JPH04159515A - Production of optical waveguide type control element - Google Patents
Production of optical waveguide type control elementInfo
- Publication number
- JPH04159515A JPH04159515A JP28613690A JP28613690A JPH04159515A JP H04159515 A JPH04159515 A JP H04159515A JP 28613690 A JP28613690 A JP 28613690A JP 28613690 A JP28613690 A JP 28613690A JP H04159515 A JPH04159515 A JP H04159515A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- substrate
- electrode
- optical
- etching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 238000001312 dry etching Methods 0.000 claims abstract description 13
- 238000000059 patterning Methods 0.000 claims abstract description 13
- 238000001039 wet etching Methods 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 239000013078 crystal Substances 0.000 abstract description 9
- 239000010408 film Substances 0.000 abstract description 8
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 abstract description 5
- 230000007261 regionalization Effects 0.000 abstract description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 238000003486 chemical etching Methods 0.000 abstract description 2
- 229910052681 coesite Inorganic materials 0.000 abstract description 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 2
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 2
- 239000000377 silicon dioxide Substances 0.000 abstract description 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 2
- 229910052682 stishovite Inorganic materials 0.000 abstract description 2
- 229910052905 tridymite Inorganic materials 0.000 abstract description 2
- 238000001659 ion-beam spectroscopy Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 3
- 229910003327 LiNbO3 Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3132—Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信等において光波の変調、光路の切り替え
等を行う光スィッチに関し、特に結晶基板上部表面に形
成された光導波路を用いた導波形光スイッチに関するも
のである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical switch that modulates light waves, switches optical paths, etc. in optical communications, etc., and particularly relates to an optical switch that modulates light waves, switches optical paths, etc. This invention relates to waveform optical switches.
光通信システムの実用化が進み、大容量や多機能をもつ
さらに高度のシステムへと開発が進められている。光伝
送路網の交換機能、光データバスにおける端末間の高速
接続、切り替え等の新たな機能が求められており、それ
らを可能にする光スイツチングネットワークの必要性が
高まっている。現在実用されている光スィッチは、プリ
ズム、ミラー、ファイバ等を機械的に移動させるもので
あり、低速であること、信頼性が不十分なこと、形状が
大きくマトリクス化に不適なこと等の欠点がある。これ
を解決する手段として開発か進められているものは基板
上に設置した光導波路を用いた導波形の光スィッチであ
り、高速、多素子の集積化が可能、高信頼等の特長があ
る。特にLiNbO3結晶等の強誘電体材料を用いたも
のは、光吸収が小さく低損失であることと大きな電気光
学効果を有しているため高効率である等の特長がある。Optical communication systems are being put into practical use, and more advanced systems with large capacity and multiple functions are being developed. New functions such as switching functions of optical transmission networks, high-speed connections between terminals in optical data buses, and switching are required, and the need for optical switching networks that make these functions possible is increasing. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, and large size that makes them unsuitable for matrix formation. There is. A waveguide type optical switch that uses an optical waveguide installed on a substrate is currently being developed as a means to solve this problem, and has features such as high speed, integration of multiple elements, and high reliability. In particular, those using ferroelectric materials such as LiNbO3 crystals have features such as low light absorption, low loss, and high efficiency due to large electro-optic effects.
従来の導波形光スイッチの一例である方向性結合形光ス
イッチの斜視図を第2図に示す。光学軸に垂直に切り出
して整形しなLiNbO3結晶基板11にTi等の金属
を拡散して先導波路12.13が形成されている。これ
ら光導波i12,13は数μm程度の間隔で近接して設
置されることにより光方向性結合器24を構成しており
、光導波路12.13上にバッファ層(図では省略)を
介して制御電極25.26が設置されている。この制御
電極25.26の形成法には幾つかの手法があるが、マ
スクパターンが忠実に転写される異方性エツチング(ド
ライエツチング)によるものが−般的である。このスイ
ッチの基本的な動作原理は、先ず、片方の光導波路例え
ば光導波路12の端面から入射した光波27は光導波路
12中を伝搬し、光方向性結合器24の部分で近接した
光導波路13にエネルギーが移行し、光方向性結合器2
4の長さを完全結合長Lcに一致させた場合、はぼ10
0%のエネルギーが光導波路13に移って出射光28と
なる。一方、制御電極25.26との間に電圧を印加し
た場合、電気光学効果によって光導波路12.13の屈
折率が変化して両者の屈折率が非対称となり、両者を伝
搬する光波の間で位相不整合が生じて結合状態が変化し
、適当な印加電圧のもとでは元の光導波路12ヘエネル
ギーが移り出射光29となる。FIG. 2 shows a perspective view of a directional coupling type optical switch, which is an example of a conventional waveguide type optical switch. A leading waveguide 12, 13 is formed by diffusing a metal such as Ti into a LiNbO3 crystal substrate 11 that is cut out and shaped perpendicularly to the optical axis. These optical waveguides i12 and 13 are installed close to each other with an interval of about several μm to constitute an optical directional coupler 24, and a buffer layer (not shown in the figure) is placed on the optical waveguides 12 and 13. Control electrodes 25,26 are installed. Although there are several methods for forming the control electrodes 25 and 26, the most common method is anisotropic etching (dry etching) in which a mask pattern is faithfully transferred. The basic operating principle of this switch is that first, a light wave 27 incident from the end face of one of the optical waveguides, for example, the optical waveguide 12, propagates through the optical waveguide 12, and at the optical directional coupler 24, the optical wave 27 enters the adjacent optical waveguide 13. The energy is transferred to the optical directional coupler 2.
If the length of 4 is made to match the complete bond length Lc, the length is 10
0% of the energy is transferred to the optical waveguide 13 and becomes the output light 28. On the other hand, when a voltage is applied between the control electrodes 25 and 26, the refractive index of the optical waveguide 12 and 13 changes due to the electro-optic effect, and the refractive index of both becomes asymmetric, resulting in a difference in the phase between the light waves propagating through them. A mismatch occurs and the coupling state changes, and under an appropriate applied voltage, energy is transferred to the original optical waveguide 12 and becomes emitted light 29.
以上のような方向性結合形の他に、導波形光スイッチに
は全反射形、バランスドブリッジ形、Y分岐形等の方式
があるが、光スィッチにとって重要なスイッチ電圧やク
ロストークを比較的容易に低くでき、且つ構成が最も簡
単なのは方向性結合形であることが知られている。In addition to the directional coupling type mentioned above, waveguide optical switches include total reflection type, balanced bridge type, Y-branch type, etc., but these types are relatively effective at reducing switch voltage and crosstalk, which are important for optical switches. It is known that the directional coupling type is the one that can be easily lowered and has the simplest configuration.
上述したように方向性結合形光スイッチでは、光路の切
り替えを制御するために導波路上に電極パターンを形成
する必要がある。しかしながら、従来の異方性エツチン
グくドライエツチング)による方法では、少しのオーバ
ーエツチングがそれによるダメージ等によりデバイスの
特性を劣化させ、歩留りを落とす要因となる。従って、
デバイスの製作トレランスを大きくし、歩留り向上を図
るためには、電極パターン形成時に生じる基板(導波路
)へのダメージ等を緩和させなければならない。As described above, in the directional coupling type optical switch, it is necessary to form an electrode pattern on the waveguide in order to control switching of the optical path. However, in conventional methods using anisotropic etching (dry etching), even a small amount of overetching causes damage, which deteriorates device characteristics and reduces yield. Therefore,
In order to increase device manufacturing tolerance and improve yield, it is necessary to alleviate damage to the substrate (waveguide) that occurs during electrode pattern formation.
本発明は、基板表面に選択的に光導波路を形成する工程
と、光導波路を直接あるいは間接的に覆うように電極用
薄膜を形成する工程と、電極用薄膜をトライエツチング
によりパターニングを行った後、次いでウェットエツチ
ングにより電極パターニングを完了する工程を有するこ
とを特徴とする光導波路型制御素子の製造方法である。The present invention comprises a process of selectively forming an optical waveguide on the surface of a substrate, a process of forming a thin film for an electrode so as to directly or indirectly cover the optical waveguide, and a process after patterning the thin film for an electrode by tri-etching. This method of manufacturing an optical waveguide type control element is characterized by comprising the step of completing electrode patterning by wet etching.
ニオブ酸リチウムやタンタル酸リチウム等の光学的異方
性を有する結晶に熱拡散等による光導波路が形成されて
いる結晶基板に1層または多層の薄膜からなる電極パタ
ーンを形成する。ここで、多層の場合は、最下層膜すな
わち基板表面に最も近い電極薄膜に他の薄膜よりもエツ
チングレートの遅い電極材料を用いることにより、−こ
れよりも上層部を異方性エツチング(ドライエツチング
)して生じるダメージやパターン効果によるストレス等
をこの最下層でストップ(吸収)し、最後にこの最下層
のみをウェットエツチングする。1層の場合は、薄膜を
数百へ程度残してドライエツチングによりパターニング
する。この後、残りの部分をウェットエツチングにより
エツチングしてパターン化する。これにより、異方性エ
ツチング(ドライエツチング)して生じるダメージを基
板(導波路)に与えることなく、また、電極パターニン
グによるストレスも緩和することができる。An electrode pattern consisting of one or multiple thin films is formed on a crystal substrate in which an optical waveguide is formed by thermal diffusion or the like in a crystal having optical anisotropy such as lithium niobate or lithium tantalate. In the case of multilayers, an electrode material with a slower etching rate than other thin films is used for the lowest layer film, that is, the electrode thin film closest to the substrate surface, and the upper layer is anisotropically etched (dry etching). ) Damage caused by etching and stress due to pattern effects are stopped (absorbed) at this bottom layer, and finally only this bottom layer is wet-etched. In the case of one layer, patterning is performed by dry etching, leaving about several hundred thin films. Thereafter, the remaining portion is etched by wet etching to form a pattern. This prevents the substrate (waveguide) from being damaged by anisotropic etching (dry etching), and also alleviates stress caused by electrode patterning.
ウェットエツチングは、バタンの加工精度、再現性など
でドライエツチングに劣るが、結晶基板に損傷を与えな
い利点がある。また、ドライエツチングに対するエツチ
ングレートを考慮しさえすれば膜厚を薄くすることによ
りサイドエツチングによるアンダーカットも小さく抑え
ることができる。従って、電極パターン形成時に生じる
基板(導波路)へのダメージ、ストレス等を緩和させる
ことにより、デバイスの製作トレランスを大きくし歩留
り向上を図ることができる。Although wet etching is inferior to dry etching in terms of pattern processing accuracy and reproducibility, it has the advantage of not damaging the crystal substrate. Furthermore, by making the film thinner, the undercut caused by side etching can be kept small as long as the etching rate for dry etching is taken into consideration. Therefore, by alleviating damage, stress, etc. to the substrate (waveguide) that occurs during electrode pattern formation, it is possible to increase device manufacturing tolerance and improve yield.
第1図は本発明の一実施例に係る光導波路型制御素子の
製造工程の説明図である。本実施例の光導波路型制御素
子はZ軸が基板表面に垂直なニオブ酸リチウム結晶基板
11上に2本のTi拡散導波路12.13を形成する。FIG. 1 is an explanatory diagram of the manufacturing process of an optical waveguide type control element according to an embodiment of the present invention. In the optical waveguide type control element of this embodiment, two Ti diffusion waveguides 12 and 13 are formed on a lithium niobate crystal substrate 11 whose Z axis is perpendicular to the substrate surface.
これら光導波路は数μm程度の間隔で近接して設置され
ることにより光方向性結合器を構成しており、光導波路
上にSiO2膜で成るバッファ層14を介して制御電極
が設置される。制御電極の形成法は、まずバッファ層1
4を覆うようにTi薄膜15を、続いてAu薄膜16を
スパッタ法により形成する(第1図〈a))。このとき
Auの膜厚はTiの十〜士数倍程度である。つぎにフォ
トレジストによりマスクパターン形成後イオンビームエ
ツチング装置によりドライエツチングしAu電!17.
18を形成する(第1図(b))。エツチングガス中に
僅かに酸素を混ぜておくとTiのエツチングレートは極
端に遅くなり、結果的に選択的にAuのみをエツチング
することができる。よって最後にTiを化学エツチング
(ウェットエツチング)によりバターニングを行いTi
電極19.20を形成しレジストを除去する(第1図(
C))。制御電極のトータルの膜厚に対しTi膜厚は非
常に薄いのでサイドエツチングによるアンダーカットも
最小限に抑えることができる。従って、電極パターン形
成時に生じる基板(導波路)へのダメージ、ストレス等
を緩和させることによりデバイス特性の劣化を防ぎ、製
作トレランスを大きくし歩留り向上を図ることができる
。These optical waveguides constitute an optical directional coupler by being placed close to each other at intervals of about several μm, and a control electrode is placed on the optical waveguides via a buffer layer 14 made of a SiO2 film. The method for forming the control electrode is to first form a buffer layer 1.
A Ti thin film 15 and then an Au thin film 16 are formed by sputtering so as to cover 4 (FIG. 1(a)). At this time, the thickness of Au is approximately ten to several times as thick as that of Ti. Next, after forming a mask pattern using photoresist, dry etching is performed using an ion beam etching device to form an Au electrode. 17.
18 (FIG. 1(b)). When a small amount of oxygen is mixed in the etching gas, the etching rate of Ti becomes extremely slow, and as a result, only Au can be selectively etched. Therefore, the Ti is finally buttered by chemical etching (wet etching).
Electrodes 19 and 20 are formed and the resist is removed (see Figure 1 (
C)). Since the Ti film thickness is very thin compared to the total film thickness of the control electrode, undercuts due to side etching can also be minimized. Therefore, by alleviating damage, stress, etc. to the substrate (waveguide) that occurs during electrode pattern formation, deterioration of device characteristics can be prevented, manufacturing tolerance can be increased, and yield can be improved.
第3図はバッファ層を必要としない場合の光導波路型制
御素子の断面図である。X軸が基板表面に垂直なニオブ
酸リチウム結晶基板31上に2本のTi拡散導波路12
.13が形成されており、基板表面に設置された制御電
極35により基板表面に平行に電界を作用させることに
より光のスイッチングを行うものである。こうしたバッ
ファ層を必要としない先導波路型制御素子においては、
バッファ層のない分特に有効である。作り方は第1図と
同じ(但し、バッファ層形成工程は省く)である。FIG. 3 is a cross-sectional view of an optical waveguide type control element that does not require a buffer layer. Two Ti diffusion waveguides 12 are placed on a lithium niobate crystal substrate 31 whose X axis is perpendicular to the substrate surface.
.. 13 is formed, and light switching is performed by applying an electric field parallel to the substrate surface using a control electrode 35 installed on the substrate surface. In a guided waveguide type control element that does not require such a buffer layer,
This is particularly effective since there is no buffer layer. The manufacturing method is the same as that shown in FIG. 1 (however, the buffer layer forming step is omitted).
なお、実施例では電極用の薄膜を2層構造としたが、1
層で形成してもよい。この場合は、ドライエツチング工
程で薄膜の厚さ数百へ程度を除去してバターニングを完
成すればよい。In addition, in the example, the thin film for the electrode had a two-layer structure, but 1
It may be formed in layers. In this case, the patterning can be completed by removing the thin film to a thickness of several hundred using a dry etching process.
〔発明の効果〕
以上説明したように本発明は、基板表面に選択的に光導
波路を形成する工程と、先導波路を直接あるいは間接的
に覆うように電極用薄膜を形成する工程と、電極用薄膜
をドライエツチングによりバターニングを行った後、次
いでウェットエツチングにより電極バターニングを完了
する工程を有することを特徴とする光導波路型制御素子
の製造方法により、電極パターン形成時に生じる基板(
導波路)へのダメージ、ストレス等を緩和させデバイス
特性の劣化を防ぎ、製作トレランスを大きくし歩留りを
向上させる効果がある。[Effects of the Invention] As explained above, the present invention includes a step of selectively forming an optical waveguide on the surface of a substrate, a step of forming an electrode thin film so as to directly or indirectly cover the guide waveguide, and a step of forming an electrode thin film so as to cover the guide waveguide directly or indirectly. A method for manufacturing an optical waveguide type control element, which is characterized by the step of patterning a thin film by dry etching and then completing electrode patterning by wet etching, allows the substrate (
This has the effect of alleviating damage and stress to waveguides, preventing deterioration of device characteristics, increasing manufacturing tolerance, and improving yield.
第1図は本発明の一実施例に係る光導波路型制御素子の
製造工程の説明図、第2図は従来例の斜視図、第3図は
バッファ層を必要としない場合の断面図である。
11.31・・・ニオブ酸リチウム結晶基板、12゜1
3・・・Ti拡散導波路、14・・・バッファ層(Si
O2膜) 、1 !5−T i膜、16−Au膜、17
゜18−A、u電極、19.2O−Tiii極、24−
・・方向性結合器、25,26.35・・・制御電極、
27・・・入射光、28.29・・・出射光。FIG. 1 is an explanatory diagram of the manufacturing process of an optical waveguide type control element according to an embodiment of the present invention, FIG. 2 is a perspective view of a conventional example, and FIG. 3 is a cross-sectional view when a buffer layer is not required. . 11.31...Lithium niobate crystal substrate, 12゜1
3...Ti diffused waveguide, 14...buffer layer (Si
O2 membrane), 1! 5-Ti film, 16-Au film, 17
゜18-A, u electrode, 19.2O-Tiii pole, 24-
... Directional coupler, 25, 26.35 ... Control electrode,
27...Incoming light, 28.29...Outgoing light.
Claims (1)
記光導波路を直接あるいは間接的に覆うように電極用薄
膜を形成する工程と、前記電極用薄膜を〜数百Å程度残
しドライエッチングによりパターニングを行った後、次
いでウェットエッチングにより電極パターニングを完了
する工程を有することを特徴とする光導波路型制御素子
の製造方法。 2、基板表面に選択的に光導波路を形成する工程と、前
記光導波路を直接あるいは間接的に覆うようにエッチン
グレートの異なる少なくとも2種類以上の電極用薄膜を
形成する工程と、前記電極用薄膜をドライエッチングに
より少なくとも最下層を残しパターニングを行った後、
次いでウェットエッチングにより電極パターニングを完
了する工程を有することを特徴とする光導波路型制御素
子の製造方法。[Claims] 1. A step of selectively forming an optical waveguide on the surface of a substrate, a step of forming an electrode thin film so as to directly or indirectly cover the optical waveguide, and a step of forming an electrode thin film by forming a plurality of electrode thin films. 1. A method for manufacturing an optical waveguide type control element, comprising the steps of patterning by dry etching to leave about 100 Å, and then completing electrode patterning by wet etching. 2. A step of selectively forming an optical waveguide on the surface of the substrate, a step of forming at least two or more types of electrode thin films having different etching rates so as to directly or indirectly cover the optical waveguide, and the electrode thin film. After patterning by dry etching leaving at least the bottom layer,
A method for manufacturing an optical waveguide control element, comprising the step of completing electrode patterning by wet etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28613690A JPH04159515A (en) | 1990-10-24 | 1990-10-24 | Production of optical waveguide type control element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28613690A JPH04159515A (en) | 1990-10-24 | 1990-10-24 | Production of optical waveguide type control element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04159515A true JPH04159515A (en) | 1992-06-02 |
Family
ID=17700400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28613690A Pending JPH04159515A (en) | 1990-10-24 | 1990-10-24 | Production of optical waveguide type control element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04159515A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709711A1 (en) * | 1994-10-25 | 1996-05-01 | Hughes Aircraft Company | Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same |
JP2022047597A (en) * | 2020-09-14 | 2022-03-25 | 富士通オプティカルコンポーネンツ株式会社 | Optical device and light transmitter-receiver |
-
1990
- 1990-10-24 JP JP28613690A patent/JPH04159515A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709711A1 (en) * | 1994-10-25 | 1996-05-01 | Hughes Aircraft Company | Velocity-matched electrodes for electro-optic travelling-wave modulators and method for forming the same |
JP2022047597A (en) * | 2020-09-14 | 2022-03-25 | 富士通オプティカルコンポーネンツ株式会社 | Optical device and light transmitter-receiver |
US12044909B2 (en) | 2020-09-14 | 2024-07-23 | Fujitsu Optical Components Limited | Optical device that includes optical modulator, and optical transceiver |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08297265A (en) | Acoustooptic waveguide for wavelength selection | |
JPH0728007A (en) | Waveguide type optical device | |
JPH0452922B2 (en) | ||
JP2000137125A (en) | Method for manufacturing diffusion type optical waveguide structure onto substrate | |
JPH04159515A (en) | Production of optical waveguide type control element | |
US5050947A (en) | Optical waveguide control device employing directional coupler on substrate | |
JPH04172316A (en) | Wave guide type light control device | |
US7061023B2 (en) | Integrated optical devices and methods of making such devices | |
JP2739405B2 (en) | Electric field sensor | |
JP2613942B2 (en) | Waveguide type optical device | |
JPH0721597B2 (en) | Optical switch | |
JPS6396626A (en) | Waveguide type light control element | |
JPH01201609A (en) | Optical device | |
JPS61134730A (en) | Production of optical control element | |
JPH10228039A (en) | Waveguide type optical arrester | |
JPH01201628A (en) | Optical switch | |
JPH03256028A (en) | Light controlling device | |
JPH0361932B2 (en) | ||
US6596557B1 (en) | Integrated optical devices and methods of making such devices | |
JP2720654B2 (en) | Light control device | |
JPS6269247A (en) | Optical switch | |
JP2812320B2 (en) | Integrated optical circuit and manufacturing method thereof | |
JPH10307225A (en) | Waveguide type optical element and its manufacture | |
JP2643927B2 (en) | Manufacturing method of optical branching / optical coupling circuit | |
JPS5840725B2 (en) | Thin film optical switch matrix device |