JPH04162357A - Nonaqueous secondary battery - Google Patents
Nonaqueous secondary batteryInfo
- Publication number
- JPH04162357A JPH04162357A JP2287073A JP28707390A JPH04162357A JP H04162357 A JPH04162357 A JP H04162357A JP 2287073 A JP2287073 A JP 2287073A JP 28707390 A JP28707390 A JP 28707390A JP H04162357 A JPH04162357 A JP H04162357A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- battery
- average particle
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 18
- 239000007774 positive electrode material Substances 0.000 claims abstract description 15
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 13
- 150000003624 transition metals Chemical class 0.000 claims abstract description 13
- 239000006258 conductive agent Substances 0.000 claims abstract description 6
- 239000002245 particle Substances 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 19
- 150000004706 metal oxides Chemical class 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 239000011149 active material Substances 0.000 abstract description 17
- -1 compound metal oxide Chemical class 0.000 abstract description 6
- 239000012752 auxiliary agent Substances 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 3
- 230000000996 additive effect Effects 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 abstract 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 239000002482 conductive additive Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 229910052744 lithium Inorganic materials 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000011255 nonaqueous electrolyte Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- CMJLMPKFQPJDKP-UHFFFAOYSA-N 3-methylthiolane 1,1-dioxide Chemical compound CC1CCS(=O)(=O)C1 CMJLMPKFQPJDKP-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910012219 LiPFa Inorganic materials 0.000 description 1
- 229910015832 LixMyNzOz Inorganic materials 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は新規な二次電池、更には小型、軽量二次電池に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel secondary battery, and more particularly to a small and lightweight secondary battery.
近年、電子機器の小型化、軽量化は目覚ましく、それに
伴い電源となる電池に対しても小型軽量化の要望が非常
に大きい。−次電池の分野では既にリチウム電池等の小
型軽量電池が実用化されているが、これらは−次電池で
あるが故に繰り返し使用できず、その用途分野は限られ
たものであった。In recent years, electronic devices have become smaller and lighter, and as a result, there is a strong demand for batteries that serve as power sources to be smaller and lighter. In the field of -secondary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use, but because these are -secondary batteries, they cannot be used repeatedly, and their fields of application have been limited.
一方、二次電池の分野では従来より鉛電池、ニッケルー
カドミ電池が用いられてきたが両者共、小型軽量化とい
う点で大きな問題点を有している。On the other hand, in the field of secondary batteries, lead batteries and nickel-cadmium batteries have conventionally been used, but both have major problems in terms of miniaturization and weight reduction.
かかる観点から、非水系二次電池が非常に注目されてき
ている。これらの中には、従来のニッケルーカドミ電池
、鉛電池などと本質的に異なる反応形式である層状化合
物のインターカレーション又はドーピング現象を利用し
た新しい群の電極活物質を用いたものがあり、かかる新
しい電極活物質は、その充電、放電における電気化学的
反応において、複維な化学反応を起こさないことから、
極めて優れた充放電サイクル性を有している。例として
、特開昭55−13613号公報、特開昭62−908
63号公報、特開昭63−299056号公報等で開示
されているリチウムと遷移金属、更に要すれば、非遷移
金属等からなる複合酸化物を正極活物質とする非水系二
次電池がある。これら非水系二次電池は、3■以上の高
起電力が得られ極めてエネルギー密度が高く次世代の高
性能二次電池として大いに期待されている。更にかかる
複合酸化物を正極として用いた場合の特徴としてリチウ
ム複合酸化物そのものが既にリチウムをイオンとして含
存しており、負極活物質として必ずしも金属リチウムを
用いなくても電池系を形成し得るという特徴をも存して
おり、安全性の面でも優れた電池としても期待されてい
る。From this point of view, non-aqueous secondary batteries have attracted much attention. Among these, there are those that use a new group of electrode active materials that utilize the intercalation or doping phenomenon of layered compounds, which is a reaction type that is essentially different from that of conventional nickel-cadmium batteries, lead-acid batteries, etc. Electrode active materials do not cause complex chemical reactions during electrochemical reactions during charging and discharging.
It has extremely excellent charge/discharge cycle performance. For example, JP-A No. 55-13613, JP-A No. 62-908
There are non-aqueous secondary batteries that use a composite oxide consisting of lithium, transition metals, and, if necessary, non-transition metals, as a positive electrode active material, as disclosed in Publication No. 63, Japanese Patent Application Laid-open No. 63-299056, etc. . These non-aqueous secondary batteries have a high electromotive force of 3 cm or more, have extremely high energy density, and are highly anticipated as next-generation high-performance secondary batteries. Furthermore, when such a composite oxide is used as a positive electrode, the lithium composite oxide itself already contains lithium as ions, and a battery system can be formed without necessarily using metallic lithium as the negative electrode active material. Due to its unique characteristics, it is expected to be an excellent battery in terms of safety.
このようにリチウムと遷移金属、更に要すれば非遷移金
属との複合酸化物を正極に用いた電池はすぐれた特性を
有する可能性のある非水系二次電池と言える。As described above, a battery using a composite oxide of lithium and a transition metal, or, if necessary, a non-transition metal, as a positive electrode can be said to be a non-aqueous secondary battery that may have excellent characteristics.
しかしながら、これら非水系二次電池の正極において、
実用性能的には導電補助剤を正極活物質100重景部に
対して6.5〜30重量部添加する必要があり、同一体
積の電池の容量を向上させる一つの障壁となっている。However, in the positive electrode of these non-aqueous secondary batteries,
In terms of practical performance, it is necessary to add 6.5 to 30 parts by weight of the conductive additive per 100 parts by weight of the positive electrode active material, which is one of the obstacles to improving the capacity of a battery of the same volume.
すなわち、この種の複合金属酸化物は、他の正極活物質
と同様にそれ自身の導電性が十分でないため、導電補助
剤なしで使用した場合、利用率。In other words, this type of composite metal oxide, like other cathode active materials, does not have sufficient conductivity on its own, so if it is used without a conductive aid, the utilization rate will be low.
過電圧特性、サイクル性等が著しく悪化する。従って、
導電補助剤の添加が必須となる。一方、かかる導電補助
剤の添加により、体積当りの電池容量は著しく低下する
。特に、通常用いられるグラファイト、アセチレンブラ
ック等のカーボンは、真密度、みかけ密度共に活物質に
比べて小さく、電池容量を大きくするためには、かかる
導電補助剤の添加量は極力少なくすることが重要である
。Overvoltage characteristics, cycle characteristics, etc. will be significantly deteriorated. Therefore,
Addition of a conductive aid is essential. On the other hand, the addition of such a conductive aid significantly reduces the battery capacity per volume. In particular, commonly used carbons such as graphite and acetylene black have smaller true and apparent densities than active materials, and in order to increase battery capacity, it is important to minimize the amount of such conductive additives added. It is.
本発明の活物質を用いた場合、活物質100重量部に対
し、導電補助剤6〜7重量部を境にして、電池容量が著
しく変化する。従って、電池容量の大きな電池を得る為
には、かかる導電補助剤の添加量は6〜7重量部以下と
することが必要であった。When the active material of the present invention is used, the battery capacity changes significantly when 6 to 7 parts by weight of the conductive additive is added to 100 parts by weight of the active material. Therefore, in order to obtain a battery with a large battery capacity, it is necessary to limit the amount of the conductive additive to 6 to 7 parts by weight or less.
又、従来技術では、導電補助剤を減少させた場合、活物
質粒子を大粒径化し、正極合剤密度を上げれば安定した
集電が可能であるが、この状態では、イオンの合剤中拡
散抵抗が増大し、過電圧特性。In addition, in the conventional technology, when the conductive auxiliary agent is reduced, stable current collection is possible by increasing the particle size of the active material particles and increasing the density of the positive electrode mixture. Diffusion resistance increases and overvoltage characteristics.
出力特性等に悪影響を及ぼす。This will adversely affect output characteristics, etc.
本発明は、前述の複合金属酸化物正極における添加導電
補助剤量の問題を解決し、電池性能、特にサイクル性、
利用率、過電圧特性を悪化させることなく、同時に正極
合剤中の活物質割合を増加せしめた正極を提供する為に
なされたものである。The present invention solves the above-mentioned problem of the amount of conductive additive added in the composite metal oxide positive electrode, and improves battery performance, especially cyclability.
This was done in order to provide a positive electrode in which the proportion of active material in the positive electrode mixture is increased at the same time without deteriorating the utilization rate or overvoltage characteristics.
上記問題点を解決するために、本発明は、正極活物質と
して、平均粒子径が1μ以上、10μ未満の下記一般式
(I)で示される複合金属酸化物を用い、導電補助剤と
して、(A)平均粒子径0.1〜10μ及び、(B)平
均粒子径0.O1〜0.08μの2種のカーボン、それ
ぞれを少なくとも1種以上添加した正極合剤において、
(A)、(B) 2種の添加量の合計が正極活物質1
00重量部に対して6.5重量部未満、2重量部以上で
あることを特徴とする正極合剤を用いた非水系二次電池
。In order to solve the above problems, the present invention uses a composite metal oxide represented by the following general formula (I) with an average particle diameter of 1 μ or more and less than 10 μ as a positive electrode active material, and as a conductive additive ( A) average particle size of 0.1 to 10μ and (B) average particle size of 0.1 to 10μ. In a positive electrode mixture in which at least one or more of two types of carbon of O1 to 0.08μ are added,
(A), (B) The total amount of the two types added is positive electrode active material 1
A non-aqueous secondary battery using a positive electrode mixture, characterized in that the amount of the positive electrode mixture is less than 6.5 parts by weight and 2 parts by weight or more based on 00 parts by weight.
(I): Lix台yNzo□ (Mは遷移金属の少
なくとも一種を表わし、Nは非遷移金属の少なくとも一
種を表わし、x、y、zは各々0.05≦x≦1.10
.0.85≦y≦1.00. O≦2≦0.10の数
である。)
を提供せんとするものである。(I): Lix stand yNzo□ (M represents at least one kind of transition metal, N represents at least one kind of non-transition metal, x, y, z are each 0.05≦x≦1.10
.. 0.85≦y≦1.00. The number is O≦2≦0.10. ).
導電補助剤(A)と(B)の合計の添加量は、単位活物
質量に対し多ければ多いほど、電池性能を安定させるが
、正極合剤中の活物質割合が減少してしまい、電池とし
ての容量向上が困難となる。The greater the total amount of conductive additives (A) and (B) added relative to the unit amount of active material, the more stable the battery performance will be. It becomes difficult to improve the capacity as
従来技術では、実用性能上、正極活物質100重量部に
対して導電補助剤6.5重量部以上を必要としており、
さらに少ない添加割合とすることは困難であった。In the conventional technology, for practical performance, 6.5 parts by weight or more of the conductive additive is required for 100 parts by weight of the positive electrode active material.
It was difficult to reduce the addition ratio even further.
すなわち、いずれかのカーボン単味の系では、活物質粒
子間に導電剤を割り込ませ、活物質数個〜数十個を相互
に、かつ複雑に電気的に接触せしめるミクロな集電ネッ
トワークと、さらに、これらミクロなネットワーク群を
相互に接触させ、かつ、電池の電極端子へ電気的な接続
を可能ならしめるマクロな集電ネットワークを同時に形
成させるには、少なくとも正極活物質100に対して6
.5重量部以上が必要であった。In other words, in any carbon-based system, a conductive agent is inserted between active material particles, and a micro current collection network is formed in which several to several tens of active materials are brought into electrical contact with each other in a complex manner. Furthermore, in order to simultaneously form a macro current collection network that brings these micro networks into contact with each other and enables electrical connection to the electrode terminal of the battery, at least 6
.. 5 parts by weight or more was required.
そこで、本発明者は、前述のミクロな集電ネットワーク
に必要な導電補助剤として、平均粒子径0.01〜0.
08μのカーボンを、さらに、マクロな集電ネットワー
クに必要な導電補助剤として平均粒子径0.1〜10μ
のカーボンを用いることにより、導電補助剤の添加率の
合計を正極活物質100重量部に対して6.5重量部未
満とすることを可能とした。Therefore, the present inventor developed a conductive additive necessary for the above-mentioned micro current collection network with an average particle diameter of 0.01 to 0.
Carbon with an average particle size of 0.1 to 10μ is added as a conductive agent necessary for the macroscopic current collection network.
By using carbon, it was possible to reduce the total addition rate of the conductive auxiliary agent to less than 6.5 parts by weight based on 100 parts by weight of the positive electrode active material.
ここで、さらに、本発明者は、この効果が、正極活物質
の平均粒子径が1〜10μ、好ましくは2〜5μの場合
に、より効果的に発現することを見出した。すなわち、
活物質の平均粒子径が1μ未満の場合、ミクロな集電ネ
ットワークを十分に形成せしめるには、混合系といえど
も10重量部程度添加しなければ優れた電池性能を発揮
しない。又、活物質の平均粒子径がlθμ以上の場合で
は、単味でも6.5重量部未満とできるが、正極活物質
自体の固相内拡散抵抗分が過電圧特性、出力特性、利用
率等に悪影響を与え、好ましくない。一方、平均粒子径
1〜10μさらには2〜5μの正極活物質の場合では、
本発明の導電補助剤添加条件で添加量を665重量部未
満としても、電池性能を低下させず、かつ、正極合剤中
の活物質の密度を高くすることが可能である。ただし、
2重量部未満では前述の集電ネットワークの形成が困難
となり、電池性能が著しく悪化する。Here, the present inventor further found that this effect is more effectively expressed when the average particle diameter of the positive electrode active material is 1 to 10 μm, preferably 2 to 5 μm. That is,
When the average particle size of the active material is less than 1 μm, excellent battery performance will not be exhibited unless about 10 parts by weight is added, even in a mixed system, in order to sufficiently form a micro current collection network. In addition, when the average particle diameter of the active material is lθμ or more, the amount can be less than 6.5 parts by weight alone, but the solid phase diffusion resistance of the positive electrode active material itself affects overvoltage characteristics, output characteristics, utilization rate, etc. have a negative impact and are undesirable. On the other hand, in the case of a positive electrode active material with an average particle size of 1 to 10 μm or even 2 to 5 μm,
Even if the amount added is less than 665 parts by weight under the conductive additive addition conditions of the present invention, it is possible to increase the density of the active material in the positive electrode mixture without reducing battery performance. however,
If the amount is less than 2 parts by weight, it will be difficult to form the above-mentioned current collection network, and the battery performance will significantly deteriorate.
本発明の導電補助剤(A)は、平均粒子径0.1〜10
μのカーボンであれば特に限定されるものではないが、
中でもグラファイトが好ましい。導電補助剤(B)は、
平均粒子径0.01〜0.08μのカーボンであって、
例えばアセチレンブラック、サーマルブラック、チャン
ネルブランク、ファーネスブラック等のカーボンブラン
クが好ましく、中でも、高度なストラフチャーを有する
ファーネスブランク、さらにはアセチレンブラックが好
ましい。The conductive aid (A) of the present invention has an average particle size of 0.1 to 10
It is not particularly limited as long as it is carbon of μ,
Among them, graphite is preferred. The conductive aid (B) is
Carbon having an average particle diameter of 0.01 to 0.08μ,
For example, carbon blanks such as acetylene black, thermal black, channel blank, furnace black, etc. are preferable, and among them, furnace blanks having a high degree of stratification and acetylene black are particularly preferable.
又、(A) / ([1)は、 (A)あるいは(B)
が単味とならない条件であれば効果を発揮するが、好ま
しくは25/75〜75/25であり、さらに好ましく
は40/60〜60/40である。Also, (A) / ([1) is (A) or (B)
Although it is effective under conditions where the ratio is not monotonous, the ratio is preferably 25/75 to 75/25, and more preferably 40/60 to 60/40.
さらに、(A) 、 (B)は添加に際して、それぞれ
1種のカーボンに限定する必要はなく、活物質粒子との
対応により、複数の平均粒子径の異ったカーボンを効果
的に組み合わせ、使用することができる。Furthermore, when adding (A) and (B), it is not necessary to limit each type to one type of carbon, and depending on the correspondence with the active material particles, multiple carbons with different average particle sizes can be effectively combined and used. can do.
複合金属酸化物を活物質とする本発明の新規な導電剤添
加割合を有した正極合剤は、導電補助剤高率添加系正極
合剤の場合と同等の電極性能、即ち、優れたサイクル性
、利用率、過電圧特性を有し、特に非水系二次電池の正
極として用いた場合に優れた性能を発揮する。The positive electrode mixture of the present invention, which uses a composite metal oxide as an active material and has a new conductive agent addition ratio, has electrode performance equivalent to that of a positive electrode mixture with a high conductivity additive addition rate, that is, excellent cyclability. , utilization rate, and overvoltage characteristics, and exhibits excellent performance especially when used as a positive electrode for non-aqueous secondary batteries.
次に本発明の正極合剤を用いた二次電池について述べる
。Next, a secondary battery using the positive electrode mixture of the present invention will be described.
本発明で正極活物質として用いる一般式LixMyNz
O□で示されるリチウム複合金属酸化物において、Mは
遷移金属の少なくとも一種を表わし、Nは非遷移金属の
少くとも一種を表わす。Mは特に限定されるものではな
いがその一例を示せば、Co、 N+、 Fe、 Mn
、 ’/、 tlo等が挙げられ、同じくNも特に限定
されるものではないがAn、 In、 Sn等が挙げら
れる。その具体的な例をLiイオンを含有した状態、即
ち放電状態での化学式で示せばし1cooz、 L
iNi0z、 LiCoo、qtsno’、+
501LiCoo、 qbA 12 o、 osoz、
LiCoo、 qsTno、 060g+LiC06
,75Nio、zsOt、 ’LiC0o、5sFe
o、+oOz+LiCoo、 @oNio、 +q’;
no、 ozoz。General formula LixMyNz used as positive electrode active material in the present invention
In the lithium composite metal oxide represented by O□, M represents at least one type of transition metal, and N represents at least one type of non-transition metal. M is not particularly limited, but examples include Co, N+, Fe, Mn
, '/, tlo, etc., and N is also not particularly limited, but examples include An, In, Sn, etc. A specific example of this is shown by the chemical formula in a state containing Li ions, that is, in a discharge state.
iNi0z, LiCoo, qtsno', +
501LiCoo, qbA 12 o, osoz,
LiCoo, qsTno, 060g+LiC06
,75Nio,zsOt,'LiC0o,5sFe
o, +oOz+LiCoo, @oNio, +q';
No, ozoz.
LiCoe15Fe6.1oSno、 osoz、 L
iCoo、 esMno、 +501LiCoo、5s
Vo、++Oz、 LiC0o、ssMno、+s
Oz 等が挙げられる。LiCoe15Fe6.1oSno, osoz, L
iCoo, esMno, +501LiCoo, 5s
Vo, ++Oz, LiC0o, ssMno, +s
Examples include Oz.
又、Xの値は充電状態、放電状態により変動し、その範
囲は0.05≦x≦1.10である。即ち、充電により
リチウムイオンのデインターカレーションが起こり、X
の値は小さくなり、完全充電状態においてはXの値は0
.05に達する。又、放電によりリチウムイオンのイン
ターカレーションが起こりXの値は大きくなり、完全放
電状態においてはXの値は1.10に達する。Further, the value of X varies depending on the charging state and discharging state, and the range is 0.05≦x≦1.10. That is, charging causes deintercalation of lithium ions, and
The value of becomes small, and the value of X becomes 0 in a fully charged state.
.. Reach 05. Further, intercalation of lithium ions occurs due to discharge, and the value of X increases, and in a fully discharged state, the value of X reaches 1.10.
又、yの値は二種以上の遷移金属を用いる場合にはその
合計価を示すものであり、yo)値は充電、放電により
変動せず、0.85≦y≦1.00の範囲である。yの
値が0.85未満及び1,00を越す場合にはサイクル
性の低下、過電圧の増大等の現象が発生し二次電池用活
物質として充分な性能が得られず好ましくない。In addition, when two or more types of transition metals are used, the value of y indicates their total value, and the y value does not change due to charging and discharging, and is within the range of 0.85≦y≦1.00. be. If the value of y is less than 0.85 or greater than 1,00, phenomena such as a decrease in cycleability and an increase in overvoltage occur, making it impossible to obtain sufficient performance as an active material for a secondary battery, which is not preferable.
又、2の値は0≦Z≦0.10の範囲であり、Zの値が
0.10を越す場合には二次電池用活物質としての基本
特性が損われ好ましくない。Further, the value of 2 is in the range of 0≦Z≦0.10, and when the value of Z exceeds 0.10, the basic characteristics as an active material for a secondary battery are impaired, which is not preferable.
かかるLixMyNzOzは特開昭62−90863号
公報等にあるような公知の方法により得ることができる
。Such LixMyNzOz can be obtained by a known method such as that described in Japanese Patent Application Laid-Open No. 62-90863.
すなわち、Li、 M、 N各々の金属の酸化物、水酸
化物、炭酸塩、硝酸塩、有機酸塩等を混合せしめた後、
空気中又は酸素雰囲気下において600〜950°C1
好ましくは700〜900’Cの温度範囲で焼成するこ
とにより得られる。That is, after mixing Li, M, N metal oxides, hydroxides, carbonates, nitrates, organic acid salts, etc.,
600-950°C1 in air or oxygen atmosphere
It is preferably obtained by firing at a temperature range of 700 to 900'C.
本発明の二次電池用正極合剤を用いる場合、該合剤をシ
ート状等、任意の形状に成形して用いることができる。When using the positive electrode mixture for secondary batteries of the present invention, the mixture can be molded into any shape such as a sheet.
成形方法としては、活物質をテフロン粉末、ポリエチレ
ン粉末等の粉末状バインダーと共lこ混合し圧縮成形す
る方法が一般的である。A common method for molding is to mix the active material with a powdered binder such as Teflon powder or polyethylene powder, and then compression mold the mixture.
更に、別法として溶媒に溶解及び/又は分散した有機重
合体をバインダーとして電極活物質を成形する方法が挙
げられる。Furthermore, another method includes a method of forming an electrode active material using an organic polymer dissolved and/or dispersed in a solvent as a binder.
負極としては特に限定されないが、金属Li、又はその
合金負極、LixFe20s、 LixPezO<;
t、i、Wo□等の金属酸化物系負極、ポリアセチレン
、ポリーP−フェニレン等の導電性高分子負極、気相成
長法炭素繊維、ピッチ系カーボン、ポリアクリロニトリ
ル系炭素繊維等の炭素質材料負極等が挙げられる。Although the negative electrode is not particularly limited, metal Li or its alloy negative electrode, LixFe20s, LixPezO<;
Metal oxide negative electrodes such as t, i, Wo□, conductive polymer negative electrodes such as polyacetylene and polyP-phenylene, carbonaceous material negative electrodes such as vapor grown carbon fibers, pitch carbon, and polyacrylonitrile carbon fibers. etc.
本発明の非水系二次電池を組立てる場合の基本構成要素
として、前記本発明の正極及び前記負極を用いた電極、
更にはセパレーター、非水電解液が挙げられる。セパレ
ーターとしては特に限定されないが、織布、不織布、ガ
ラス織布、合成樹脂微多孔膜等が挙げられるが、前述の
如く、薄膜、大面積電極を用いる場合には、例えば特開
昭58−59072号に開示される合成樹脂微多孔膜、
特にポリオレフィン系微多孔膜が、厚み、強度、膜抵抗
の面で好ましい。As basic components when assembling the non-aqueous secondary battery of the present invention, an electrode using the positive electrode and the negative electrode of the present invention;
Further examples include separators and non-aqueous electrolytes. The separator is not particularly limited, but includes woven fabrics, non-woven fabrics, glass woven fabrics, synthetic resin microporous membranes, etc. As mentioned above, when using thin films and large-area electrodes, for example, A synthetic resin microporous membrane disclosed in No.
In particular, polyolefin microporous membranes are preferred in terms of thickness, strength, and membrane resistance.
非水電解液の電解質としては特に限定されないが、−例
を示せば、LiCj! Oa、 LiBF4. L
iAsFa、CF35O+Li、 LiPFa、
Lil+ LiA乏CI!、4. NaC
j!041NaBFa、 Nal、 (n−Bu)a
NI!1cf04+ (n−Bu)aNΦBF4゜K
PF、等が挙げられる。又、用いられる電解液の有機溶
媒としては、例えばエーテル類、ケトン類、ラクトン類
、ニトリル類、アミン類、アミド類、硫黄化合物、塩素
化炭化水素類、エステル類、カーボネート類、ニトロ化
合物、リン酸エステル系化合物、スルホ“ラン系化合物
等を用いることができるが、これらのうちでもエーテル
類、ケトン類、ニトリル類、塩素化炭化水素類、カーボ
ネートH、スルホラン系化合物が好ましい。更に好まし
くは環状カーボネートHである。The electrolyte of the non-aqueous electrolyte is not particularly limited, but an example is LiCj! Oa, LiBF4. L
iAsFa, CF35O+Li, LiPFa,
Lil+ LiA poor CI! ,4. NaC
j! 041NaBFa, Nal, (n-Bu)a
NI! 1cf04+ (n-Bu)aNΦBF4゜K
PF, etc. In addition, examples of organic solvents used in the electrolytic solution include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphorus. Acid ester compounds, sulfolane compounds, etc. can be used, but among these, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonate H, and sulfolane compounds are preferred. More preferably, cyclic Carbonate H.
これらの代表例としては、テトラヒドロフラン、2−メ
チルテトラヒドロフラン、1.4−ジオキサン、アニソ
ール、モノグライム、アセトニトリル、プロピオニトリ
ル、4−メチル−2−ペンタノン、ブチロニトリル、バ
レロニトリル、ベンツニトリル、1.2−ジクロロエタ
ン、γ−ブチロラクトン、ジメトキシエタン、メチルフ
ォルメイト、プロピレンカーボネート、エチレンカーボ
ネート、ビニレンカーボネート、ジメチルホルムアミド
、ジメチルスルホキシド、ジメチルチオボルムアミド、
スルホラン、3−メチル−スルホラン、リン酸、トリメ
チル、リン酸トリエチルおよびこれらの混合溶媒等をあ
げることができるが、必ずしもこれらに限定されるもの
ではない。Representative examples of these include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2- Dichloroethane, γ-butyrolactone, dimethoxyethane, methylformate, propylene carbonate, ethylene carbonate, vinylene carbonate, dimethylformamide, dimethylsulfoxide, dimethylthioborumamide,
Examples include, but are not limited to, sulfolane, 3-methyl-sulfolane, phosphoric acid, trimethyl, triethyl phosphate, and mixed solvents thereof.
更に要すれば、集電体、端子、絶縁板等の部品を用いて
電池が構成される。又、電池の構造としては、特に限定
されるものではないが、正極、負極、更に要すればセパ
レーターを単層又は複層としたペーパー型電池、積層型
電池、又は正極、負極、更に要すればセパレーク−をロ
ール状番ご巻いた円筒・状電池等の形態が一例として挙
げられる。Furthermore, if necessary, the battery is constructed using parts such as a current collector, a terminal, and an insulating plate. The structure of the battery is not particularly limited, but may include a paper type battery with a positive electrode, a negative electrode, and if necessary a separator in a single layer or multiple layers, a stacked battery, or a positive electrode, a negative electrode, and if necessary, a separator. An example is a cylindrical battery formed by winding a separator into a roll.
本発明の電池は小型軽量であり、特にサイクル特性、自
己放電特性に優れ、小型電子機器用、電気自動車用、電
力貯蔵用等の電源として極めて器用である。The battery of the present invention is small and lightweight, has particularly excellent cycle characteristics and self-discharge characteristics, and is extremely useful as a power source for small electronic devices, electric vehicles, power storage, etc.
平均粒子系の測定方法は、いわゆる電子顕微鏡法によっ
た。すなわち、無作為に選んだ、少なくとも10(I粒
子以上を含む電子顕微鏡視野内における全粒子の50%
個数以上の無作為に選んだ粒子の算術平均値をその視野
の平均径とし、さらに、少なくとも3視野以上測定した
、この値の平均を、その粉体の平均粒子径とした。尚、
個々の粒子径は、その粒子の最長径と最短径の平均値で
ある。The average particle system was measured using a so-called electron microscopy method. i.e., randomly selected 50% of all particles in the electron microscope field containing at least 10 (I particles or more)
The arithmetic mean value of the randomly selected particles in the number or more was defined as the average diameter of the field of view, and the average of these values measured over at least three fields of view was defined as the average particle diameter of the powder. still,
The individual particle size is the average value of the longest and shortest diameters of the particle.
以下、実施例、比較例により本発明を更に詳しく説明す
る。Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.
実施例 1
炭酸リチウム1.05モル、酸化コバルト1.90モル
、酸化第2スズ0.084モルを混合し、650°Cで
5時間仮焼した後、空気中で850°C112時間焼成
したところ、L++、 03COO,56sno、 o
+202の組成を存する複合金属酸化物を得た。この複
合金属酸化物をボールミルで平均3μmに粉砕した後、
複合金属酸化物100重量部に対し、ポリアクリロニト
リルのジメチルホルムアミド溶液(濃度2wt9+5)
100重量部と導電補助剤として、平均粒子径約3
μのグラファイト2.5重量部、平均粒子径約0.04
μのアセチレンブラック2.5重量部とを混合した後、
15μmのAI!箔1国×5国の片面に80μmの膜厚
に塗布した。Example 1 1.05 mol of lithium carbonate, 1.90 mol of cobalt oxide, and 0.084 mol of tin oxide were mixed, calcined at 650°C for 5 hours, and then calcined in air at 850°C for 112 hours. , L++, 03COO, 56sno, o
A composite metal oxide having a composition of +202 was obtained. After pulverizing this composite metal oxide to an average size of 3 μm using a ball mill,
Dimethylformamide solution of polyacrylonitrile (concentration 2wt9+5) for 100 parts by weight of composite metal oxide
100 parts by weight and as a conductive auxiliary agent, average particle size of about 3
2.5 parts by weight of μ graphite, average particle size approximately 0.04
After mixing μ with 2.5 parts by weight of acetylene black,
15μm AI! A film thickness of 80 μm was applied to one side of the foil of 1 country x 5 countries.
この試験片を正極に、負極としてリチウム金属を、又電
解液として1.0R(−L+Cff104−プロピレン
カーボネート溶液を用い、第1図に示す電池を組み立て
た。Using this test piece as a positive electrode, lithium metal as a negative electrode, and a 1.0R (-L+Cff104-propylene carbonate solution) as an electrolyte, the battery shown in FIG. 1 was assembled.
25mAの定電流(電流密度5mA/al)で30分間
、充電を行った後、同じ< 25mAの定電流で3.8
Vまで放電を行った。この時の充電終止電圧及び開放端
子電圧及び過電圧は、それぞれ、4.20V、 4.+
5V、0.05Vであった。After charging at a constant current of 25 mA (current density 5 mA/al) for 30 minutes, the battery was charged at a constant current of <25 mA for 3.8 minutes.
Discharge was performed to V. The end-of-charge voltage, open terminal voltage, and overvoltage at this time are 4.20V, respectively.4. +
They were 5V and 0.05V.
この後、同じ充電放電条件でサイクルテストを行い、各
サイクルにおける開放端子電圧及び過電圧は第1表に示
す通りであり、殆んど変化していなかった。Thereafter, a cycle test was conducted under the same charging and discharging conditions, and the open terminal voltage and overvoltage in each cycle were as shown in Table 1, and showed almost no change.
実施例2〜7.比較例1〜5
実施例1において、平均3μに粉砕した複合金属酸化物
に添加する平均粒子径約3μのグラファイト、アセチレ
ンブラックの添加量を第2表に示す添加量に変えた以外
は同様の操作を行ない、種々の正極試験片を得た。Examples 2-7. Comparative Examples 1 to 5 The same procedure as in Example 1 was carried out except that the amounts of graphite and acetylene black with an average particle size of about 3 μm added to the composite metal oxide ground to an average particle size of 3 μm were changed to the amounts shown in Table 2. The operation was carried out to obtain various positive electrode test pieces.
(以下余白)
−17〜
第2表
この正極試験片を実施例1と同様の電池を組み立て評価
を行なった。 1サイクルめと100サイクルめの開
放端子電圧及び過電圧を第3表に示す。(The following is a blank space) -17~ Table 2 This positive electrode test piece was assembled into a battery similar to that in Example 1 and evaluated. Table 3 shows the open terminal voltage and overvoltage at the 1st cycle and the 100th cycle.
(以下余白)
=18−
第 3 表
一19一
実施例1,3,4.7において、比較例3.4と同等の
効果が見出せた。(The following is a blank space) = 18 - Table 3 - 191 In Examples 1, 3, and 4.7, effects equivalent to those in Comparative Example 3.4 were found.
実施例8〜10.比較例6,7
実施例1,3,4 、比較例1.2において、複合金属
酸化物の粉砕平均粒径を約7μに変えた以外は同様の操
作を行ない電池評価を行ったところ、1サイクルと10
0サイクルの過電圧は第4表に示すとおりであり、粉砕
平均粒径的3μの場合と大差なかった。Examples 8-10. Comparative Examples 6, 7 In Examples 1, 3, 4 and Comparative Example 1.2, the battery evaluation was performed by performing the same operation except that the average crushed particle size of the composite metal oxide was changed to about 7μ. cycle and ten
The overvoltage in the 0th cycle is as shown in Table 4, and was not significantly different from that in the case of a pulverized average particle size of 3 μm.
(以下余白)
第 4 表
=21一
実施例11〜13
実施例1において、導電補助剤添加条件を第5表に示す
とおりに変えた以外は同様の操作を行ない、電池評価を
行ったところ、実施例1の結果と殆んど変らなかった。(Leaving space below) Table 4 = 21 - Examples 11 to 13 The same operations as in Example 1 were performed except that the conductive additive addition conditions were changed as shown in Table 5, and battery evaluation was performed. The results were almost unchanged from those of Example 1.
1ザイクルと100サイクルの過電圧を合わせて第5表
に示す。Table 5 shows the overvoltages for 1 cycle and 100 cycles.
(以下余白)
−23一
実施例14.15、比較例8,9
実施例1において複合金属酸化物の粉砕平均粒径を第6
表に示すとおりに変えた以外は同様の操作を行ない、電
池評価を行ったところ、lサイクルと100サイクルの
過電圧は図表に示すとおりとなった。複合酸化物平均粒
径を14μと0.5μとした場合、性能の低下が認めら
れた。(Left below) -23 - Example 14.15, Comparative Examples 8 and 9 In Example 1, the average particle diameter of the composite metal oxide was
When the battery was evaluated using the same operation except for the changes shown in the table, the overvoltages for 1 cycle and 100 cycles were as shown in the chart. When the composite oxide average particle size was set to 14μ and 0.5μ, a decrease in performance was observed.
(以下余白)
第 6 表
比較例10.11
比較例8において、第7表に示す導電補助剤添加条件に
変えた以外は同様の操作を行ない、電池評価を行ったと
ころ、実施例1と大差ない結果となり、複合金属酸化物
の粉砕平均粒径が小さい場合、導電補助剤を多量に添加
する必要が明らかである。1サイクルと100サイクル
の過電圧を合わせて第7表に示す。(Leaving space below) Table 6 Comparative Example 10.11 The same operation as in Comparative Example 8 was performed except that the conductive additive addition conditions were changed to those shown in Table 7, and battery evaluation was performed. There was a large difference from Example 1. If the average crushed particle size of the composite metal oxide is small, it is clear that it is necessary to add a large amount of the conductive additive. Table 7 shows the overvoltages for 1 cycle and 100 cycles.
(以下余白)
比較例12
比較例9の導電補助剤添加条件を平均粒子径3μのグラ
ファイト20重量部のみに変えた以外、同様の操作を行
ない電池評価を行なったところ、1サイクル、100サ
イクルの過電圧がそれぞれ0.11V、 0.14Vで
あり、比較例9の結果と殆んど同じであった。複合金属
酸化物の平均粒径が大きい場合、導電剤を多量に添加し
ても過電圧の改善がみられない。(Leaving space below) Comparative Example 12 A battery was evaluated using the same operations as in Comparative Example 9 except that the conductive additive addition conditions were changed to only 20 parts by weight of graphite with an average particle size of 3 μm. The overvoltages were 0.11 V and 0.14 V, respectively, which were almost the same as the results of Comparative Example 9. When the average particle size of the composite metal oxide is large, no improvement in overvoltage is observed even if a large amount of conductive agent is added.
第1図は本発明の二次電池の構成例の断面図である。第
1図において、1は正極、2は負極、3.3′は集電棒
、4.4′はSUSネット、5.5′は外部電極端子、
6は電池ケース、7はセパレーター、8は電解液又は固
体電解質である。
特許出願人 旭化成工業株式会社FIG. 1 is a sectional view of a configuration example of a secondary battery of the present invention. In Fig. 1, 1 is a positive electrode, 2 is a negative electrode, 3.3' is a current collector rod, 4.4' is an SUS net, 5.5' is an external electrode terminal,
6 is a battery case, 7 is a separator, and 8 is an electrolytic solution or solid electrolyte. Patent applicant: Asahi Kasei Industries, Ltd.
Claims (1)
満の下記一般式( I )で示される複合金属酸化物を用
い、導電補助剤として、(A)平均粒子径0.1〜10
μ及び、(B)平均粒子径0.01〜0.08μの2種
のカーボン、それぞれを少なくとも1種以上添加した正
極合剤において、(A)、(B)2種の添加量の合計が
正極活物質100重量部に対して6.5重量部未満、2
重量部以上であることを特徴とする正極合剤を用いた非
水系二次電池。 ( I ):Li_xM_yN_zO_2(Mは遷移金属
の少なくとも一種を表わし、Nは非遷移金属の少なくと
も一種を表わし、x、y、zは各々0.05≦x≦1.
10、0.85≦y≦1.00、0≦z≦0.10の数
である。)[Claims] As a positive electrode active material, a composite metal oxide represented by the following general formula (I) having an average particle diameter of 1 μ or more and less than 10 μ is used, and as a conductive agent, (A) an average particle diameter of 0. 1-10
and (B) two types of carbon having an average particle diameter of 0.01 to 0.08μ. Less than 6.5 parts by weight based on 100 parts by weight of the positive electrode active material, 2
1. A non-aqueous secondary battery using a positive electrode mixture characterized by having a content of at least part by weight. (I): Li_xM_yN_zO_2 (M represents at least one type of transition metal, N represents at least one type of non-transition metal, x, y, z are each 0.05≦x≦1.
10, 0.85≦y≦1.00, 0≦z≦0.10. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2287073A JP3046055B2 (en) | 1990-10-26 | 1990-10-26 | Non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2287073A JP3046055B2 (en) | 1990-10-26 | 1990-10-26 | Non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04162357A true JPH04162357A (en) | 1992-06-05 |
JP3046055B2 JP3046055B2 (en) | 2000-05-29 |
Family
ID=17712707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2287073A Expired - Lifetime JP3046055B2 (en) | 1990-10-26 | 1990-10-26 | Non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3046055B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07296794A (en) * | 1994-04-22 | 1995-11-10 | Sony Corp | Nonaqueous electrolytic secondary battery |
EP0718902A2 (en) | 1994-12-09 | 1996-06-26 | Japan Storage Battery Company Limited | Organic electrolyte secondary cell |
EP0848441A1 (en) * | 1996-12-13 | 1998-06-17 | Akiya Kozawa | An electrochemical cell employing a fine carbon material additive |
US6753112B2 (en) * | 2000-12-27 | 2004-06-22 | Kabushiki Kaisha Toshiba | Positive electrode active material and non-aqueous secondary battery using the same |
US6869724B2 (en) | 2000-08-08 | 2005-03-22 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary battery and positive electrode for the same |
JP3696159B2 (en) * | 1999-06-14 | 2005-09-14 | 株式会社東芝 | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
JP2005251684A (en) * | 2004-03-08 | 2005-09-15 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
WO2007123248A1 (en) * | 2006-04-21 | 2007-11-01 | Sumitomo Chemical Company, Limited | Powder for positive electrode and positive electrode composite |
WO2008001791A1 (en) * | 2006-06-27 | 2008-01-03 | Kao Corporation | Composite positive electrode material for lithium ion battery and battery using the same |
WO2008001792A1 (en) * | 2006-06-27 | 2008-01-03 | Kao Corporation | Method for producing composite material for positive electrode of lithium battery |
JP2009224288A (en) * | 2008-03-19 | 2009-10-01 | Hitachi Vehicle Energy Ltd | Lithium secondary battery cathode and lithium secondary battery using the same |
JP2015122340A (en) * | 2009-10-30 | 2015-07-02 | 第一工業製薬株式会社 | Lithium secondary battery |
EP3026734A1 (en) * | 2013-07-24 | 2016-06-01 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same |
-
1990
- 1990-10-26 JP JP2287073A patent/JP3046055B2/en not_active Expired - Lifetime
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07296794A (en) * | 1994-04-22 | 1995-11-10 | Sony Corp | Nonaqueous electrolytic secondary battery |
EP0718902A2 (en) | 1994-12-09 | 1996-06-26 | Japan Storage Battery Company Limited | Organic electrolyte secondary cell |
US5672445A (en) * | 1994-12-09 | 1997-09-30 | Japan Storage Battery Co., Ltd. | Organic elecrolyte secondary cell |
EP0848441A1 (en) * | 1996-12-13 | 1998-06-17 | Akiya Kozawa | An electrochemical cell employing a fine carbon material additive |
JP3696159B2 (en) * | 1999-06-14 | 2005-09-14 | 株式会社東芝 | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same |
US6869724B2 (en) | 2000-08-08 | 2005-03-22 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary battery and positive electrode for the same |
US6753112B2 (en) * | 2000-12-27 | 2004-06-22 | Kabushiki Kaisha Toshiba | Positive electrode active material and non-aqueous secondary battery using the same |
JP2005251684A (en) * | 2004-03-08 | 2005-09-15 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
WO2007123248A1 (en) * | 2006-04-21 | 2007-11-01 | Sumitomo Chemical Company, Limited | Powder for positive electrode and positive electrode composite |
KR101393982B1 (en) * | 2006-04-21 | 2014-05-12 | 스미또모 가가꾸 가부시끼가이샤 | Powder for positive electrode and positive electrode composite |
WO2008001791A1 (en) * | 2006-06-27 | 2008-01-03 | Kao Corporation | Composite positive electrode material for lithium ion battery and battery using the same |
WO2008001792A1 (en) * | 2006-06-27 | 2008-01-03 | Kao Corporation | Method for producing composite material for positive electrode of lithium battery |
US8003015B2 (en) | 2006-06-27 | 2011-08-23 | Kao Corporation | Composite positive electrode material for lithium ion battery and battery using the same |
US8241525B2 (en) | 2006-06-27 | 2012-08-14 | Kao Corporation | Method for producing composite material for positive electrode of lithium battery |
JP2009224288A (en) * | 2008-03-19 | 2009-10-01 | Hitachi Vehicle Energy Ltd | Lithium secondary battery cathode and lithium secondary battery using the same |
JP2015122340A (en) * | 2009-10-30 | 2015-07-02 | 第一工業製薬株式会社 | Lithium secondary battery |
EP3026734A1 (en) * | 2013-07-24 | 2016-06-01 | Nissan Motor Co., Ltd. | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same |
EP3026734A4 (en) * | 2013-07-24 | 2016-07-27 | Nissan Motor | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using same |
Also Published As
Publication number | Publication date |
---|---|
JP3046055B2 (en) | 2000-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5972513B2 (en) | Cathode and lithium battery using the same | |
US8338026B2 (en) | Positive electrode active material, and positive electrode and lithium secondary battery including the same | |
US8673488B2 (en) | Lithium secondary battery | |
US5352548A (en) | Secondary battery | |
KR101382797B1 (en) | Positive active material for lithium ion secondary battery and lithium ion secondary battery including the same | |
US20090155694A1 (en) | Cathode and lithium battery using the same | |
JP4963330B2 (en) | Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
JP5360871B2 (en) | Non-aqueous electrolyte lithium ion secondary battery | |
WO2012144177A1 (en) | Negative electrode for lithium ion secondary batteries and lithium ion secondary battery using negative electrode | |
KR100834053B1 (en) | Cathode, and lithium secondary battery and hybrid capacitor comprising same | |
CN111095626B (en) | Negative active material for lithium secondary battery and method for preparing same | |
KR20190136382A (en) | Lithium secondary battery | |
JP3046055B2 (en) | Non-aqueous secondary battery | |
JPH04106875A (en) | Positive pole active material for lithium secondary battery | |
JP3079382B2 (en) | Non-aqueous secondary battery | |
US8440351B2 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery including same | |
JPH0684542A (en) | Nonaqueous electrolytic solution secondary battery | |
JPH10255844A (en) | Nonaqueous electrolyte secondary battery | |
JPS63121258A (en) | Nonaqueous secondary battery | |
KR20080029480A (en) | Lithium secondary battery, and hybrid capacitor | |
EP3121883B1 (en) | Electrode for non-aqueous electrolyte secondary battery | |
JP2009252431A (en) | Nonaqueous electrolyte secondary battery | |
KR20170020057A (en) | Rechargeable lithium battery including same | |
KR20210047643A (en) | Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same | |
JP2000090970A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080317 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090317 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100317 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110317 Year of fee payment: 11 |