JPH04160124A - Production of high-purity metal chromium - Google Patents
Production of high-purity metal chromiumInfo
- Publication number
- JPH04160124A JPH04160124A JP28356390A JP28356390A JPH04160124A JP H04160124 A JPH04160124 A JP H04160124A JP 28356390 A JP28356390 A JP 28356390A JP 28356390 A JP28356390 A JP 28356390A JP H04160124 A JPH04160124 A JP H04160124A
- Authority
- JP
- Japan
- Prior art keywords
- chromium
- powder
- metal
- metal chromium
- purity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims abstract description 70
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 58
- 239000002184 metal Substances 0.000 title claims abstract description 58
- 239000011651 chromium Substances 0.000 title claims abstract description 52
- 229910052804 chromium Inorganic materials 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910003470 tongbaite Inorganic materials 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000011593 sulfur Substances 0.000 claims abstract description 7
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052718 tin Inorganic materials 0.000 claims abstract description 5
- 229910052976 metal sulfide Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 21
- 238000006722 reduction reaction Methods 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910000601 superalloy Inorganic materials 0.000 description 4
- 239000003832 thermite Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- -1 S Chemical compound 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高純度金属クロムの製造方法に関し、特にS
、O,N含有量のきわめて低い金属クロムを製造する方
法に関し、とくに電子工業の分野や耐食耐熱合金(スー
パーアロイ)製造の分野で用いられる原料として有用な
高純度金属クロムの有利な製造方法についての従案であ
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing high-purity metallic chromium, particularly S
, Concerning a method for producing metallic chromium with extremely low O and N contents, particularly an advantageous method for producing high-purity metallic chromium useful as a raw material used in the fields of electronic industry and the production of corrosion-resistant and heat-resistant alloys (superalloys). This is a secondary proposal.
一般に、金属クロムの製造方法としては、Crt (S
On) 3の電解、あるいはCrzOzのアルミニウム
テルミット還元法などが知られている。これらの従来方
法によって製造された金属クロムは、いずれもS、O,
Nの含有量が高く、そのために高純度のものが望まれる
電子材料用素材および高純度スーパーアロイ用素材とし
ては不向きである。In general, as a method for producing metallic chromium, Crt (S
On) 3 electrolysis, CrzOz aluminum thermite reduction method, etc. are known. Metallic chromium produced by these conventional methods all contain S, O,
It has a high N content and is therefore unsuitable as a material for electronic materials and a material for high-purity superalloys, which require high purity.
すなわち、前記電解法は、電解液にCrt(SO4)3
を使用しているため、得られた金属クロム中に200〜
300ppmのSが含まれており、また水溶液電解であ
るため3000〜5000 ppmもの0と、200〜
500ppmのNとを含有している。一方、テルミット
法についても、原料のCrz03の析出に硫酸を使用す
ることや、反応時に原料中のSのほとんどが金属クロム
中に留まるため、S含有量が200〜400ppmにも
なる。また、0含有量については、還元材(アルミニウ
ム)の配合を増量することにより低下させることが可能
であるが、それでは過剰分のアルミニラムが金属クロム
中に残ってしまう。従って、アルミニウムの配合を低め
にする必要があり、その結果O含有量は3000〜40
00ppmと高くなる。さらに、N含有量も約200p
pmと高い。That is, in the electrolytic method, Crt(SO4)3 is added to the electrolytic solution.
200 to 200% in the obtained metallic chromium.
It contains 300 ppm of S, and since it is an aqueous solution electrolysis, 3000 to 5000 ppm of S and 200 to 5000 ppm of S are contained.
It contains 500 ppm of N. On the other hand, in the thermite method as well, the S content is as high as 200 to 400 ppm because sulfuric acid is used to precipitate the raw material Crz03 and most of the S in the raw material remains in metal chromium during the reaction. Further, the zero content can be reduced by increasing the amount of the reducing agent (aluminum), but then an excess amount of aluminum will remain in the metal chromium. Therefore, it is necessary to lower the aluminum content, resulting in an O content of 3000 to 40
It becomes as high as 00ppm. Furthermore, the N content is approximately 200p.
PM and high.
上記の各従来方法で製造された金属クロムは、上述した
ようにいずれもS、0.Nの含有量が多い。それ故に電
子材料のような分野および高純度スーパーアロイの分野
で使用できる金属クロムを製造するためには、前記各不
純物元素の除去をより一層、徹底して行なわねばならな
い。As mentioned above, the metal chromium produced by each of the above conventional methods is S, 0. High content of N. Therefore, in order to produce metallic chromium that can be used in fields such as electronic materials and high-purity superalloys, it is necessary to remove each of the impurity elements more thoroughly.
そのための方法として、従来、真空炭素還元法、あるい
は水素還元法などの脱ガス処理を施すことが試みられて
いる。すなわち、前記真空炭素還元法は、粉砕した金属
クロムに炭素粉を加えて真空中で加熱することにより、
金属クロム中の酸素をC○として除去する方法であり、
また水素雰囲気還元法は、粉砕した金属クロムを水素雰
囲気で加熱することにより酸素をH2Oとして除去する
方法である。As a method for this purpose, attempts have been made in the past to perform degassing treatment such as a vacuum carbon reduction method or a hydrogen reduction method. That is, in the vacuum carbon reduction method, carbon powder is added to pulverized metal chromium and heated in vacuum.
It is a method of removing oxygen in metal chromium as C○,
Further, the hydrogen atmosphere reduction method is a method in which oxygen is removed as H2O by heating pulverized metal chromium in a hydrogen atmosphere.
〔発明が解決しようとする課題]
上記各従来技術は、真空中もしくは水素雰囲気中で加熱
することから、S≦50ppm 、 N≦10ppm以
下のレベルの金属クロムを得ることができるが、例えば
電子材料や高純度スーパーアロイの分野で要求されるよ
うなS≦10ppmの金属クロムを得るまでには至って
いないのが実情である。[Problems to be Solved by the Invention] Each of the above-mentioned conventional techniques can obtain metallic chromium at a level of S≦50ppm and N≦10ppm because it is heated in a vacuum or in a hydrogen atmosphere. The reality is that it has not yet been possible to obtain metallic chromium with S≦10 ppm, which is required in the field of high-purity superalloys.
しかも、炭素粉を脱酸材として脱酸を行う上記炭素還元
法は、クロムカーバイドの生成反応を経た後に、−酸化
炭素への還元反応が起こるために、反応に時間がかかる
。また、炭素粉と粗金属クロム粉を完全に均一混合する
ことが困難であり、反応サイトにより酸素の除去が不十
分となる部分が残りやすく、しかも炭素が未反応のまま
製品中に残ることもあるという欠点があった。In addition, in the above-mentioned carbon reduction method in which deoxidation is performed using carbon powder as a deoxidizer, the reduction reaction to carbon oxide occurs after the chromium carbide production reaction, so the reaction takes time. In addition, it is difficult to completely and uniformly mix carbon powder and crude metal chromium powder, and some reaction sites tend to remain where oxygen is not sufficiently removed, and carbon may remain unreacted in the product. There was a drawback.
また、水素雰囲気中で加熱処理して脱酸する方法につい
ては、高温で危険性の高い水素を扱うということで安全
上好ましい方法とは言えない。Furthermore, the method of deoxidizing by heat treatment in a hydrogen atmosphere is not a desirable method from a safety standpoint because it involves handling highly dangerous hydrogen at high temperatures.
ところで、本発明の目的は、玉揚の炭素還元法や水素雰
囲気還元法に代わって、S、O,N等の不純物含有量が
極めて低い高純度金属クロムを、短時間でかつ安全に製
造できる技術を確立するところにある。By the way, the purpose of the present invention is to produce high-purity metallic chromium with an extremely low content of impurities such as S, O, and N in a short time and safely, instead of the doffing carbon reduction method or hydrogen atmosphere reduction method. It lies in establishing the technology.
(課題を解決するための手段〕
上述の目的を達成して不純物含有量が十分に低い金属ク
ロムを製造する方法として、本発明は、まず第1に、粗
金属クロム粉に対して、Sn、 Cu。(Means for Solving the Problems) As a method for achieving the above-mentioned object and producing metallic chromium with a sufficiently low impurity content, the present invention first provides a method for producing metallic chromium powder with Sn, Cu.
Niなどの易硫化金属粉を加えて真空中で加熱すること
により、主として低S金属クロムとし、併せて低0.低
N金属クロムを同時に実現するという考え方に立脚した
。By adding easily sulfurized metal powder such as Ni and heating in vacuum, it is mainly made to have low S metal chromium, and also has low S. The idea was to simultaneously achieve low N metal chromium.
そして、さらに低いレベルのO,Nを実現するために、
上記の方法に加え、クロムカーバイド(このクロムカー
バイドは金属クロム粉中に含有させたものでもよい。こ
の場合は、粗金属クロムにこのクロムカーバイド含有金
属クロムを混合することになる)を用いて真空還元法を
合わせて実施することとした。In order to achieve even lower levels of O and N,
In addition to the above method, chromium carbide (this chromium carbide may be contained in metal chromium powder. In this case, this chromium carbide-containing metal chromium is mixed with crude metal chromium) is used to vacuum We decided to implement the reduction method as well.
すなわち、本発明は、
粗金属クロム粉と、その粗金属クロム粉中の酸素を一酸
化炭素にするのに必要な量の炭素を供給するためのクロ
ムカーバイド粉、および前記粗金属クロム粉の硫黄を金
属硫化物にするのに必要な量のSn、 Ni、 Cuの
うちから選ばれるいずれか少なくとも1種の金属粉とを
混合し、
次いで、かかる混合物を真空中で1200〜1400℃
の温度範囲内で加熱することを特徴とする高純度金属ク
ロムの製造方法、
である。That is, the present invention provides a crude metal chromium powder, a chromium carbide powder for supplying the amount of carbon necessary to convert oxygen in the crude metal chromium powder to carbon monoxide, and a sulfur content of the crude metal chromium powder. is mixed with at least one metal powder selected from Sn, Ni, and Cu in an amount necessary to convert it into a metal sulfide, and then the mixture is heated in a vacuum at 1200 to 1400°C.
A method for producing high-purity metallic chromium, characterized by heating within a temperature range of .
このような方法によれば、得られる金属クロムは、不純
物が極めて低いものとなり、上述の用途によく適合する
製品となる。According to such a method, the resulting metallic chromium has extremely low impurities, resulting in a product well suited for the above-mentioned uses.
(作 用)
本発明にかかる真空還元法の下で、粗金属クロム粉中の
酸素を除去するために使用するクロムカーバイドとして
は、Cr5Cz+ CrrC3,Crz3Chを用いる
。さらに本発明においては、これらのクロムカーバイド
を含む金属クロムを用いてもよい。従って、この場合は
、クロムカーバイドとして含クロムカーバイド金属クロ
ムを添加混合することとなる。(Function) Under the vacuum reduction method according to the present invention, Cr5Cz+CrrC3, Crz3Ch is used as the chromium carbide used to remove oxygen from the crude metal chromium powder. Further, in the present invention, metal chromium containing these chromium carbides may be used. Therefore, in this case, chromium-containing carbide metal chromium is added and mixed as the chromium carbide.
本発明において、クロムカーバイドを用いる理由は、こ
れらのものは炭素粉を用いる場合に比べると反応性がよ
いこと、また炭素粉に比べると、より均一に酸素とカー
ボンが混合されるからである。このことは酸素の除去が
所によって不均一であったり、製品中にカーボンが未反
応で残留することが起こらなくなる他、反応スピードも
速いし、さらに、水素を用いる脱酸に比べても安全面で
優れているからである。In the present invention, chromium carbide is used because it has better reactivity than carbon powder, and oxygen and carbon are mixed more uniformly than carbon powder. This prevents oxygen removal from being uneven in some places and carbon remaining unreacted in the product, the reaction speed is fast, and it is also safer than deoxidation using hydrogen. This is because it is excellent.
本発明方法の下で使用する出発原料である粗金属クロム
粉としては、40メツシユ以下に粉砕したものを用いる
。40メツシユ以下の粉にする理由は、金属クロムと易
硫化金属の接触を良(し反応性を高めるためである。The crude metal chromium powder, which is the starting material used in the method of the present invention, is pulverized to 40 mesh or less. The reason why the powder is 40 mesh or less is to improve the contact between the metal chromium and the easily sulfurized metal, thereby increasing the reactivity.
本発明においては、脱硫を目的として易硫化金属を混合
するが、好適なものとしてはSn、 Ni、 Cuなど
を挙げることができる。これらは硫化物を生成し易い金
属であり、金属クロム粉中のSと反応し、SnS、 N
iS、 CuSとなって脱硫(≦10ppm)に寄与す
る。In the present invention, readily sulfurizing metals are mixed for the purpose of desulfurization, and suitable examples include Sn, Ni, and Cu. These are metals that easily generate sulfides, and react with S in metal chromium powder to form SnS, N
It becomes iS and CuS and contributes to desulfurization (≦10ppm).
粗金属クロム粉に対する易硫化金属粉の混合に当たって
は、バインダー、例えばPVAを添加し、粗金属クロム
中の硫黄を金属硫化物として除去するのに必要な化学量
論量を添加する。すなわち、粗金属クロム中の硫黄に対
しモル比で0.5〜2.0を混合して製団するのである
。混合側合をかように限定する理由は、易硫化金属を硫
黄に対して過少に配合すると、メタル中の硫黄の残留が
多く、逆に過剰に配合するとメタル中に易硫化金属が残
留し、金属クロムの純度が低下するためである。When mixing the easily sulfurized metal powder with the crude metal chromium powder, a binder such as PVA is added in a stoichiometric amount necessary to remove the sulfur in the crude metal chromium as metal sulfide. That is, it is mixed in a molar ratio of 0.5 to 2.0 with respect to sulfur in crude metal chromium. The reason for limiting the mixing ratio in this way is that if too little of the easily sulfurizing metal is mixed with the sulfur, a large amount of sulfur will remain in the metal, whereas if it is too much, the easily sulfurizing metal will remain in the metal. This is because the purity of metallic chromium decreases.
また、粗金属クロム粉に対するクロムカーバイド粉また
は、クロムカーバイドを含む金属クロム粉の添加量は、
かかる粗金属クロム粉中の酸素を還元して、−酸化炭素
とするのに必要な化学量論量を添加する。すなわち、粗
金属クロム中の酸素量に対し、カーバイド中のカーボン
量がモル比で0.8〜1.2になる量とする。In addition, the amount of chromium carbide powder or metal chromium powder containing chromium carbide added to crude metal chromium powder is as follows:
A stoichiometric amount necessary to reduce oxygen in the crude metal chromium powder to -carbon oxide is added. That is, the molar ratio of the amount of carbon in the carbide to the amount of oxygen in the crude metal chromium is set to 0.8 to 1.2.
製団した上記の混合物は、真空中で1200〜1400
℃の温度域に保持して加熱する。温度を限定する理由は
、温度が上記の範囲よりも低いと反応が遅く、一方、高
すぎるとCrの蒸発損失が大きくなるからである。また
、真空度は、0.1〜2トールの範囲内が好ましく、特
に脱酸素、脱窒素に効果がある。The prepared above mixture was heated to 1200 to 1400 in vacuum.
Heat and maintain in the temperature range of ℃. The reason for limiting the temperature is that if the temperature is lower than the above range, the reaction will be slow, while if it is too high, the evaporation loss of Cr will increase. Further, the degree of vacuum is preferably within the range of 0.1 to 2 Torr, which is particularly effective in deoxidizing and denitrogenizing.
実施例1
アルミニウムテルミット反応によって得られた表1に示
す成分の粗金属クロムであるテルミット品と表2に示す
成分のクロムカーバイドを40メツシユ以下に粉砕し、
クロムカーバイド中のC量が粗金属クロムに含まれてい
る酸素(0)量に対し原子比で0.9となるように配合
し、同時にSnを粗金属クロム中のSに対し原子比で0
、1.0 、2.0の割合で配合した。これらを混合
製団して、0.2トールの真空度、 1350℃で4時
間加熱処理した。Example 1 A thermite product, which is crude metal chromium, with the components shown in Table 1 obtained by aluminum thermite reaction, and chromium carbide, with the components shown in Table 2, were ground to 40 mesh or less,
The amount of C in chromium carbide is blended so that the atomic ratio is 0.9 to the amount of oxygen (0) contained in the crude metal chromium, and at the same time, the amount of Sn is 0.9 in the atomic ratio to the amount of S in the crude metal chromium.
, 1.0, and 2.0. These were mixed together and heat treated at 1350° C. for 4 hours under a vacuum of 0.2 torr.
得られた金属クロム中のSは、Snを原子比で1=1に
配合すれば10ppm以下となる。しかし、過剰分のS
nは、金属クロム中に残る。また、クロムカーバイドを
配合したことにより、金属クロム中の0が除去されて、
かつ真空加熱にょる脱N効果も同時に進行しているのが
確認された。The S content in the obtained metallic chromium becomes 10 ppm or less when Sn is blended in an atomic ratio of 1=1. However, the excess S
n remains in the metal chromium. In addition, by blending chromium carbide, 0 in metal chromium is removed,
It was also confirmed that the de-N effect due to vacuum heating was progressing at the same time.
実施例2
クロムミョウバンの電解によって得られた表4に示す成
分の粗金属クロムと、表5に示す成分のクロムカーバイ
ドを含む金属クロムを40メンシュ以下に粉砕し、粗金
属クロムおよびクロムカーバイドを含む金属クロムのト
ータルの0量に対しカーボン量が原子比で0.9となる
ように配合し、同時にSnを上記2種の金属クロム中の
トータルS量に対し、原子比で1.0の割合になるよう
に配合した。これらを混合製団しで、0.2トールの真
空度、1350℃で4時間加熱処理を施した。得られた
金属クロム中のSは10pp+s以下となり、さらに0
が240ppm、 Nは10ppm以下となることがわ
かった。Example 2 Crude metallic chromium containing the components shown in Table 4 obtained by electrolyzing chromium alum and metallic chromium containing chromium carbide containing the components shown in Table 5 was ground to 40 or less mensch to form a powder containing crude metallic chromium and chromium carbide. Blend so that the amount of carbon is 0.9 in atomic ratio with respect to the total amount of 0 metal chromium, and at the same time Sn is added in a ratio of 1.0 in atomic ratio to the total amount of S in the above two types of metal chromium. It was blended so that These were mixed together and heat treated at 1350° C. for 4 hours under a vacuum of 0.2 torr. The S content in the obtained metallic chromium was 10 pp+s or less, and further 0
It was found that N was 240 ppm and N was 10 ppm or less.
表4
表5
表6
(発明の効果)
以上説明したように本発明によれば、電子工業の分野ま
たは高純度耐食耐熱合金の分野の原料として好適な、い
わゆるS、O,Nなどの不純物含有量が極めて少ない高
純度金属クロムを、短時間で、しかも安定して製造する
ことができる。Table 4 Table 5 Table 6 (Effects of the Invention) As explained above, according to the present invention, the material contains impurities such as so-called S, O, and N, which is suitable as a raw material in the field of electronic industry or the field of high-purity corrosion-resistant and heat-resistant alloys. High-purity metallic chromium can be produced in extremely small amounts in a short period of time and in a stable manner.
特許出願人 日本重化学工業株式会社 代理人 弁理士 小 川 順 三 同 弁理士 中 村 盛 夫Patent applicant: Japan Heavy and Chemical Industry Co., Ltd. Agent Patent Attorney Junzo Ogawa Patent attorney Morio Nakamura
Claims (1)
一酸化炭素にするのに必要な量の炭素を供給するための
クロムカーバイド粉、および前記粗金属クロム粉の硫黄
を金属硫化物にするのに必要な量のSn、Ni、Cuの
うちから選ばれるいずれか少なくとも1種の金属粉とを
混合し、次いで、かかる混合物を真空中で1200〜1
400℃の温度範囲内で加熱することを特徴とする高純
度金属クロムの製造方法。1. Crude metal chromium powder, chromium carbide powder for supplying the amount of carbon necessary to convert oxygen in the crude metal chromium powder to carbon monoxide, and converting the sulfur of the crude metal chromium powder into metal sulfide. and at least one metal powder selected from Sn, Ni, and Cu in an amount necessary to obtain a
A method for producing high-purity metallic chromium, which comprises heating within a temperature range of 400°C.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28356390A JPH04160124A (en) | 1990-10-23 | 1990-10-23 | Production of high-purity metal chromium |
US07/719,625 US5259866A (en) | 1990-10-23 | 1991-06-24 | Method for producing high-purity metallic chromium |
DE69119028T DE69119028T2 (en) | 1990-10-23 | 1991-10-10 | Process for the production of high purity chromium |
AT91309433T ATE137273T1 (en) | 1990-10-23 | 1991-10-10 | METHOD FOR PRODUCING HIGH PURITY CHROME |
EP91309433A EP0482808B1 (en) | 1990-10-23 | 1991-10-10 | Method for producing high-purity metallic chromium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28356390A JPH04160124A (en) | 1990-10-23 | 1990-10-23 | Production of high-purity metal chromium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04160124A true JPH04160124A (en) | 1992-06-03 |
Family
ID=17667152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28356390A Pending JPH04160124A (en) | 1990-10-23 | 1990-10-23 | Production of high-purity metal chromium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04160124A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0610075A (en) * | 1992-06-29 | 1994-01-18 | Japan Metals & Chem Co Ltd | Method and apparatus for producing high purity metallic chromium |
US5391215A (en) * | 1992-08-03 | 1995-02-21 | Japan Metals & Chemicals Co., Ltd. | Method for producing high-purity metallic chromium |
US5476248A (en) * | 1992-08-03 | 1995-12-19 | Japan Metals & Chemicals Co., Ltd. | Apparatus for producing high-purity metallic chromium |
KR20170087867A (en) * | 2014-11-05 | 2017-07-31 | 콤파니아 브라질레이라 데 메탈루르지아 에 미네라상 | Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys |
CN107385240A (en) * | 2017-07-25 | 2017-11-24 | 北京兴荣源科技有限公司 | It is a kind of can mass production electrolysis chromium piece degasification technique |
JP2018501400A (en) * | 2014-11-05 | 2018-01-18 | コンパニア ブラジレイラ ヂ メタルジア イ ミネラサウンCompanhia Brasileira De Metalurgia E Mineracao | Process and resulting product for producing low nitrogen metal chromium and chromium containing alloys |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199833A (en) * | 1987-02-13 | 1988-08-18 | Tosoh Corp | Manufacture of high-purity metallic chromium |
JPS63282217A (en) * | 1987-05-13 | 1988-11-18 | Japan Metals & Chem Co Ltd | Manufacture of high-purity metal chromium |
-
1990
- 1990-10-23 JP JP28356390A patent/JPH04160124A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63199833A (en) * | 1987-02-13 | 1988-08-18 | Tosoh Corp | Manufacture of high-purity metallic chromium |
JPS63282217A (en) * | 1987-05-13 | 1988-11-18 | Japan Metals & Chem Co Ltd | Manufacture of high-purity metal chromium |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0610075A (en) * | 1992-06-29 | 1994-01-18 | Japan Metals & Chem Co Ltd | Method and apparatus for producing high purity metallic chromium |
US5391215A (en) * | 1992-08-03 | 1995-02-21 | Japan Metals & Chemicals Co., Ltd. | Method for producing high-purity metallic chromium |
US5476248A (en) * | 1992-08-03 | 1995-12-19 | Japan Metals & Chemicals Co., Ltd. | Apparatus for producing high-purity metallic chromium |
KR20170087867A (en) * | 2014-11-05 | 2017-07-31 | 콤파니아 브라질레이라 데 메탈루르지아 에 미네라상 | Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys |
JP2017537224A (en) * | 2014-11-05 | 2017-12-14 | コンパニア ブラジレイラ ヂ メタルジア イ ミネラサウンCompanhia Brasileira De Metalurgia E Mineracao | Process for producing chromium and niobium-containing nickel-base alloys with low nitrogen and substantially no nitride, and the resulting chromium and nickel-base alloys |
JP2018501400A (en) * | 2014-11-05 | 2018-01-18 | コンパニア ブラジレイラ ヂ メタルジア イ ミネラサウンCompanhia Brasileira De Metalurgia E Mineracao | Process and resulting product for producing low nitrogen metal chromium and chromium containing alloys |
US11124861B2 (en) | 2014-11-05 | 2021-09-21 | Companhia Brasileira De Metalurgia E Mineração | Processes for producing low nitrogen essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys |
US11230751B2 (en) | 2014-11-05 | 2022-01-25 | Companhia Brasileira De Metalurgia E Mineracão | Processes for producing low nitrogen metallic chromium and chromium-containing alloys and the resulting products |
CN107385240A (en) * | 2017-07-25 | 2017-11-24 | 北京兴荣源科技有限公司 | It is a kind of can mass production electrolysis chromium piece degasification technique |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06304486A (en) | Method for dissolving spent catalyst | |
US10011890B2 (en) | Sodium tungstate production method | |
US5092921A (en) | Method for producing high-purity metallic chromium | |
JPH04160124A (en) | Production of high-purity metal chromium | |
CA1036365A (en) | Desulfurization of transition metal alloys | |
JPS63282217A (en) | Manufacture of high-purity metal chromium | |
CA1065579A (en) | Methods of making reactive metal silicide | |
EP0482808A1 (en) | Method for producing high-purity metallic chromium | |
JPH06325784A (en) | Manufacture of electrolyte for redox battery | |
US3914113A (en) | Titanium carbide preparation | |
JPH1053414A (en) | Production of metal disulfide and formation of bimetal trisulfide by further treatment thereof | |
JPS586958A (en) | Vanadium additive to molten iron base alloy and vanadium addition | |
JPS6012408B2 (en) | Method for dephosphorizing metals or alloys | |
CN113897485B (en) | Method for enriching scandium from niobium-titanium ore and application of silicon slag | |
US1235655A (en) | Process of treating alloys. | |
JPH04235229A (en) | Production of high purity metallic chromium | |
RU2350677C1 (en) | Alloy on basis of chrome | |
JPS5824495B2 (en) | Manufacturing method of heat-resistant conductive aluminum alloy | |
JPH0673464A (en) | Production of high purity stainless steel | |
JPH0215618B2 (en) | ||
KR100191278B1 (en) | Removal method of molybdenum from wo3 powders | |
JP2000033351A (en) | Method for desulfurizing and defluorinating neutralized sludge | |
JP2744867B2 (en) | Method and apparatus for producing high purity chromium metal | |
DD237525A5 (en) | PROCESS FOR THE PREPARATION OF ALLOYED STEELS USING CHEMICALLY MANUFACTURED LOW 2 O LOW 3 AS VANADIUM ADDITION | |
KR101923386B1 (en) | Manufacturing method of ferrotitanium from ilmenite and composition for manufacturing ferrotitanium |