JPH04153247A - Heat-and impact-resistant vinyl chloride resin composition - Google Patents
Heat-and impact-resistant vinyl chloride resin compositionInfo
- Publication number
- JPH04153247A JPH04153247A JP27865990A JP27865990A JPH04153247A JP H04153247 A JPH04153247 A JP H04153247A JP 27865990 A JP27865990 A JP 27865990A JP 27865990 A JP27865990 A JP 27865990A JP H04153247 A JPH04153247 A JP H04153247A
- Authority
- JP
- Japan
- Prior art keywords
- vinyl chloride
- chloride resin
- heat resistance
- impact
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000011342 resin composition Substances 0.000 title claims description 10
- 229920005989 resin Polymers 0.000 claims abstract description 34
- 239000011347 resin Substances 0.000 claims abstract description 34
- 229920005668 polycarbonate resin Polymers 0.000 claims abstract description 27
- 239000004431 polycarbonate resin Substances 0.000 claims abstract description 27
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 16
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 16
- 238000002156 mixing Methods 0.000 abstract description 13
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000003381 stabilizer Substances 0.000 abstract description 5
- 238000006116 polymerization reaction Methods 0.000 abstract description 2
- 239000004609 Impact Modifier Substances 0.000 abstract 1
- 229910000004 White lead Inorganic materials 0.000 abstract 1
- 239000000314 lubricant Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005660 chlorination reaction Methods 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004709 Chlorinated polyethylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229920007962 Styrene Methyl Methacrylate Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- ADFPJHOAARPYLP-UHFFFAOYSA-N methyl 2-methylprop-2-enoate;styrene Chemical compound COC(=O)C(C)=C.C=CC1=CC=CC=C1 ADFPJHOAARPYLP-UHFFFAOYSA-N 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- ADRNSOYXKABLGT-UHFFFAOYSA-N 8-methylnonyl diphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OCCCCCCCC(C)C)OC1=CC=CC=C1 ADRNSOYXKABLGT-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004801 Chlorinated PVC Substances 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- SXXILWLQSQDLDL-UHFFFAOYSA-N bis(8-methylnonyl) phenyl phosphite Chemical compound CC(C)CCCCCCCOP(OCCCCCCCC(C)C)OC1=CC=CC=C1 SXXILWLQSQDLDL-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- MGMXGCZJYUCMGY-UHFFFAOYSA-N tris(4-nonylphenyl) phosphite Chemical compound C1=CC(CCCCCCCCC)=CC=C1OP(OC=1C=CC(CCCCCCCCC)=CC=1)OC1=CC=C(CCCCCCCCC)C=C1 MGMXGCZJYUCMGY-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は耐熱性および耐衝撃性の改善された塩化ビニル
系樹脂組成物に関し、この樹脂組成物は溶融時の流動性
が良く成形加工性も良好であって押出成形や射出成形等
によって任意の形状に成形することができるので、管を
はじめとする様々の成形材料として有用である。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a vinyl chloride resin composition with improved heat resistance and impact resistance, and this resin composition has good fluidity when melted and has good moldability. It has good properties and can be molded into any shape by extrusion molding, injection molding, etc., so it is useful as a molding material for various things including pipes.
[従来の技術]
塩化ビニル系樹脂は安価で且つ優れた物性を有しており
、また成形加工も容易であるところから、様々の用途に
広く利用されている。しかし耐熱性および耐衝撃性が悪
いという欠点があるため、その改善策について多くの改
良研究が進められており、耐熱性改善策としては後塩素
化する方法、あるいは芳香環を有するポリカーボネート
樹脂(以下、I−にポリカーボネート系樹脂という)等
の耐熱性改良剤をブレンドする方法が提案されている。[Prior Art] Vinyl chloride resins are inexpensive, have excellent physical properties, and are easily molded, so they are widely used for various purposes. However, it has the disadvantage of poor heat resistance and impact resistance, so many improvement studies are underway to improve the heat resistance. A method has been proposed in which a heat resistance improver such as polycarbonate resin is blended into the resin.
しかしながら前者の後塩素化法では、塩素化により成形
加工性が悪くなるばかりでなく熱分解を起こし易くなる
ので塩素化には自ずと限界があり、熱分解を抑えつつ良
好な成形性を確保するという条件下では耐熱性を十分に
高めることができない。However, in the former post-chlorination method, chlorination not only deteriorates molding processability but also tends to cause thermal decomposition, so chlorination naturally has its limits. Heat resistance cannot be sufficiently increased under these conditions.
また、後者のブレンド法では、耐熱性改良剤と塩化ビニ
ル系樹脂との相溶性が悪いため、期待されるほどの耐熱
性向上効果は得られていない。また耐熱性改良剤として
配合されるボリカーボネート系樹脂と塩化ビニル系樹脂
との相溶性を高めるため、スチレン−メタクリル酸メチ
ル系のブロック共重合体を相溶化剤として併用する方法
(特開平1−210450号)も提案されているが、必
ずしも満足のいく耐熱性は得られていない。しかもポリ
カーボネート系樹脂を配合すると、引張伸率が低下して
耐衝撃性が極端に悪くなるという問題が生じてくる。Furthermore, in the latter blending method, the heat resistance improving effect as expected cannot be obtained because the heat resistance improver and the vinyl chloride resin have poor compatibility. In addition, in order to increase the compatibility between the polycarbonate resin and the vinyl chloride resin that are blended as a heat resistance improver, a method of using a styrene-methyl methacrylate block copolymer as a compatibilizer (JP-A-1-2013 No. 210450) has also been proposed, but it does not necessarily provide satisfactory heat resistance. Moreover, when a polycarbonate resin is blended, a problem arises in that the tensile elongation rate decreases and the impact resistance becomes extremely poor.
また塩化ビニル系樹脂の耐衝撃性を高める目的でMBS
樹脂を配合することはかなり以前より実施されているが
、MBS樹脂に耐熱性向上効果を期待することはできな
い。In addition, MBS is used to improve the impact resistance of vinyl chloride resin.
Although blending resins has been practiced for quite some time, no effect on improving heat resistance can be expected from MBS resins.
[発明が解決しようとする課題]
本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、前記耐熱性改良法のうちポリカーボネ
ート系樹脂を耐熱性改良剤としてブレンドする方法に注
目し、その相溶性を高めることによって耐熱性を高める
と共に、その欠点とされる耐衝撃性の低下を阻止し、且
つ成形加工性の良好な塩化ビニル系樹脂を提供しようと
するものである。[Problems to be Solved by the Invention] The present invention has been made focusing on the above-mentioned circumstances, and its purpose is to blend a polycarbonate resin as a heat resistance improver among the heat resistance improving methods. The aim is to provide a vinyl chloride resin that improves heat resistance by increasing its compatibility, prevents the drop in impact resistance that is considered a drawback, and has good moldability. be.
[課題を解決するための手段]
上記課題を解決することのできた本発明に係る樹脂組成
物の構成は、
塩化ビニル系樹脂:65〜95重量部
ポリカーボネート系樹脂:35〜5重量部ポリメチルメ
タクリレート:上記塩化ビニル系樹脂とポリカーボネー
ト系樹脂の総
和100重量部に対して4〜25重
量部
を含有するところに要旨を有するものである。[Means for Solving the Problems] The composition of the resin composition according to the present invention that can solve the above problems is as follows: Vinyl chloride resin: 65 to 95 parts by weight Polycarbonate resin: 35 to 5 parts by weight Polymethyl methacrylate : It has the gist that it contains 4 to 25 parts by weight based on the total of 100 parts by weight of the above-mentioned vinyl chloride resin and polycarbonate resin.
[作用]
本発明に係る樹脂組成物のベースとなる塩化ビニル系樹
脂としては、塩化ビニル樹脂が最も一般的であるが、こ
のほか少量の塩化ビニリデン、酢酸ビニル、(メタ)ア
クリル酸エステル、スチレン等の共重合性モノマーが共
重合されたものであってもよく、また場合によっては後
塩素化して耐熱性を高めたものであってもかまわない。[Function] Vinyl chloride resin is the most common vinyl chloride resin used as the base of the resin composition according to the present invention, but in addition, small amounts of vinylidene chloride, vinyl acetate, (meth)acrylic acid ester, and styrene are used. It may be copolymerized with copolymerizable monomers such as, or it may be post-chlorinated in some cases to improve heat resistance.
その分子量は成形品の要求特性に応じて適宜選定される
が、成形性、物性、耐熱性等を総合して最も一般的なの
は平均重合度(丁)で700〜1800、より好ましく
は900〜1500の範囲のものである。また後塩素化
塩化ビニル系樹脂を使用する場合は、優れた耐熱分解性
、耐衝撃性および成形性を確保する意味から、塩素化度
が70%程度以下のものを使用するのがよい。The molecular weight is appropriately selected depending on the required characteristics of the molded product, but considering moldability, physical properties, heat resistance, etc., the most common one is an average degree of polymerization (di) of 700 to 1800, more preferably 900 to 1500. It is within the range of . Further, when using a post-chlorinated vinyl chloride resin, it is preferable to use one having a degree of chlorination of about 70% or less in order to ensure excellent heat decomposition resistance, impact resistance, and moldability.
次にポリカーボネート系樹脂は耐熱性改良剤として配合
されるものであり、芳香環をBr化したものや分岐ポリ
カーボネート等を含めて従来公知のものをすべて使用で
きるが、分子量が大きくなり過ぎると、後述する相溶化
剤を併用した場合でも相溶性が十分に改善されなくなる
ことがあり、逆に分子量が小さ過ぎると満足のいく耐熱
性改良効果が発揮されなくなるので、好ましくは分子量
が10000〜5000G 、より好ましくは2000
0〜40000の範囲のものを使用するのがよい。Next, the polycarbonate resin is blended as a heat resistance improver, and all conventionally known resins can be used, including those in which aromatic rings are converted to Br, branched polycarbonates, etc. However, if the molecular weight becomes too large, Even if a compatibilizing agent is used in combination, the compatibility may not be sufficiently improved, and conversely, if the molecular weight is too small, a satisfactory effect of improving heat resistance will not be exhibited. Preferably 2000
It is preferable to use a value in the range of 0 to 40,000.
上記塩化ビニル系樹脂とポリカーボネート系樹脂の配合
量は、前者が65〜95重量部に対して後者が35〜5
重量部、より好ましくは前者が70〜9031量部に対
して後者がが30〜10重量部の範囲とすべきであり、
塩化ビニル系樹脂の配合量が上記範囲未満では塩化ビニ
ル系樹脂が本来有している特性、殊に成形性が有効に発
揮されなくなるばかりでなくコスト高となり、一方、上
記範囲を超える場合は耐熱性改良剤として配合されるポ
リカーボネート系樹脂の量が不十分となって、本発明で
意図する様な耐熱性改良効果が得られなくなる。The blending amounts of the vinyl chloride resin and polycarbonate resin are 65 to 95 parts by weight for the former and 35 to 5 parts by weight for the latter.
Parts by weight, more preferably the former should be in the range of 70 to 9031 parts by weight and the latter should be in the range of 30 to 10 parts by weight,
If the blending amount of the vinyl chloride resin is less than the above range, the inherent characteristics of the vinyl chloride resin, especially moldability, will not be effectively exhibited, and the cost will increase.On the other hand, if it exceeds the above range, the heat resistance If the amount of polycarbonate resin blended as a property improver becomes insufficient, the effect of improving heat resistance as intended by the present invention cannot be obtained.
上記ポリカーボネート系樹脂は前述の如く塩化ビニル系
樹脂との相溶性が悪く、これらを単にブレンドしただけ
では本発明で意図する様な耐熱性向上効果が得られず、
また引張伸率が低下して耐衝撃性が極端に悪くなり、し
かも溶融時の流動性に欠けるため成形性も非常に悪いも
のとなる。また前述の如く相溶化剤としてスチレン−メ
タクリル酸メチル系のブロック共重合体等を併用した場
合でも、満足のいく耐熱性や成形性の改善効果を得るこ
とはできず、また耐衝撃性の低下を十分に抑えることが
できない、そこで本発明者らは、酎熱性や成形性の改良
効果に優れるばかりでなく、ポリカーボネート系樹脂の
配合に伴なう耐衝撃性の低下を阻止し得る様な第3成分
の検索を目的として様々の化合物について添加効果を調
べた。As mentioned above, the polycarbonate resin has poor compatibility with the vinyl chloride resin, and simply blending these resins will not produce the effect of improving heat resistance as intended by the present invention.
Furthermore, the tensile elongation rate decreases, resulting in extremely poor impact resistance, and furthermore, the moldability is also extremely poor due to lack of fluidity when melted. Furthermore, as mentioned above, even when a styrene-methyl methacrylate block copolymer is used as a compatibilizer, it is not possible to obtain a satisfactory effect of improving heat resistance and moldability, and there is also a decrease in impact resistance. Therefore, the present inventors have developed a method that not only has an excellent effect of improving heat resistance and moldability, but also can prevent the decrease in impact resistance caused by the blending of polycarbonate resin. The effects of adding various compounds were investigated for the purpose of searching for the three components.
その結果、意外にも身近なポリマーとしてよく知られた
ポリメチルメタクリレート(PMMA)が上記目的にか
なう優れた効果を有していることが確認された。すなわ
ち塩化ビニル系樹脂にポリカーボネート系樹脂と共に適
量のPMMAを配合すると、成形性を阻害することなく
耐熱性を効果的に高めることができ、しかもこれまで問
題とされていた耐衝撃性の低下も防止され、高レベルの
耐衝撃性を兼備した樹脂組成物を得ることができる。但
しこうした効果を有効に発揮させる為には、塩化ビニル
系樹脂とポリカーボネート系樹脂の総和100重量部に
対してPMMAを4重量部以上配合しなければならず、
4重量部未満ではこうした効果が有効に発揮されない。As a result, it was surprisingly confirmed that polymethyl methacrylate (PMMA), which is well known as a familiar polymer, has excellent effects that meet the above objectives. In other words, by blending an appropriate amount of PMMA with a polycarbonate resin into a vinyl chloride resin, it is possible to effectively increase heat resistance without impeding moldability, and also prevent a decrease in impact resistance, which has been a problem in the past. This makes it possible to obtain a resin composition that also has a high level of impact resistance. However, in order to effectively exhibit these effects, 4 parts by weight or more of PMMA must be added to 100 parts by weight of the vinyl chloride resin and polycarbonate resin.
If the amount is less than 4 parts by weight, these effects will not be effectively exhibited.
しかし25重量部を超えると、それ以上の耐熱性向上効
果が得られなくなるばかりでなく、耐衝撃性や引張伸率
が低下してくるので、本発明ではPMMAの配合量を前
記樹脂の総和100重量部に対して5〜25重量部の範
囲と定めた。However, if the amount exceeds 25 parts by weight, not only will no further heat resistance improvement effect be obtained, but the impact resistance and tensile elongation will decrease. The range was determined to be 5 to 25 parts by weight.
尚このPMMAは、塩化ビニル系樹脂とポリカーボネー
ト系樹脂の相溶化剤として作用しつつ耐衝撃性を高める
効果を有するものであり、こうした効果を有効に発揮さ
せるうえで好ましい分子量は1.000〜1,000,
000 、より好ましくは10,000〜100,00
0のものである。しかしてあまりに低分子量のものでは
耐熱性を下げることになり、一方あまりに高分子量のも
のになると相溶化効果が乏しくなって耐衝撃特性や成形
加工性を悪化させる恐れがでてくる。尚、PMMA成分
の中には、ブチルアクリレート、エチルアクリレート等
の他のアクリル系エステルやブチルゴム等が少量含まれ
ていても良い。This PMMA has the effect of increasing impact resistance while acting as a compatibilizer for vinyl chloride resin and polycarbonate resin, and in order to effectively exhibit this effect, the preferable molecular weight is 1.000 to 1. ,000,
000, more preferably 10,000 to 100,00
0. However, if the molecular weight is too low, the heat resistance will be lowered, while if the molecular weight is too high, the compatibilizing effect will be poor, leading to the risk of deteriorating impact resistance and moldability. The PMMA component may also contain a small amount of other acrylic esters such as butyl acrylate and ethyl acrylate, butyl rubber, and the like.
本発明における必須の構成4分は以上の3成分であるが
、用途によっては更に他の成分として、以下に示す様な
成分を配合することも勿論可能である。Although the above three components constitute the four essential constituents of the present invention, it is of course possible to further include the following components as other components depending on the application.
衝撃強化剖
塩化ビニル系樹脂成形品の耐衝撃性を高める作用を有す
るもので、たとえばMBS、ABS、塩素化ポリエチレ
ン(CPE)、アクリル系衝撃強化剤等が挙げられ、こ
れらは通常塩化ビニル系樹脂とポリカーボネート樹脂の
総和100重量部に対して3〜10重量部程度配合する
ことによって、耐衝撃性の一段と優れたものを得ること
ができる。Impact-strengthening agents have the effect of increasing the impact resistance of vinyl chloride-based resin molded products, such as MBS, ABS, chlorinated polyethylene (CPE), acrylic impact-strengthening agents, etc. By blending about 3 to 10 parts by weight with respect to the total of 100 parts by weight of the polycarbonate resin and the polycarbonate resin, even better impact resistance can be obtained.
i定1
本発明の樹脂組成物は高軟化点で優れた耐熱性を有して
いるが、安定性および耐候性を高めるため、鉛白、硫酸
鉛、亜りん酸鉛、フタル酸鉛、マレイン酸鉛、珪酸鉛お
よびシリカゲル共沈物等の鉛塩系安定剤ニステアリン酸
およびそのCa塩や鉛塩等の高級脂肪酸系安定剤;トリ
フェニルホスファイト、ジフェニルイソデシルホスファ
イト、フエニルジイソデシルホスファイト、トリノニル
フェニルホスファイト等の有機安定化助剤:サリチル酸
エステル類、ヒドロキシベンゾフェノン類、ベンゾトリ
アゾール等の紫外線吸収剤などを少量配合して、安定性
を更に高めることができる。The resin composition of the present invention has a high softening point and excellent heat resistance. Lead salt stabilizers such as acid lead, lead silicate, and silica gel coprecipitates Higher fatty acid stabilizers such as nistearic acid and its Ca and lead salts; triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite Stability can be further enhanced by adding a small amount of organic stabilizing aids such as phite, trinonylphenyl phosphite, etc., and ultraviolet absorbers such as salicylic acid esters, hydroxybenzophenones, and benzotriazole.
1見
溶融樹脂の流動性を高めて成形性を改善するほか、成形
金型への粘着を防いで離型性を高めつつ成形体の表面平
滑性を高める作用があり、高級脂肪酸およびその誘導体
、天然もしくは合成のワックス類等が挙げられる。In addition to increasing the fluidity of the molten resin and improving its moldability, it also has the effect of increasing the surface smoothness of the molded product while preventing it from sticking to the molding die and improving its releasability.Higher fatty acids and their derivatives, Examples include natural or synthetic waxes.
三重l
主として成形品の硬さ、モジュラスおよび曲げ剛性を高
める作用があり、炭酸カルシウム、カオリン、クレー、
シリカ、珪藻土、カーボンブラック等が例示される。Mie L Mainly has the effect of increasing the hardness, modulus, and bending rigidity of molded products, and contains calcium carbonate, kaolin, clay,
Examples include silica, diatomaceous earth, and carbon black.
その他の配合剤
上記以外の配合剤としては、着色剤、難燃化剤、IF電
防止剤、発泡剤、防かび剤等が必要に応じて添加される
。Other Compounding Agents As compounding agents other than those mentioned above, colorants, flame retardants, IF antistatic agents, foaming agents, fungicides, etc. may be added as necessary.
[実施例]
例1〜8、L 例1〜6
塩素化塩化ビニル樹脂(CPVC)(鐘淵化学社製’H
727J : P =1050) トf’) カーホ
*−トi樹脂(PC)(出光石油化学社製商品名「タフ
ロンA−2200J :分子量27,700)、PMM
A (三菱レーヨン社製「アクリベットIRH−70」
)およびMBS樹脂(クレハ化学社製rB”rA 7
51J)並びに安定化剤として高級脂肪酸およびその塩
(トリベース;ステアリン酸鉛ニステアリン酸Ca:粉
末ステアリン酸=1:1:1:0.5混合物)を用い、
これらを第1表に示す比率でロール法により均一に加熱
練和した後、プレス法によって15 m+oX 15
a+a+x 3.5o+mの供試成形体を作成した。[Example] Examples 1 to 8, L Examples 1 to 6 Chlorinated vinyl chloride resin (CPVC) (manufactured by Kanebuchi Chemical Co., Ltd.'H
727J: P = 1050) tf') Carho*-toi resin (PC) (trade name, manufactured by Idemitsu Petrochemical Co., Ltd., "TAFLON A-2200J: molecular weight 27,700), PMM
A (“Acrivet IRH-70” manufactured by Mitsubishi Rayon Co., Ltd.)
) and MBS resin (rB”rA 7 manufactured by Kureha Chemical Co., Ltd.
51J) and higher fatty acids and their salts (tribase; lead stearate Ca nistearate: powdered stearic acid = 1:1:1:0.5 mixture) as a stabilizer,
After uniformly heating and kneading these by the roll method at the ratio shown in Table 1, the mixture was heated to 15 m+oX 15 by the press method.
A test molded body of a+a+x 3.5o+m was created.
また比較のためPMMAを省略したもの、またはPMM
Aとポリカーボネート樹脂の両方を省略したもの、ある
いは配合組成が本発明の規定範囲を外れるものについて
同様に供試成形体を作成した。Also, for comparison, PMMA is omitted, or PMM
Test molded products were similarly prepared in which both A and the polycarbonate resin were omitted, or in which the blending composition was outside the specified range of the present invention.
得られた各供試成形体についてビカット軟化点(荷重I
Kgのときの値二℃)、シャルピー衝撃値(Kg/cm
)、引張り強度(にg/cm’)および引張伸率(%)
を測定し、第1表に併記する結果を得第1表より次の様
に考えることができる。Vicat softening point (load I
Kg value (2℃), Charpy impact value (Kg/cm
), tensile strength (g/cm') and tensile elongation (%)
was measured, and the results are shown in Table 1. From Table 1, the following can be considered.
実施例1〜8は本発明の規定要件を満たすものであり、
いずれも比較例に比べてビカット軟化点が高く、優れた
耐熱性を有している。またこれらの樹脂組成物はいずれ
も比較例2.3等に比べて引張伸率およびシャルピー衝
撃値の低下が少なく、高レベルの耐衝撃性を有しており
、且つ溶融時の流動性がよく、成形加工性の優れたもの
であった。Examples 1 to 8 satisfy the specified requirements of the present invention,
Both have higher Vicat softening points and excellent heat resistance than the comparative examples. In addition, all of these resin compositions showed less decrease in tensile elongation and Charpy impact value than Comparative Examples 2.3, etc., had a high level of impact resistance, and had good fluidity when melted. , and had excellent moldability.
これに対し比較例1〜6は下記の様に本発明で定める要
件のいずれかを欠くものであり、ビカット軟化点および
シャルピー衝撃値のいずれかが不十分であった。On the other hand, Comparative Examples 1 to 6 lacked any of the requirements specified by the present invention as described below, and either the Vicat softening point or the Charpy impact value was insufficient.
比較例1:塩化ビニル系樹脂に衝撃強化剤と安定剤を加
えただけのもので、ポリカーボネート系樹脂およびPM
MAのいずれも配合されていないためビカット軟化点が
低く、耐熱性が不十分であった。Comparative Example 1: A product that only has an impact strengthener and a stabilizer added to vinyl chloride resin, and is different from polycarbonate resin and PM.
Since no MA was blended, the Vicat softening point was low and the heat resistance was insufficient.
比較例2.3=ポリカーボネート系樹脂が配合されてい
るが、PMMAが配合されていないため耐熱性が不十分
であるばかりでなく、シャルピー衝撃値も極端に低く、
成型加工性も不良であった。Comparative Example 2.3 = Polycarbonate resin is blended, but PMMA is not blended, so not only is the heat resistance insufficient, but the Charpy impact value is also extremely low.
The moldability was also poor.
比較例4 : PMMAの配合量が不足するものであり
、相溶化効果が不足するため耐熱性改良効果がやや不十
分で且つ衝撃特性も低めであり、成形加工性もあまり改
善されなかった。Comparative Example 4: The amount of PMMA blended was insufficient, and the compatibilization effect was insufficient, so the heat resistance improvement effect was somewhat insufficient, the impact properties were also low, and the moldability was not improved much.
比較例5 : PMMAの配合量が多過ぎるものであり
、耐熱性向上効果は頭打ちの状態となり、?filF特
性や引張伸率が悪くなフている。Comparative Example 5: The amount of PMMA blended was too large, and the heat resistance improvement effect reached a plateau. The filF properties and tensile elongation are poor.
比較例6:ポリカーボネート系樹脂の配合量が多過ぎる
ものであり、耐熱性は良好であるが、相当量のPMMA
を配合しているのもかかわらず衝撃特性および引張伸率
が非常に悪い。Comparative Example 6: The amount of polycarbonate resin blended is too large, and although the heat resistance is good, a considerable amount of PMMA
The impact properties and tensile elongation are very poor despite the fact that it contains
流側9〜12、比較例7〜9
塩素化塩化ビニル樹脂に代えて塩化ビニル樹脂(p :
1050)を使用した以外は前記実施例、比較例と同
様にして供試成形体の作成および性能試験を行なった。Stream side 9 to 12, Comparative examples 7 to 9 Vinyl chloride resin (p:
Sample molded bodies were prepared and performance tests were conducted in the same manner as in the above Examples and Comparative Examples, except that 1050) was used.
配合組成および性能試験結果を第2表に一括して示す通
りであり、前記実施例1〜8、比較例1〜6で得られた
のとほぼ同様の傾向を確認することができる。即ち本発
明の規定要件を満たす実施例9〜12は、PMMAの配
合されていない比較例7〜9に比べてビカット軟化点、
シャルピー衝撃値および引張強度のいずれにおいても平
均的に高い値が得られており、優れた耐熱性および物性
を有していることが分かる。The blending composition and performance test results are collectively shown in Table 2, and almost the same trends as those obtained in Examples 1 to 8 and Comparative Examples 1 to 6 can be confirmed. That is, Examples 9 to 12 that meet the specified requirements of the present invention have a lower Vicat softening point,
High average values were obtained for both Charpy impact value and tensile strength, indicating that the material had excellent heat resistance and physical properties.
[発明の効果]
本発明は以上の様に構成されており、塩化ビニル系樹脂
にポリカーボネート系樹脂と共に適量のPMMAを配合
することによって、ポリカーボネート系樹脂の有する耐
熱性改良効果をより効果的に発揮させると共に、ポリカ
ーボネート系樹脂の配合によって生じる耐衝撃性の低下
も防止され、且つ成形加工性の良好な塩化ビニル系樹脂
組成物を提供し得ることになった。[Effects of the Invention] The present invention is configured as described above, and by blending an appropriate amount of PMMA with a polycarbonate resin into a vinyl chloride resin, the heat resistance improving effect of the polycarbonate resin is more effectively exhibited. At the same time, it is possible to provide a vinyl chloride resin composition which prevents a decrease in impact resistance caused by blending the polycarbonate resin and has good moldability.
Claims (1)
リカーボネート系樹脂の総和100重量部に対して4〜
25重量部 を含有することを特徴とする耐熱・耐衝撃性塩化ビニル
系樹脂組成物。[Claims] Vinyl chloride resin: 65 to 95 parts by weight Polycarbonate resin: 35 to 5 parts by weight Polymethyl methacrylate: 4 to 4 parts by weight based on 100 parts by weight of the above vinyl chloride resin and polycarbonate resin
A heat-resistant and impact-resistant vinyl chloride resin composition containing 25 parts by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27865990A JPH04153247A (en) | 1990-10-16 | 1990-10-16 | Heat-and impact-resistant vinyl chloride resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27865990A JPH04153247A (en) | 1990-10-16 | 1990-10-16 | Heat-and impact-resistant vinyl chloride resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04153247A true JPH04153247A (en) | 1992-05-26 |
Family
ID=17600369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27865990A Pending JPH04153247A (en) | 1990-10-16 | 1990-10-16 | Heat-and impact-resistant vinyl chloride resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04153247A (en) |
-
1990
- 1990-10-16 JP JP27865990A patent/JPH04153247A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100197860A1 (en) | Clear, impact modified, heat resistant polyvinyl halide compositions | |
US6417260B1 (en) | Polyvinyl chloride compositions | |
US5354812A (en) | Ternary alloys of poly(vinyl chloride) with high heat distortion temperatures | |
JP3338725B2 (en) | Post-chlorinated polyvinyl chloride compound for pipe formation | |
US4710533A (en) | Melt processable CPVC blends | |
US4528328A (en) | Blends of vinyl halide-polyolefin graft polymers and ASA polymers | |
JPH04153247A (en) | Heat-and impact-resistant vinyl chloride resin composition | |
JP2842732B2 (en) | Vinyl chloride resin composition | |
US4797442A (en) | Melt processable CPVC blends and alloys thereof | |
US4507434A (en) | Blends of vinyl halide-polyolefin graft polymers and polycarbonate polymers | |
JPS5914067B2 (en) | Vinyl chloride resin composition | |
JP2693682B2 (en) | Vinyl chloride resin composition | |
JPH04132759A (en) | Heat-resistant chlorinated vinyl chloride resin composition | |
US5143975A (en) | Polyvinyl chloride blends | |
JPS60139739A (en) | Vinyl chloride resin composition | |
JPH03152148A (en) | Rigid chlorinated vinyl chloride-based resin composition for extrusion molding | |
JPH02110157A (en) | Chlorinated vinyl chloride resin composition | |
JPH04132757A (en) | Hear-resistant vinyl chloride resin composition | |
JPH09216982A (en) | Polyvinyl chloride resin composition | |
JP2024114299A (en) | Alloy Resin | |
JPH03217424A (en) | Flame-retardant resin pellet for injection molding | |
JPH03170542A (en) | Chlorinated vinyl chloride resin composition | |
JPH08176377A (en) | Flame-retardant resin composition | |
JPH01210450A (en) | Chlorinated vinyl chloride resin composition | |
JPH06256612A (en) | Vinyl chloride resin composition |