される
磁極と、永久磁石57.58によって形成される磁極と
により決定される位置まで磁石部材54は揺動し、円形
弁体50は第4図の一点鎖線に示す全開位置に揺動する
。また、電磁コイル55.56をマイナス側に励磁する
ように通電すると、磁石部材54は90”回転し、円形
弁板50は第4図の実線に示す全閉位置に揺′動する。FIG. 5 shows the control circuit for the electromagnetic coils 55 and 56. When the electromagnetic coils 55 and 56 are energized to the positive side, ! The magnetic member 54 swings to a position determined by the magnetic poles formed by the magnetic coils 55, 56 and the magnetic poles formed by the permanent magnets 57, 58, and the circular valve body 50 is moved as shown by the dashed line in FIG. Swings to the fully open position. Further, when the electromagnetic coils 55, 56 are energized to the negative side, the magnet member 54 rotates 90'', and the circular valve plate 50 swings to the fully closed position shown by the solid line in FIG. 4.
さらに、第5図のスイッチ59をOFFとして、!磁コ
イル55.56への通電を遮断すると、磁石部材54は
永久磁石57.58の磁極によってのみ保持され、円形
弁板50は第4図の破線に示す半開位置に揺動する。Furthermore, switch 59 in FIG. 5 is turned OFF! When the magnetic coils 55,56 are de-energized, the magnetic member 54 is held only by the magnetic poles of the permanent magnets 57,58, and the circular valve plate 50 swings to the half-open position shown in broken lines in FIG.
次に、本実施例の制御方法について説明する。Next, the control method of this embodiment will be explained.
気筒毎の吸入空気量については、気筒毎の空気量を検出
する手段32からの入力信号とアクチュエータ25,2
6,27.28への吸気制御弁21.22,23.24
の開弁・閉弁時期指令信号に基づいて求められ、この演
算結果に基づいて噴射制御手段36はインジェクタの噴
射量を気筒毎に定める。Regarding the amount of intake air for each cylinder, input signals from means 32 for detecting the amount of air for each cylinder and actuators 25, 2 are used.
Intake control valves 21.22, 23.24 to 6, 27.28
The injection control means 36 determines the injection amount of the injector for each cylinder based on the calculation result.
次に、インテークバルブ9〜12開時における吸気制御
弁21.22.23.24の開弁時期の基本的な制御に
ついては、回転速度センサ30の入力信号に基づいて、
表−1に示すように回転数の上昇につれて上死点に対す
る進角量が大きくなるようにアクチュエータ25.26
.27.28によって制御される。表−1において、開
弁時期は上死点に対する進角量を示している。Next, basic control of the opening timing of the intake control valves 21, 22, 23, 24 when the intake valves 9 to 12 are open is based on the input signal of the rotation speed sensor 30.
As shown in Table 1, the actuator 25,26
.. 27.28. In Table 1, the valve opening timing indicates the amount of advance relative to top dead center.
また、吸気制御弁21.22.23.24の閉弁時期の
基本的な制御については、以下のように設定される。す
なわち、吸入空気量は空気密度に吸気時期を乗じること
で決定され、本実施例ではポンプ損失低減を図るため、
スロットルバルブ40による空気密度の調整だけでなく
吸気時間の調整も併せて行っているので、吸気制御弁2
1,22.23.24の閉弁時間は表−2に示すように
負荷に応じて制御される。なお、この時のアクセル踏み
込み量に対するスロットルバルブ40の開度の関係は第
6図に示すように設定されている。Further, basic control of the closing timing of the intake control valves 21, 22, 23, and 24 is set as follows. In other words, the intake air amount is determined by multiplying the air density by the intake timing, and in this example, in order to reduce pump loss,
Since not only the air density is adjusted by the throttle valve 40, but also the intake time is adjusted, the intake control valve 2
The valve closing times of 1, 22, 23, and 24 are controlled according to the load as shown in Table 2. The relationship between the opening degree of the throttle valve 40 and the amount of accelerator depression at this time is set as shown in FIG.
表−2において、閉弁時間は下死点に対する進角量を示
している。In Table 2, the valve closing time indicates the amount of advance relative to the bottom dead center.
さらに本実施例は、前述のインテークバルブ9〜12開
時に吸気制御弁21〜24を開閉する基本制御に加え、
インテークバルブ9〜12閉時にも吸気制御弁2゛1〜
24を開閉して機関の1サイクル内において吸気制御弁
を二回開閉制御することを特徴としている。Furthermore, in this embodiment, in addition to the basic control of opening and closing the intake control valves 21 to 24 when the intake valves 9 to 12 are opened,
Even when intake valves 9-12 are closed, the intake control valves 2-1-
24 to open and close the intake control valve twice within one cycle of the engine.
第7図は吸気制御弁21、インテークバルブ9、エキゾ
ーストバルブ13の開閉タイミングと、吸気ポート17
の上流部17aの圧力変化を示したタイミングチャート
である。Figure 7 shows the opening/closing timing of the intake control valve 21, intake valve 9, and exhaust valve 13, and the intake port 17.
3 is a timing chart showing pressure changes in the upstream portion 17a of FIG.
前述した様に、各気筒5〜8の吸気工程の途中で各吸気
制御弁21〜28を閉にすると、各吸気制御弁21〜2
8と各気筒5〜8のシリンダとの内容積において空気が
充填される。このときピストンはまだ下降中であり、し
たがって充填された空気は断熱膨張とするため上流部1
7aの圧力は第7図に示す如く大気圧から負圧へと圧力
が下降し、ピストンの下死点で最小値となる。その後ピ
ストンが上昇するため圧力は大気側に戻っていき、イン
テークバルブ9閉で上流部17aの圧力は負圧で保持さ
れる。As mentioned above, when each intake control valve 21-28 is closed during the intake stroke of each cylinder 5-8, each intake control valve 21-2
8 and each cylinder 5 to 8 are filled with air. At this time, the piston is still descending, so the filled air expands adiabatically, so the upstream part 1
As shown in FIG. 7, the pressure at 7a decreases from atmospheric pressure to negative pressure and reaches its minimum value at the bottom dead center of the piston. Thereafter, as the piston rises, the pressure returns to the atmosphere side, and when the intake valve 9 is closed, the pressure in the upstream portion 17a is maintained at negative pressure.
次にインテークバルブ9が閉となったあとに、吸気制御
弁21を再び開とする。すると吸気ポート17の上流か
ら急激に空気が上流部17aに流れ込み、上流部17a
の圧力は急激に上昇し、大気圧近傍で圧力変動をおこす
。Next, after the intake valve 9 is closed, the intake control valve 21 is opened again. Then, air suddenly flows into the upstream part 17a from the upstream side of the intake port 17, and the air suddenly flows into the upstream part 17a.
The pressure rises rapidly, causing pressure fluctuations near atmospheric pressure.
所定時間経過後、吸気制御弁21を再び閉とすると上述
の圧力変動はおさまり、上流部17aの圧力は大気圧近
傍の値で保持される。When the intake control valve 21 is closed again after a predetermined period of time has elapsed, the above-described pressure fluctuations subside and the pressure in the upstream section 17a is maintained at a value near atmospheric pressure.
その後エキゾーストバルブ13が開となって制御手段3
6によってインジェクタ44より燃料が吸気ポート17
の上流部17aに噴射される。そしてインテークバルブ
13が開になると上述した吸気制御弁21を開にする基
本制御を行う。以上で機関1サイクルの制御を完了する
。After that, the exhaust valve 13 is opened and the control means 3
6, fuel is supplied from the injector 44 to the intake port 17.
is injected into the upstream portion 17a of. When the intake valve 13 is opened, the basic control of opening the intake control valve 21 described above is performed. This completes the control of one cycle of the engine.
また、他の吸気制御弁22〜24も同様なタイミングで
機関1サイクルで2回開閉制御される。Further, the other intake control valves 22 to 24 are also controlled to open and close twice in one engine cycle at similar timings.
以上述べた様に本実施例では、インジェクタ44〜47
により燃料噴射タイミングにおいては各吸気ポート17
〜20の上流部17a〜20aの圧力は大気圧近傍の安
定した値になる。そのため、インジェクタ44〜47か
ら噴射される燃料の噴射圧力は安定する。というのは、
噴射圧力はインジェクタ内の燃料圧力と燃料が噴射され
る上流部17a〜20aの圧力との差によって定まり、
燃料圧力は燃料ポンプとレギュレータにより一定となっ
ており、また上流部17a〜20aの圧力も噴射タイミ
ングにおいては大気圧近傍の一定となっている為、噴射
圧力は一定な値で安定する。As described above, in this embodiment, the injectors 44 to 47
Therefore, each intake port 17 at the fuel injection timing
The pressure in the upstream portions 17a to 20a of 20 to 20 has a stable value near atmospheric pressure. Therefore, the injection pressure of the fuel injected from the injectors 44 to 47 is stabilized. I mean,
The injection pressure is determined by the difference between the fuel pressure within the injector and the pressure at the upstream portions 17a to 20a where fuel is injected,
The fuel pressure is kept constant by the fuel pump and regulator, and the pressure in the upstream parts 17a to 20a is also kept constant near atmospheric pressure at the injection timing, so the injection pressure is stabilized at a constant value.
よって、噴射圧力と噴射時間によって定まる噴射燃料量
の変動を防止することができ、空燃比変動を抑制してト
ルク変動を防止することができる。Therefore, it is possible to prevent fluctuations in the amount of injected fuel determined by the injection pressure and injection time, suppress air-fuel ratio fluctuations, and prevent torque fluctuations.
また、インテークバルブとエキゾーストバルブ)の両方
が開くオーバラップ時の上流部17a〜20aの圧力は
ほぼ大気圧であるため排気管lb内の既燃ガスが吸気ポ
ート17〜20へ逆流しない。Further, since the pressure in the upstream portions 17a to 20a when both the intake valve and the exhaust valve are opened is approximately atmospheric pressure, the burned gas in the exhaust pipe lb does not flow back to the intake ports 17 to 20.
他の実施例として第8図に示す様に、インテークバルブ
9〜12が閉じている時に、吸気制御弁21〜24を開
閉制御する際、吸気制御弁を全開とせず半分だけ開(様
にしてもよい。As another example, as shown in FIG. 8, when the intake valves 9 to 12 are closed, when controlling the opening and closing of the intake control valves 21 to 24, the intake control valves are not fully opened but only half open (similar to Good too.
第8図で吸気制御弁21〜24が半開すると吸気ポート
17〜20の上流から空気が上流部17a〜20aに流
れ込むため、上流部17a〜20aの圧力は上昇し、大
気圧近傍で圧力変動を起こす。所定時間経過後再び吸気
制御弁21〜24を閉じると、上流部17a〜20aの
圧力は大気圧近傍の値で安定する。その後インジェクタ
44〜47より燃料が噴射される。When the intake control valves 21 to 24 are half-opened in FIG. 8, air flows into the upstream parts 17a to 20a from upstream of the intake ports 17 to 20, so the pressure in the upstream parts 17a to 20a increases, causing pressure fluctuations near atmospheric pressure. wake up When the intake control valves 21 to 24 are closed again after a predetermined period of time has elapsed, the pressure in the upstream portions 17a to 20a stabilizes at a value near atmospheric pressure. After that, fuel is injected from the injectors 44 to 47.
吸気制御弁21〜24を全開とセず半開とする時は、前
述した様に電磁コイル55.56に通電する必要がない
ため消費エネルギーが低減される。When the intake control valves 21 to 24 are set half open instead of fully open, there is no need to energize the electromagnetic coils 55 and 56 as described above, so energy consumption is reduced.
第1図は本発明の吸気制御装置の構成を示したブロック
図、第2図及び第3図は吸気制御弁の断面図、第4図は
吸気制御弁の作動を説明した説明図、第5図は吸気制御
弁の駆動回路図、第6図はスロットル弁の特性図、第7
図及び第8図は本実施例における吸気制御弁の作動を示
したタイムチャート、第9図は従来における吸気制御弁
の作動を示したタイムチャートである。
4・・・ECU、25.26.27.28・・・アクチ
ュエータ、21,22,23.34・・・吸気制御弁。
代理人弁理士 岡 部 隆
(ほか1名)
第2図
第3図
第4図
了り?lLl當々ソと/i
第6図
第5図
第7図
大で5:封ot射FIG. 1 is a block diagram showing the configuration of the intake control device of the present invention, FIGS. 2 and 3 are sectional views of the intake control valve, FIG. 4 is an explanatory diagram explaining the operation of the intake control valve, and FIG. The figure is a drive circuit diagram of the intake control valve, Figure 6 is a characteristic diagram of the throttle valve, and Figure 7 is a diagram of the throttle valve characteristics.
8 and 8 are time charts showing the operation of the intake control valve in this embodiment, and FIG. 9 is a time chart showing the operation of the conventional intake control valve. 4...ECU, 25.26.27.28...Actuator, 21,22,23.34...Intake control valve. Representative Patent Attorney Takashi Okabe (and 1 other person) Figure 2, 3, and 4 completed? lLl Soto/i Fig. 6 Fig. 5 Fig. 7 Large de 5: Enclosed shot
Claims (2)
と、内燃機関の各気筒と1対1に対応する各吸気ポート
に配設され、この吸気ポートを開閉する吸気制御弁と この吸気制御弁に対応して各々設けられ前記吸気制御弁
を駆動するアクチュエータと、 前記各気筒のインテークバルブの開閉状態を検出する検
出手段と、 前記インテークバルブの開期間において、前記運転状態
に基づき前記吸気制御弁を開閉して各気筒の吸入行程期
間を制御する制御手段と、 前記インテークバルブ閉期間においても少なくとも1度
前記吸気制御弁を開閉するように前記アクチュエータを
制御する副制御手段と を備えたことを特徴とする内燃機関の吸気制御装置。(1) An operating state detection means for detecting the operating state of the internal combustion engine, an intake control valve that is disposed at each intake port in one-to-one correspondence with each cylinder of the internal combustion engine and that opens and closes this intake port, and this intake control valve. an actuator that is provided corresponding to each valve and drives the intake control valve; a detection means that detects an open/closed state of the intake valve of each cylinder; A control means for controlling the intake stroke period of each cylinder by opening and closing the valve, and a sub-control means for controlling the actuator so as to open and close the intake control valve at least once during the intake valve closing period. An intake control device for an internal combustion engine, characterized by:
において前記吸気制御弁を半開させた後全閉させるよう
に前記アクチュエータを制御することを特徴とする請求
項1記載の内燃機関の吸気制御装置。(2) The intake control device for an internal combustion engine according to claim 1, wherein the sub-control means controls the actuator to half-open and then fully close the intake control valve during the intake valve closing period. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2310095A JPH04179824A (en) | 1990-11-14 | 1990-11-14 | Suction control apparatus for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2310095A JPH04179824A (en) | 1990-11-14 | 1990-11-14 | Suction control apparatus for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04179824A true JPH04179824A (en) | 1992-06-26 |
Family
ID=18001124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2310095A Pending JPH04179824A (en) | 1990-11-14 | 1990-11-14 | Suction control apparatus for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04179824A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029073A (en) * | 2011-07-28 | 2013-02-07 | Nissan Motor Co Ltd | Intake air control device of engine |
-
1990
- 1990-11-14 JP JP2310095A patent/JPH04179824A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013029073A (en) * | 2011-07-28 | 2013-02-07 | Nissan Motor Co Ltd | Intake air control device of engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02294522A (en) | Cycle convertible engine and its control device | |
US7051687B2 (en) | Valve operation controller | |
JP3627601B2 (en) | Engine intake air amount control device | |
US20030094156A1 (en) | Intake control system of internal combustion engine | |
US6513494B2 (en) | System and method of controlling ignition timing in an engine with a variably operated intake valve | |
JPH0324838Y2 (en) | ||
JPH04179824A (en) | Suction control apparatus for internal combustion engine | |
JPH07133726A (en) | Intake air controller of internal combustion engine | |
JP3633113B2 (en) | Method for stopping internal combustion engine having electromagnetically driven valve for intake and exhaust | |
JPS61164009A (en) | Low noise and high output operated tappet valve system | |
JPH03100361A (en) | Exhaust gas circular controller of diesel engine | |
JPH062550A (en) | Intake control device for internal combustion engine | |
JP2001234769A (en) | Internal combustion engine having variable valve system mechanism | |
JP3804126B2 (en) | Control device for engine with mechanical supercharger | |
JP3565119B2 (en) | Variable valve control device | |
JP2003193889A (en) | Intake control device for multi-cylinder internal combustion engine | |
JP2001271665A (en) | Control device for variable valve system engine | |
JP2001159326A (en) | Torque control device for engine | |
JP2000045804A (en) | Torque control device for internal combustion engine | |
JP2000080936A (en) | Cylinder suction air quantity detector for variable valve system engine | |
JPH0324835Y2 (en) | ||
JPH0229847B2 (en) | ||
JPH07166900A (en) | Intake control device for internal combustion engine | |
JPS5614816A (en) | Engine | |
JP3649925B2 (en) | EGR control device for cylinder deactivation engine |