JPH04176143A - Wafer pattern form inspecting device - Google Patents
Wafer pattern form inspecting deviceInfo
- Publication number
- JPH04176143A JPH04176143A JP30342990A JP30342990A JPH04176143A JP H04176143 A JPH04176143 A JP H04176143A JP 30342990 A JP30342990 A JP 30342990A JP 30342990 A JP30342990 A JP 30342990A JP H04176143 A JPH04176143 A JP H04176143A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- semiconductor wafer
- laser beam
- light
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 235000012431 wafers Nutrition 0.000 claims abstract description 60
- 239000004065 semiconductor Substances 0.000 claims abstract description 42
- 238000007689 inspection Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 238000001444 catalytic combustion detection Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 2
- 244000124853 Perilla frutescens Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はウェハパターン形状検査装置、特に、メモリ等
の繰返しパターンをもつ半導体ウェハに適用しうるウェ
ハ表面の立体形状の検査を含んだウェハパターン形状検
査装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a wafer pattern shape inspection device, and in particular, a wafer pattern shape inspection device that includes inspection of the three-dimensional shape of the wafer surface, which can be applied to semiconductor wafers having repetitive patterns such as memories. This invention relates to a shape inspection device.
従来のウェハパターン形状検査としては、例えば走査型
電子顕微鏡を用いて必要とする部分の形状を像としてと
らえる直接的な装置があった。半導体ウェハの平面的な
形状は半導体ウェハの表面を走査型電子顕微鏡で観察し
、その像を得ることにより、半導体ウェハの立体的な形
状は半導体ウェハを傾けて、あるいは半導体ウェハを割
りその断面を走査型電子顕微鏡で観察し、その像を得る
ことにより明らかになる。Conventional wafer pattern shape inspection includes a direct device that uses, for example, a scanning electron microscope to capture the shape of a desired portion as an image. The two-dimensional shape of a semiconductor wafer can be determined by observing the surface of the semiconductor wafer with a scanning electron microscope and obtaining an image. It becomes clear by observing it with a scanning electron microscope and obtaining an image of it.
上述した従来のウェハパターン形状検査装置は、走査型
電子顕微鏡を用いるので真空にするなど測定検査に手間
および時間がかかるという欠点があった。The above-described conventional wafer pattern shape inspection apparatus uses a scanning electron microscope, so it has the disadvantage that it takes time and effort to conduct measurement inspections, such as by creating a vacuum.
本発明のウェハパターン形状検査装置は、レーザ光源と
、前記レーザ光源より出射されるレーザビーム径を拡大
するビームエキスパンダと、前記ビームエキスパンダを
通ったレーザビームを対象物である対象半導体ウェハ」
二に導く手段と、前記レーザビームが前記対象半導体ウ
ェハに照射され生じた正反射光と半導体ウェハ上のパタ
ーンにより回折された光を集光し前記対象半導体ウェハ
間の距離を焦点距離より大きくした集光レンズと、前記
集光レンズから焦点距離だけ離れて位置し前記集光レン
ズにより集光されたレーザビームを受光する2次元受光
素子と、基準きする多種類の基準半導体ウェハに対する
前記2次元受光素子の各画素の出力値を記憶する記憶装
置と、前記対象半導体ウェハによる前記2次元受光素子
の各画素の出力に相当する前記記憶装置に記憶された前
記基準半導体ウェハの種類を判定する判定装置とを含む
ことを特徴とする。A wafer pattern shape inspection apparatus according to the present invention includes a laser light source, a beam expander that expands the diameter of a laser beam emitted from the laser light source, and a target semiconductor wafer that is a target object with the laser beam passing through the beam expander.
(ii) a means for guiding the target semiconductor wafer, and condensing specularly reflected light generated when the laser beam is irradiated onto the target semiconductor wafer and light diffracted by a pattern on the semiconductor wafer to make the distance between the target semiconductor wafers larger than the focal length; a condensing lens; a two-dimensional light receiving element located at a distance from the condensing lens by a focal length and receiving the laser beam condensed by the condensing lens; a storage device that stores the output value of each pixel of the light-receiving element; and a determination that determines the type of the reference semiconductor wafer stored in the storage device that corresponds to the output of each pixel of the two-dimensional light-receiving element by the target semiconductor wafer. A device is characterized in that it includes a device.
次に、本発明の実施例について、図面を参照して詳細に
説明する。Next, embodiments of the present invention will be described in detail with reference to the drawings.
第1図は本発明の一実施例を示す構成図である。第2図
は第1図に示す半導体ウェハ9.集光レンズ4,2次元
CCD5の部分のレーザビーム10、半導体ウェハ9に
よる反射光1回折光の状態を示す部分拡大図である。FIG. 1 is a block diagram showing an embodiment of the present invention. FIG. 2 shows the semiconductor wafer 9 shown in FIG. 5 is a partially enlarged view showing the state of the laser beam 10 in the condenser lens 4, the two-dimensional CCD 5, and the diffracted light reflected by the semiconductor wafer 9. FIG.
本実施例は、レーザ光源としてのHeNeレーザ1と、
HeNeレーザ1により出射されるレーザビーム10の
径を拡大するビームエキスパンダ2と、ビームエキスパ
ンダ2を通ったレーザビーム10を対象物である半導体
ウェハ9に導くためのミラー3と、レーザビーム10が
半導体ウェハ9に照射されて生じた正反射光(O次回折
光)12と半導体ウェハ9上のパターンにより回折され
た1次回折光11.−1次回折光13.およびその多高
次の回折光を集光する集光レンズ4と、集光レンズ4に
より集光されたレーザ光を受光する2次元CCD5と、
集光レンズ4と2次元CCD5を集光レンズ4と2次元
C0D5間の距離は集光レンズ4の焦点距離fに、集光
レンズ4と半導体ウェハ間の距離は集光レンズ4の焦点
距離fより大きくとるように位置させる手段と(図示路
)、2次元CCD5より2次元CCDの各画素の出力を
読み出すCODコントローラ6と、基準となる多種類の
半導体ウェハ9に対する2次元CCD ′5の各画素の
出力値を記憶する記憶装置7と、CODコントローラ6
から読み出す2次元CCD5の各画素の出力値と記憶装
置7より読み出す、基準となる半導体ウェハに対する2
次元CCD5の各画素の出力に相当するデータを比較し
、CODコントローラ6よりの出力が記憶装置に記憶さ
れているデータのどの基準とする半導体ウェハのものに
相当するか決定し、該当する記憶装置7のデータの元の
ウェハのパターン形状が、セットされている半導体ウェ
ハ9の形状と同じであると判断する判定装置8とを備え
ている。In this embodiment, a HeNe laser 1 as a laser light source,
A beam expander 2 that expands the diameter of the laser beam 10 emitted by the HeNe laser 1, a mirror 3 that guides the laser beam 10 that has passed through the beam expander 2 to a semiconductor wafer 9 that is an object, and the laser beam 10. specularly reflected light (O-order diffracted light) 12 generated by irradiating the semiconductor wafer 9 with first-order diffracted light 11 diffracted by the pattern on the semiconductor wafer 9. -1st order diffracted light 13. and a condensing lens 4 that condenses the multi-high order diffraction light, a two-dimensional CCD 5 that receives the laser beam condensed by the condensing lens 4,
The distance between the condenser lens 4 and the two-dimensional CCD 5 is the focal length f of the condenser lens 4, and the distance between the condenser lens 4 and the semiconductor wafer is the focal length f of the condenser lens 4. a COD controller 6 for reading out the output of each pixel of the two-dimensional CCD from the two-dimensional CCD 5, and a means for positioning the two-dimensional CCD'5 to make it larger (as shown in the figure); A storage device 7 that stores pixel output values and a COD controller 6
The output value of each pixel of the two-dimensional CCD 5 read from
The data corresponding to the output of each pixel of the dimensional CCD 5 is compared, and it is determined which standard semiconductor wafer of the data stored in the storage device the output from the COD controller 6 corresponds to, and the corresponding storage device is 7 is the same as the shape of the set semiconductor wafer 9.
HeNeレーザ1から出たレーザビーム10は、半導体
ウェハ9上の参照したい面積とレーザビーム10の径が
同じになるようにビームエキスパンダ2によりビーム径
を拡大され、ミラー3により反射されて半導体ウェハ9
上に比較的小さな入射角で照射される。半導体ウェハの
パターンの立体形状は、開口幅に対し深さが深い溝も存
在するので溝の底面までレーザビームが当るように入射
角は小さくとる。半導体ウェハ9上の規則的な繰り返し
パターンによりレーザビーム10は回折光を生じ、その
出射角度は平面的なパターン形状によって決定される。A laser beam 10 emitted from a HeNe laser 1 is expanded in beam diameter by a beam expander 2 so that the diameter of the laser beam 10 is the same as the reference area on the semiconductor wafer 9, and is reflected by a mirror 3 and directed onto the semiconductor wafer. 9
irradiated at a relatively small angle of incidence. The three-dimensional shape of the semiconductor wafer pattern includes grooves that are deep relative to the opening width, so the incident angle is set small so that the laser beam hits the bottom of the groove. A regularly repeating pattern on the semiconductor wafer 9 causes the laser beam 10 to generate diffracted light, the emission angle of which is determined by the planar pattern shape.
また厚さ方向の立体的な形状により、パターン表面から
の反射光と、溝の底からの反射光はその光学距離の差に
相当する位置差を生じることになるので立体形状をもつ
繰り返しパターンは位相格子とみなすことができ、干渉
の影響をうけるため半導体ウェハ9よりの各回折=6=
光の光強度はパターンの立体形状に依存することになる
。Also, due to the three-dimensional shape in the thickness direction, the light reflected from the pattern surface and the light reflected from the bottom of the groove will have a positional difference corresponding to the difference in optical distance. It can be regarded as a phase grating, and since it is affected by interference, each diffraction from the semiconductor wafer 9=6= The light intensity of the light depends on the three-dimensional shape of the pattern.
これらの回折光を焦点距離fの値をもつ集光レンズ4で
集光し2次元CCD5で受けるが、集光レンズ4と、2
次元CCD5間の距離をfにすることで集光レンズのと
ころまで平行光でくる反射光、各回折光のそれぞれが2
次元CCD lに集光し各回折光どうしが分離するよう
に、また集光レンズ4と半導体ウェハ9間の距離をfよ
り大きくして半導体ウェハ9よりの各回折光が2次元C
CD5の受光部分に入るように各回折光を集めるよう距
離を設定する。These diffracted lights are collected by a condenser lens 4 having a focal length f and received by a two-dimensional CCD 5.
By setting the distance between the dimensional CCDs 5 to f, the reflected light and each diffracted light that reach the condenser lens are 2
The distance between the condenser lens 4 and the semiconductor wafer 9 is set larger than f so that each diffracted light beam is focused on the two-dimensional CCD l and each diffracted light beam is separated from the other.
The distance is set so that each diffracted light is collected so that it enters the light receiving part of the CD5.
2次元CCD5より得られる反射光、各回折光の位置、
強度は前に述べたように、出射角度すなわち2次元CC
D5上でのビームの位置は平面的なパターン形状2強度
は立体的なパターン形状に依存し、同種、同工程の半導
体ウェハに固有のものである。このデータをCCDコン
トローラ6を介して判定装置8にとり込み、記憶装置7
に記憶されている各種のデータと比較し、現在測定して
いる半導体ウェハ9は、記憶装置7に記憶されている基
準の半導体ウェハのどれにあたるか判定装置8が判定す
る。Reflected light obtained from the two-dimensional CCD 5, the position of each diffracted light,
As mentioned earlier, the intensity is determined by the exit angle, that is, the two-dimensional CC
The position of the beam on D5 depends on the planar pattern shape 2, and the intensity depends on the three-dimensional pattern shape, and is unique to semiconductor wafers of the same type and process. This data is taken into the determination device 8 via the CCD controller 6 and stored in the storage device 7.
The determination device 8 determines which of the reference semiconductor wafers stored in the storage device 7 the semiconductor wafer 9 currently being measured corresponds to by comparing it with various data stored in the storage device 7 .
本発明のウェハパターン形状検査装置は、レーザビーム
を半導体ウェハ」二に照射し1、その反射光1回折光の
ビームが2次元受光素子上で分離し、かつ比較的狭い2
次元受光素子の受光面上に各回折光が入るようにやや集
光させるように集光レンズと2次元受光素子の位置を決
めて半導体ウェハよりの反射光9回折光を2次元受光素
子に受光しその反射光5回折光の分布、強度を測定し、
この測定結果を予め記憶しておいた基準の半導体ウェハ
の反射光1回折光の2次元受光素子での分布強度とを比
較することにより、走査型電子顕微鏡より真空を必要と
しないなど取扱いが容易でかつ短い測定時間で半導体ウ
ェハ表面のパターン形状を知ることができるという効果
がある。The wafer pattern shape inspection apparatus of the present invention irradiates a semiconductor wafer with a laser beam (1), and separates the reflected light (1) and diffracted light beams on a two-dimensional light receiving element (2) and a relatively narrow beam (2).
The positions of the condenser lens and the two-dimensional light receiving element are determined so that each diffracted light beam enters the light receiving surface of the two-dimensional light receiving element and is slightly focused, and the nine diffracted lights reflected from the semiconductor wafer are received by the two-dimensional light receiving element. Measure the distribution and intensity of the 5-diffracted light reflected by the shiso,
By comparing this measurement result with the pre-memorized distribution intensity of the one-diffracted light reflected from a reference semiconductor wafer on a two-dimensional light receiving element, it is easier to handle than a scanning electron microscope, as it does not require a vacuum. This method has the advantage of being able to determine the pattern shape on the surface of a semiconductor wafer in a short measurement time.
第1図は本発明の一実施例を示す構成図、第2図は第1
図に示す半導体ウェハ9.集光レンズ4.2次元CCD
5の部分のレーザビーム、半導体ウェハによる反射光9
回折光の状態を示す部分拡大図である。
1・・・HeNeレーザ、2・・・ビームエキスパンダ
、8・・・ミラー、4・・・集光レンズ、5・・・2次
元CCD16・・・CCDコントローラ、7・・・記憶
装置、8・・・判定装置、9・・・半導体ウェハ、1o
・・・レーザビーム、11・・・1次回折光、12・・
・正反射光(0次回折光)、13・・・−1次回折光。FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
Semiconductor wafer 9 shown in the figure. Condensing lens 4.2-dimensional CCD
Laser beam of part 5, reflected light by semiconductor wafer 9
It is a partially enlarged view showing the state of diffracted light. DESCRIPTION OF SYMBOLS 1... HeNe laser, 2... Beam expander, 8... Mirror, 4... Condenser lens, 5... Two-dimensional CCD16... CCD controller, 7... Storage device, 8 ... Determination device, 9 ... Semiconductor wafer, 1o
...Laser beam, 11...1st order diffracted light, 12...
・Specular reflection light (0th order diffraction light), 13...-1st order diffraction light.
Claims (1)
ーム径を拡大するビームエキスパンダと、前記ビームエ
キスパンダを通ったレーザビームを対象物である対象半
導体ウェハ上に導く手段と、前記レーザビームが前記対
象半導体ウェハに照射され生じた正反射光と半導体ウェ
ハ上のパターンにより回折された光を集光し前記対象半
導体ウェハ間の距離を焦点距離より大きくした集光レン
ズと、前記集光レンズから焦点距離だけ離れて位置し前
記集光レンズにより集光されたレーザビームを受光する
2次元受光素子と、基準とする多種類の基準半導体ウェ
ハに対する前記2次元受光素子の各画素の出力値を記憶
する記憶装置と、前記対象半導体ウェハによる前記2次
元受光素子の各画素の出力に相当する前記記憶装置に記
憶された前記基準半導体ウェハの種類を判定する判定装
置とを含むことを特徴とするウェハパターン形状検査装
置。a laser light source; a beam expander that expands the diameter of the laser beam emitted from the laser light source; a means for guiding the laser beam that has passed through the beam expander onto a target semiconductor wafer; A condensing lens that condenses the specularly reflected light irradiated onto the target semiconductor wafer and the light diffracted by the pattern on the semiconductor wafer so that the distance between the target semiconductor wafers is larger than the focal length; A two-dimensional light-receiving element that is located a distance apart and receives the laser beam focused by the condenser lens, and an output value of each pixel of the two-dimensional light-receiving element with respect to various types of reference semiconductor wafers as a reference is stored. A wafer pattern comprising: a storage device; and a determination device that determines the type of the reference semiconductor wafer stored in the storage device corresponding to the output of each pixel of the two-dimensional light receiving element by the target semiconductor wafer. Shape inspection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30342990A JPH04176143A (en) | 1990-11-08 | 1990-11-08 | Wafer pattern form inspecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30342990A JPH04176143A (en) | 1990-11-08 | 1990-11-08 | Wafer pattern form inspecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04176143A true JPH04176143A (en) | 1992-06-23 |
Family
ID=17920904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30342990A Pending JPH04176143A (en) | 1990-11-08 | 1990-11-08 | Wafer pattern form inspecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04176143A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007100177A1 (en) * | 2006-03-02 | 2007-09-07 | Korea Research Institute Of Standards And Science | Three demensional surface illumination measuring apparatus for micro optical element array |
US7515253B2 (en) | 2005-01-12 | 2009-04-07 | Kla-Tencor Technologies Corporation | System for measuring a sample with a layer containing a periodic diffracting structure |
-
1990
- 1990-11-08 JP JP30342990A patent/JPH04176143A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7515253B2 (en) | 2005-01-12 | 2009-04-07 | Kla-Tencor Technologies Corporation | System for measuring a sample with a layer containing a periodic diffracting structure |
WO2007100177A1 (en) * | 2006-03-02 | 2007-09-07 | Korea Research Institute Of Standards And Science | Three demensional surface illumination measuring apparatus for micro optical element array |
KR100795543B1 (en) * | 2006-03-02 | 2008-01-21 | 한국표준과학연구원 | 3D surface roughness measuring device of micro optical element array |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6921905B2 (en) | Method and equipment for detecting pattern defect | |
KR100898963B1 (en) | Inspection system for two-dimensional imaging with line light spots | |
JP3211538B2 (en) | Inspection apparatus and semiconductor device manufacturing method using the same | |
US5461474A (en) | Inspection apparatus for detecting foreign matter on a surface to be inspected, and an exposure apparatus and a device manufacturing method using the same | |
JP2007327815A (en) | Defect inspection method and apparatus | |
US7259869B2 (en) | System and method for performing bright field and dark field optical inspection | |
JP2005337851A (en) | Defect inspection method and apparatus | |
TW201520704A (en) | Alignment sensor and height sensor | |
JP3282790B2 (en) | Defect inspection system for phase shift mask | |
JP2004163198A (en) | Defect inspection device, defect inspection method, optical scanner, and method of manufacturing semiconductor device | |
JPH04176143A (en) | Wafer pattern form inspecting device | |
JPH0616480B2 (en) | Reduction projection type alignment method and apparatus | |
US11761906B2 (en) | Optical device | |
JP3326931B2 (en) | Method and apparatus for measuring overlay accuracy | |
JPH05209841A (en) | Method and apparatus for detecting foreign matter | |
JP2709832B2 (en) | Position detection device by fan-shaped Fresnel zone plate using multi-wavelength illumination | |
JPH07234527A (en) | Exposure method | |
JPH01176932A (en) | Fine foreign matter inspection device | |
JPH04177742A (en) | Lead height measuring instrument | |
JP3182746B2 (en) | Position detection device | |
JPH0429962B2 (en) | ||
JP2986130B2 (en) | Mark detection processing method | |
JPH0694630A (en) | Inspecting apparatus for extraneous substance | |
JPS5826205A (en) | Optical system for detecting scattered light | |
JP2000146545A (en) | Optical disc inspection instrument |