JPH04158503A - Manufacture of cemented mn-zn ferrite - Google Patents
Manufacture of cemented mn-zn ferriteInfo
- Publication number
- JPH04158503A JPH04158503A JP2284584A JP28458490A JPH04158503A JP H04158503 A JPH04158503 A JP H04158503A JP 2284584 A JP2284584 A JP 2284584A JP 28458490 A JP28458490 A JP 28458490A JP H04158503 A JPH04158503 A JP H04158503A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- ferrite
- temperature
- polycrystal
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 238000005245 sintering Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000005304 joining Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 3
- 230000006866 deterioration Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
VTRなどの磁気記録装置の磁気ヘッドに使用されるM
n−Znフェライト単結晶と多結晶とを固相反応により
直接接合した接合体の製造方法に関するものである。[Detailed Description of the Invention] (Industrial Application Field) M used in magnetic heads of magnetic recording devices such as VTRs
The present invention relates to a method of manufacturing a bonded body in which an n-Zn ferrite single crystal and a polycrystal are directly joined by solid phase reaction.
(従来の技術)
近年、Mn−Znフェライト単結晶と同多結晶との接合
体が磁気ヘッド用、特にビデオヘッド用として使用され
つつある。この接合体は、単結晶と多結晶の接合面を鏡
面にしたのち、両者を突き合わせてホットプレスするこ
とにより製造される。(Prior Art) In recent years, a composite of a Mn--Zn ferrite single crystal and a Mn-Zn ferrite polycrystal has been used for magnetic heads, particularly for video heads. This joined body is manufactured by making the joining surfaces of a single crystal and a polycrystal a mirror surface, and then abutting them together and hot pressing them.
(発明が解決しようとする課題)
その際、単結晶と多結晶との熱膨張係数の差が±1%に
なるよう両材料の選定を行うが、この条件だけで必ずし
も満足できる接合体が得られず、他の条件を求めて研究
されていたが最適の接合条件を見出すことは困難であっ
た。 本発明はこのような問題点を解決した接合条件を
提供するものである。(Problem to be solved by the invention) At this time, the materials are selected so that the difference in thermal expansion coefficient between the single crystal and the polycrystal is ±1%, but this condition alone does not necessarily yield a satisfactory joined body. Although research was conducted to find other conditions, it was difficult to find the optimal bonding conditions. The present invention provides bonding conditions that solve these problems.
(課題を解決するための手段)
本発明者等はかかる課題を解決するために熱膨張係数以
外の接合条件を求めて研究した結果、本発明に到達した
もので、その要旨は、
Mn−Znフェライト単結晶と同多結晶とを接合するM
n−Znフェライト接合体の製造方法において、接合時
の温度Tl (’c)と多結晶フェライトの焼結温度T
B (℃)とが、T3≦Tll≦TB+ 100の関係
を満足することを特徴とするMn−Znフェライト接合
体の製造方法にある。(Means for Solving the Problems) In order to solve the problems, the present inventors conducted research to find bonding conditions other than the coefficient of thermal expansion, and as a result, they arrived at the present invention, and the gist thereof is as follows: M for joining ferrite single crystal and ferrite polycrystal
In the method for manufacturing an n-Zn ferrite bonded body, the bonding temperature Tl ('c) and the polycrystalline ferrite sintering temperature T
B (°C) satisfies the relationship T3≦Tll≦TB+100.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
接合に用いられるMn−Znフェライト多結晶は通常、
焼結法、HIP等により作製されるが、これらの方法で
は、Mn−Znフェライト粉体を成形した後、平衡酸素
分圧下、約1,100〜1,400℃の温度で焼結する
。一方、Mn−Znフェライト単結晶は公知の方法で製
造すれば良く、通常ブリッジマン法により作製される。The Mn-Zn ferrite polycrystal used for bonding is usually
It is produced by a sintering method, HIP, etc., but in these methods, after molding Mn-Zn ferrite powder, it is sintered at a temperature of about 1,100 to 1,400° C. under an equilibrium oxygen partial pressure. On the other hand, Mn--Zn ferrite single crystals may be manufactured by a known method, and are usually manufactured by the Bridgman method.
これらMn−Znフェライト単結晶と多結晶を接合して
接合体を作製するにするに際し、多結晶の焼結温度が接
合の状態に太き(影響する。接合温度が焼結温度より低
い場合は、接合が困難になり、接合不良が生じ易い。こ
れは多結晶体は焼結温度での熱処理を一度受けているた
め、それ以下の温度での熱処理では結晶粒の成長等が起
こりにくいため考えられる。逆に接合温度が焼結温度よ
りも高いと、多結晶の粒成長、単結晶の成長が進行する
。When bonding these Mn-Zn ferrite single crystals and polycrystals to create a bonded body, the sintering temperature of the polycrystal has a large influence on the bonding state.If the bonding temperature is lower than the sintering temperature, , bonding becomes difficult and bonding defects are likely to occur.This is because the polycrystalline body has been heat treated once at the sintering temperature, so heat treatment at a lower temperature is less likely to cause crystal grain growth. Conversely, when the bonding temperature is higher than the sintering temperature, polycrystalline grain growth and single crystal growth progress.
この接合体を磁気ヘッドに応用した接合ヘッドの長所は
、摺動ノイズの低いことであり、これは多結晶部の結晶
粒の大きさに関係し、20μm以下であることが要望さ
れている。また、単結晶の成長が進行した場合、接合体
の単結晶−多結晶界面は凸凹になってしまい、磁気ヘッ
ドを作製した場合に各磁気ヘッドの単結晶と多結晶との
比率がバラついて磁気ヘッドの特性もバラついてしまう
。The advantage of a bonded head in which this bonded body is applied to a magnetic head is low sliding noise, which is related to the size of crystal grains in the polycrystalline portion, and is desired to be 20 μm or less. Additionally, as the growth of the single crystal progresses, the single crystal-polycrystal interface of the bonded body becomes uneven, and when a magnetic head is manufactured, the ratio of single crystal to polycrystal of each magnetic head varies, causing the magnetic The characteristics of the head also vary.
そこで単結晶の成長量を50μm以下に抑えることが必
要とされている。接合温度が多結晶の焼結温度より10
0℃ 以上高い時には多結晶の結晶粒の大きさが20μ
mを越え易く、また、単結晶成長量が50μmを越え易
い。従って、焼結温度より100℃以上の温度で接合し
た接合体を磁気ヘッドに用いることは出来ない。Therefore, it is necessary to suppress the amount of single crystal growth to 50 μm or less. The joining temperature is 10% lower than the polycrystalline sintering temperature.
When the temperature is higher than 0℃, the size of polycrystalline grains decreases to 20μ.
m, and the amount of single crystal growth tends to exceed 50 μm. Therefore, a joined body joined at a temperature of 100° C. or higher than the sintering temperature cannot be used in a magnetic head.
本発明の適用範囲はMn−Znフェライトを主とし、こ
れにSnO□、InzOa等を添加したフェライトも含
まれるが、これらに限定されるものではない。The scope of application of the present invention is mainly Mn-Zn ferrite, and also includes ferrites to which SnO□, InzOa, etc. are added, but is not limited thereto.
以下5本発明の具体的な実施態様を実施例を挙げて説明
するが、本発明はこれらに限定されるものではない。Hereinafter, five specific embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto.
(実施例)
Fezes 53モル%、Mn030モル%、Zn01
7モル%をボールミルを用いて混合し、1,200℃で
仮焼した。これを原料として白金ルツボ中に仕込み、電
気炉内で溶解した後、ルツボを降下しなからルツボ下端
から徐々に単結晶化させ、Mn−Znフェライト単結晶
を作製した。(Example) Fezes 53 mol%, Mn0 30 mol%, Zn01
7 mol% was mixed using a ball mill and calcined at 1,200°C. This was charged as a raw material into a platinum crucible, melted in an electric furnace, and then gradually single-crystallized from the lower end of the crucible without lowering the crucible to produce a Mn--Zn ferrite single crystal.
このMローZnフェライト単結晶より20mmX 20
mmX 1mmtのプレートを切り出し、20mmX
20mmの面を接合面として表面粗さRmaxが0.0
8μmの鏡面に加工した。20mm x 20 from this M low Zn ferrite single crystal
Cut out a plate of 1mm x 20mm
Surface roughness Rmax is 0.0 with 20mm surface as bonding surface
It was processed into a mirror surface of 8 μm.
この単結晶とほぼ同じ組成の多結晶を平衡酸素分圧下1
,200℃および1.300℃で焼結することにより作
製し、20mmX 20mmX 2 mmtのプレート
を切り出し、単結晶と同じ< 20mmX 20mmの
面を表面粗さRmaxが0.08μmの鏡面に加工した
。A polycrystal with almost the same composition as this single crystal was prepared under equilibrium oxygen partial pressure.
, 200° C. and 1.300° C., a 20 mm x 20 mm x 2 mmt plate was cut out, and the same < 20 mm x 20 mm surface as the single crystal was processed into a mirror surface with a surface roughness Rmax of 0.08 μm.
このようにして作製したMn−Znフェライト単結晶及
び多結晶の鏡面側を接合面として重ね合わせ、 Mn
−Znフェライト粉とアルミナ粉の混合粉中に埋設し、
5 kg/cm2の圧力をかけながら1,150℃、1
.200℃、 l、 250℃、l、300℃、1.3
50℃、 1.400℃および1,450℃で熱処理し
、単結晶と多結晶とを接合した。得られた20+nn+
X 20mmX 3 mmtの接合体から18mmX
1mmX 3 mmtのピース状試料を切り出し、その
接合歩留を調べた。さらに、その試料の18mmX 3
mmt断面を鏡面に加工後エツチングすることにより
、多結晶の結晶粒径および単結晶成長量を調べた。その
結果は、1,200℃にて焼結した多結晶を用いた場合
を第1表に、l、 300℃にて焼結した多結晶を用い
た場合を第2表に示した。The Mn-Zn ferrite single crystal and polycrystal produced in this way were stacked with the mirror side as a bonding surface, and the Mn
- Embedded in a mixed powder of Zn ferrite powder and alumina powder,
1,150℃ while applying a pressure of 5 kg/cm2, 1
.. 200℃, l, 250℃, l, 300℃, 1.3
Heat treatment was performed at 50°C, 1.400°C and 1,450°C to bond the single crystal and polycrystal. Obtained 20+nn+
X 20mmX 3mmt joint to 18mmX
Piece-shaped samples of 1 mm x 3 mm were cut out, and the bonding yield was examined. Furthermore, 18mm x 3 of the sample
The polycrystalline grain size and the amount of single crystal growth were investigated by processing the mmt cross section into a mirror surface and then etching it. The results are shown in Table 1 for the case using polycrystals sintered at 1,200°C, and Table 2 for the case using polycrystals sintered at 300°C.
(発明の効果)
本発明により従来接合歩留りが悪く、磁気ヘッドとして
の特性も満足し得るものがなかなか得られなかったが、
容易に接合条件を設定することができ、そのため接合不
良の少なく磁気特性に劣化のない接合体を歩留よ(製造
することが可能となり、工業上その利用価値は極めて高
い。(Effects of the Invention) With the present invention, it has been difficult to obtain a magnetic head with poor bonding yield and satisfactory characteristics as a magnetic head.
Bonding conditions can be easily set, and as a result, it is possible to produce a bonded body with few bonding defects and no deterioration in magnetic properties, and its utility value in industry is extremely high.
特許出願人 信越化学工業株式会社 ニー−Patent applicant: Shin-Etsu Chemical Co., Ltd. knee
Claims (1)
るMn−Znフェライト接合体の製造方法において、接
合時の温度T_B(℃)と多結晶フェライトの焼結温度
T_S(℃)とが、T_S≦T_B≦T_S+100の
関係を満足することを特徴とするMn−Znフェライト
接合体の製造方法。1. In a method for manufacturing an Mn-Zn ferrite bonded body in which an Mn-Zn ferrite single crystal and a polycrystalline Mn-Zn ferrite are joined, the temperature T_B (°C) at the time of joining and the sintering temperature T_S (°C) of the polycrystalline ferrite are such that T_S≦ A method for manufacturing an Mn-Zn ferrite bonded body, characterized by satisfying the relationship T_B≦T_S+100.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2284584A JP2799238B2 (en) | 1990-10-23 | 1990-10-23 | Method for producing Mn-Zn ferrite joined body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2284584A JP2799238B2 (en) | 1990-10-23 | 1990-10-23 | Method for producing Mn-Zn ferrite joined body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04158503A true JPH04158503A (en) | 1992-06-01 |
JP2799238B2 JP2799238B2 (en) | 1998-09-17 |
Family
ID=17680350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2284584A Expired - Fee Related JP2799238B2 (en) | 1990-10-23 | 1990-10-23 | Method for producing Mn-Zn ferrite joined body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2799238B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088198A (en) * | 1991-11-04 | 2000-07-11 | U.S. Philips Corporation | Magnetic head having a core portion of polycrystalline MnZn ferroferrite |
-
1990
- 1990-10-23 JP JP2284584A patent/JP2799238B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6088198A (en) * | 1991-11-04 | 2000-07-11 | U.S. Philips Corporation | Magnetic head having a core portion of polycrystalline MnZn ferroferrite |
Also Published As
Publication number | Publication date |
---|---|
JP2799238B2 (en) | 1998-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04158503A (en) | Manufacture of cemented mn-zn ferrite | |
JPS6215518B2 (en) | ||
JPS6241797A (en) | Single crystal ferrite and production thereof | |
JPS61146780A (en) | Manufacture of single crystal | |
JP2823626B2 (en) | Method for producing Mn-Zn ferrite joined body | |
JPH03271171A (en) | Method for preparing mn-zn ferrite joined product | |
JPS5918188A (en) | Preparation of ferrite of single crystal | |
JPS6249647B2 (en) | ||
JPS58156588A (en) | Preparation of single crystal | |
JPH0471874B2 (en) | ||
JPS62113787A (en) | Production of single crystal ferrite material | |
JP2862692B2 (en) | Manufacturing method of single crystal ferrite | |
JPS6215519B2 (en) | ||
JPH0243715B2 (en) | TANKETSUSHONOSEIZOHO | |
JPS61101484A (en) | Production of single crystal ferrite | |
JPH0143719B2 (en) | ||
JP2862694B2 (en) | Manufacturing method of composite ferrite | |
JPS62216986A (en) | Production of single crystal ferrite | |
JP3284638B2 (en) | Manufacturing method of bonded ferrite | |
JPS61186297A (en) | Production of ferrite single crystal | |
JPH0468277B2 (en) | ||
JPS5978997A (en) | Manufacture of oxide single crystal | |
JPH08157274A (en) | Method for joining ferrites | |
JPS61132560A (en) | Polycrystal ferrite and magnetic head device using same | |
JPS62223097A (en) | Production of single crystal ferrite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |