[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04155776A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH04155776A
JPH04155776A JP2282163A JP28216390A JPH04155776A JP H04155776 A JPH04155776 A JP H04155776A JP 2282163 A JP2282163 A JP 2282163A JP 28216390 A JP28216390 A JP 28216390A JP H04155776 A JPH04155776 A JP H04155776A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
negative electrode
electrode plate
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2282163A
Other languages
Japanese (ja)
Other versions
JP3033175B2 (en
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Masaki Kitagawa
雅規 北川
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2282163A priority Critical patent/JP3033175B2/en
Publication of JPH04155776A publication Critical patent/JPH04155776A/en
Application granted granted Critical
Publication of JP3033175B2 publication Critical patent/JP3033175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a battery having a high voltage and a high capacity by forming negative electrode by use of a compound carbonic material consisting of both a graphite material obtained by carrying out heat treatment on coke and a vapor phase growing-related carbon fiber. CONSTITUTION:Paste obtained by mixing acetylene black, graphite and a fluororesin- related binding agent into Co O2 synthesized by mixing Li2CO3 and Co CO3 is applied and dried on both surfaces of an aluminum foil so as to form a positive electrode plate having the thickness of 0.19mm. Meanwhile, a negative electrode plate can be formed in such a way that coke obtained by carrying out heat treatment at 2800 deg.C and VGCF obtained by carrying out heat treatment at 2200 deg.C are mixed, that 10 weight part of fluororesin-related binding agent is mixed into 100 weight part of this carbonic material, and that it is suspended in an aqueous solution of carboxymethyl celulose so as to form a paste condition. After this paste is applied to both surfaces of a copper foil having the thickness of 0.02mm and dried, an electrode plate having the thickness of 0.20mm, the width of 40mm and the length of 270mm can be formed by means of rolling. By constituting a battery by use of such a positive electrode plate and a negative electrode plate, the battery having a high voltage and a high capacity can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池、詳しくは小形、軽量の
新規な二次次電池に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a novel compact and lightweight secondary battery.

従来の技術 近年、民生用電子機器のポータプル化、コードレス化が
急速に進んでいる。これにつれて駆動用電源を担う小形
、軽量で、かつ高エネルギー密度を有する二次電池への
要望も高まっている。このような観点から、非水系二次
電池、特にリチウム二次電池は、とりわけ高電圧、高エ
ネルギー密度を有する電池としてその期待は大きく、開
発が急がれている。
BACKGROUND OF THE INVENTION In recent years, consumer electronic devices have rapidly become portable and cordless. Along with this, there is an increasing demand for small, lightweight, and high energy density secondary batteries that serve as driving power sources. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have high expectations as batteries with particularly high voltage and high energy density, and their development is urgently needed.

従来、リチウム二次電池の正極活物質には、二酸化マン
ガン、五酸化バナジウム、二硫化チタンなどが用いられ
ていた。これらの正極と、リチウム負極および有機電解
液とで電池を構成し、充放電を繰り返していた。ところ
が、一般に負極にリチウム金属を用いた二次電池では、
充電時に生成するデンドライト状リチウムによる内部短
絡や活物質と電解液の副反応といった課題が二次電池化
への大きな障害となっている。更には、高率充放電特性
や過放電特性においも満足するものが見い出されていな
い。また昨今、リチウム電池の安全性が厳しく指摘され
ており、負極にリチウム金属あるいはリチウム合金を用
いた電池系においては安全性の確保が非常に困難な状態
にある。
Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, and the like have been used as positive electrode active materials for lithium secondary batteries. These positive electrodes, a lithium negative electrode, and an organic electrolyte constituted a battery, which was repeatedly charged and discharged. However, in general, secondary batteries that use lithium metal for the negative electrode,
Issues such as internal short circuits caused by dendrite-like lithium generated during charging and side reactions between the active material and electrolyte are major obstacles to the development of secondary batteries. Furthermore, no material has been found that satisfies the high rate charge/discharge characteristics and overdischarge characteristics. In recent years, the safety of lithium batteries has been under strict scrutiny, and it is extremely difficult to ensure safety in battery systems that use lithium metal or lithium alloys for the negative electrode.

一方、層状化合物のインターカレーシ璽ン反応を利用し
た新しいタイプの電極活物質が注目を集めており、古く
から黒鉛層間化合物が二次電池の電極材料として用いら
れている。
On the other hand, a new type of electrode active material that utilizes the intercalation reaction of layered compounds is attracting attention, and graphite intercalation compounds have been used as electrode materials for secondary batteries for a long time.

特に、ClO4−1PF6−1BF、−イオン等のアニ
オンを取りこんだ黒鉛層間化合物は正極として用いられ
、一方、Ll+、Na+等のカチオンを取りこんだ黒鉛
層間化合物は負極として考えられている。しかしカチオ
ンを取りこんだ黒鉛層間化合物は極めて不安定であり、
天然黒鉛や人造黒鉛を負極として用いた場合、通常は電
池としての安定性に欠けると共に容量も低い。更には電
解液の分解を伴うために、リチウム負極の代替となり得
るものではなかった。
In particular, graphite intercalation compounds incorporating anions such as ClO4-1PF6-1BF and - ions are used as positive electrodes, while graphite intercalation compounds incorporating cations such as Ll+ and Na+ are considered as negative electrodes. However, graphite intercalation compounds incorporating cations are extremely unstable;
When natural graphite or artificial graphite is used as a negative electrode, the battery usually lacks stability and has a low capacity. Furthermore, since it involves decomposition of the electrolyte, it cannot be used as a substitute for a lithium negative electrode.

最近になって、各種炭化水素あるいは高分子材料を炭素
化して得られた疑黒鉛材料のカチオンドープ体が負極と
して有効であり、利用率が比較的高く電池としての安定
性に優れることが見いだされた。そしてこれを用いた小
形、軽量の二次電池について盛んに研究が行われている
Recently, it has been discovered that cation-doped pseudographite materials obtained by carbonizing various hydrocarbons or polymeric materials are effective as negative electrodes, and have relatively high utilization rates and excellent stability as batteries. Ta. Research is being actively conducted on small, lightweight secondary batteries using this material.

一方、炭素材料を負極に用いることに伴い、正極活物質
としては、より高電圧を有し、かつLiを含む化合物で
あるLiCoO2やLiMn2O4、あるいはこれらの
CoおよびMnの一部を他の元素、例えばFe、Co、
N iXMnなどで置換した複合酸化物を用いることが
提案されている。
On the other hand, with the use of carbon materials for the negative electrode, the positive electrode active materials include LiCoO2 and LiMn2O4, which are compounds that have a higher voltage and contain Li, or some of these Co and Mn with other elements, For example, Fe, Co,
It has been proposed to use a composite oxide substituted with NiXMn or the like.

発明が解決しようとする課題 前述のようなある程度の乱層構造を有した疑黒鉛材料を
負極材に用いた場合、リチウムの吸蔵および放出量を求
めたところ、100〜150■Ah/g carbon
の容量しか得られず、また充放電に伴う炭素極の分極が
大きくなる。
Problems to be Solved by the Invention When a pseudographite material having a certain degree of turbostratic structure as described above is used as a negative electrode material, the amount of intercalation and desorption of lithium was determined to be 100 to 150 ■Ah/g carbon.
However, the polarization of the carbon electrode increases during charging and discharging.

従って、例えばL i Co 02などの正極と組み合
わせた場合、満足のい(容量、電圧を得ることは困難で
ある。一方、高結晶性の黒鉛材料を負極材に用いた場合
、充電時に黒鉛電極表面で電解液の分解によるガス発生
が起こり、リチウムのインターカレーシ曹ン反応は進み
にくいことが報告されている。しかしコークスの高温焼
成体などは、ガス発生は伴うものの比較的高容量(20
0〜250mAh/g)を与えることが見いだされてい
る。しかしながら充放電に伴い黒鉛のC軸方向の膨張お
よび収縮が大きいために成形体が膨潤し、元の形状を維
持できなくなる。従って、サイクル特性に問題がある。
Therefore, when combined with a positive electrode such as Li Co 02, it is difficult to obtain satisfactory capacity and voltage.On the other hand, when a highly crystalline graphite material is used as the negative electrode material, the graphite electrode It has been reported that gas generation occurs due to decomposition of the electrolyte on the surface, making it difficult for the intercalated carbon reaction of lithium to proceed.
0 to 250 mAh/g). However, due to the large expansion and contraction of graphite in the C-axis direction during charging and discharging, the molded body swells and cannot maintain its original shape. Therefore, there is a problem with cycle characteristics.

また、黒鉛電極は電解液との濡れ性が悪いために、初期
充電時には反応が不均一となり、リチウムのすべてはイ
ンターカレートされずに部分的に電極表面上に金属リチ
ウムの析出が見られるといった問題点があった。
In addition, because the graphite electrode has poor wettability with the electrolyte, the reaction is uneven during initial charging, and not all of the lithium is intercalated, and metallic lithium is partially deposited on the electrode surface. There was a problem.

本発明は、上記のような従来の問題を解消し、高電圧、
高容量を有し、サイクル特性に優れた非水電解液二次電
池を提供することを目的としている。
The present invention solves the conventional problems as described above, and
The purpose of the present invention is to provide a non-aqueous electrolyte secondary battery with high capacity and excellent cycle characteristics.

課題を解決するための手段 これらの課題を解決するため本発明は、負極にコークス
を熱処理した黒鉛質材料と気相成長系炭素繊維(以下V
GCFと略す。)からなる複合炭素材を用いることによ
って、充放電に伴う成形体の膨潤、破壊を防ぐと共に、
電極の濡れ性を向上させたものである。
Means for Solving the Problems In order to solve these problems, the present invention uses graphite material heat-treated with coke and vapor-grown carbon fiber (hereinafter referred to as V
It is abbreviated as GCF. ) By using a composite carbon material consisting of
This improves the wettability of the electrode.

一般に、化学的に黒鉛層間にインターカレートされ得る
リチウムの量は、炭素6原子に対しリチウム1原子が挿
入された第1ステージの黒鉛層間化合物C6Liが上限
であると報告されており、その場合活物質は372mA
h/ gの容量を持つことになる。上述のような疑黒鉛
材料を用いた場合、黒鉛の層状構造が未発達であるため
にインターカレートされ得るリチウム量は少なく、また
充放電反応は金属リチウムに対して責な1.0■付近の
電位で進行するために負極材料として適するものではな
かった。コークスの高温焼成体を負極に使用した場合、
初期200〜250*Ah/gの容量を育することがわ
かっているが、成形体が膨潤するためにサイクルに伴う
容量劣化が大きくなる。また電解液との濡れ性が悪い。
Generally, it has been reported that the upper limit of the amount of lithium that can be chemically intercalated between graphite layers is C6Li, a first-stage graphite intercalation compound in which one lithium atom is inserted for every six carbon atoms. Active material is 372mA
It has a capacity of h/g. When pseudographite materials such as those described above are used, the amount of lithium that can be intercalated is small because the layered structure of graphite is underdeveloped, and the charge/discharge reaction is around 1.0 μ, which is more negative than metal lithium. It was not suitable as a negative electrode material because it progresses at a potential of . When a high-temperature fired body of coke is used as the negative electrode,
Although it is known that the initial capacity can be increased to 200 to 250*Ah/g, the capacity deterioration due to cycling increases because the molded body swells. Also, it has poor wettability with electrolyte.

一方、VGCFを負極に用いた場合、成形体の膨潤はほ
とんど見られず、濡れ性も良好である。ところが、コー
クスなどの他の炭素材に比べ嵩密度が非常に小さいため
に、実施例で示すような長尺式の芯材にカーボンペース
トを塗着する極板を考えた場合、充填量(充填密度)が
極端に小さくなってしまう。
On the other hand, when VGCF is used for the negative electrode, almost no swelling of the molded product is observed and the wettability is good. However, since the bulk density is very low compared to other carbon materials such as coke, when considering an electrode plate in which carbon paste is applied to a long core material as shown in the example, the filling amount (filling amount) density) becomes extremely small.

従って、電池としての容量が少なくなる。そこで本発明
者らは両者の特長を生かし、複合炭素材とすることによ
り上述の問題点を解決した。
Therefore, the capacity of the battery decreases. Therefore, the present inventors have solved the above-mentioned problems by making use of the features of both to create a composite carbon material.

その場合、コークスの高温焼成体とVGCFの混合比が
重要であり、VGCFの添加量は5重量%以上20重量
%以下が良く、更に好ましくは5重量%以上10重量%
以下である。5重量%未満ではVGCFの効果を生かす
ことができず、サイクル特性が悪くなる。また20重量
%を越えた場合、炭素材の極板充填密度が減少して電池
としての容量が低下する。また本発明で用いる黒鉛材お
よびVGCFはいずれもその黒鉛化度が重要な因子であ
り、002面の面間隔(d O02)がそれぞれ3.4
0人、3.45Å以下であることが要求される。上記以
上の面間隔を有する炭素材を用いた場合、他の疑黒鉛材
料の場合と同様に容量が少なく炭素極の分極が大きくな
る。
In that case, the mixing ratio of the high-temperature calcined coke and VGCF is important, and the amount of VGCF added is preferably 5% by weight or more and 20% by weight or less, more preferably 5% by weight or more and 10% by weight.
It is as follows. If it is less than 5% by weight, the effect of VGCF cannot be utilized and the cycle characteristics deteriorate. If it exceeds 20% by weight, the packing density of the carbon material on the electrode plate decreases, resulting in a decrease in battery capacity. Furthermore, the degree of graphitization is an important factor for both the graphite material and VGCF used in the present invention, and the distance between the 002 planes (dO02) is 3.4.
0 people, and is required to be 3.45 Å or less. When a carbon material having a spacing greater than the above is used, the capacity is small and the polarization of the carbon electrode becomes large, as in the case of other pseudographite materials.

一方、正極にはリチウムイオンを含む化合物であるLi
C002やLiMn2O4更には両者のCoあるいはM
nの一部を他の元素、例えばCo。
On the other hand, the positive electrode contains Li, a compound containing lithium ions.
C002, LiMn2O4, and both Co or M
A part of n is replaced by other elements, such as Co.

Mn、Fe、Ni、などで置換した複合酸化物が使用で
きる。上記複合酸化物は、例えばリチウムやコバルトの
炭酸塩あるいは酸化物を原料として、目的組成に応じて
混合、焼成することによって容易に得ることができる。
Composite oxides substituted with Mn, Fe, Ni, etc. can be used. The above composite oxide can be easily obtained by using carbonates or oxides of lithium or cobalt as raw materials, mixing and firing according to the desired composition.

勿論他の原料を用いた場合においても同様に合成できる
Of course, the same synthesis can be performed using other raw materials.

通常その焼成温度は650℃〜1200℃の間で設定さ
れる。
Usually, the firing temperature is set between 650°C and 1200°C.

電解液、セパレータについては特に限定されるものでは
なく、従来より公知のものが何れも使用できる。
The electrolytic solution and separator are not particularly limited, and any conventionally known ones can be used.

作用 本発明によるコークスの高温焼成体とVGCFとの複合
炭素材は、両者の特長を生かしたものである。
Function: The composite carbon material of the high-temperature calcined coke and VGCF according to the present invention takes advantage of the features of both.

VGCFはカーボンブラックなどと同様に炭化水素を気
相中で熱分解することによって生成した炭素繊維である
ため、電解液との濡れ性が良好である。また炭素/炭素
繊維の複合材料は一般に構造材料としての炭素材料を考
えた場合、高強度、高弾性率を有する材料として広く用
いられており、本発明においてはこの考え方を電池の電
極材料に応用したものである。その結果、充放電に伴う
極板の膨潤、破壊を複合炭素材を用いることによって防
ぎ、更に極板の濡れ性を向上させることができた。従っ
て、リチウム含有複合酸化物からなる正極と組み合わせ
ることによって高電圧、高容量を有し、サイクル特性に
優れた二次電池を得ることが可能となる。
Like carbon black, VGCF is a carbon fiber produced by thermally decomposing hydrocarbons in a gas phase, and thus has good wettability with an electrolyte. In addition, carbon/carbon fiber composite materials are generally used as materials with high strength and high elastic modulus when considering carbon materials as structural materials, and the present invention applies this concept to battery electrode materials. This is what I did. As a result, by using the composite carbon material, it was possible to prevent swelling and destruction of the electrode plate due to charging and discharging, and further improve the wettability of the electrode plate. Therefore, by combining it with a positive electrode made of a lithium-containing composite oxide, it is possible to obtain a secondary battery with high voltage, high capacity, and excellent cycle characteristics.

実施例 以下、実施例により本発明を詳しく述べる。Example Hereinafter, the present invention will be described in detail with reference to Examples.

第1図に本実施例で用いた円筒形電池の縦断面図を示す
。図において1は耐有機電解液性ステ/レス鋼板を加工
した電池ケース、2は安全弁を設けた封目板、3は絶縁
バッキングを示す。4は極板群であり、正極および負極
がセパレータを介して複数回巻回されて収納されている
。そして上記正極からは正極リード5が引き出されて封
口板2に接続され、負極からは負極リード6が引き出さ
れて電池ケース1の底部に接続されている。7は絶縁リ
ングで極板群の上下部にそれぞれ設けられている。以下
圧、負極板、電解液等について詳しく説明する。
FIG. 1 shows a longitudinal cross-sectional view of the cylindrical battery used in this example. In the figure, 1 is a battery case made of organic electrolyte-resistant stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating backing. Reference numeral 4 denotes a group of electrode plates, in which a positive electrode and a negative electrode are wound a plurality of times with a separator in between and housed therein. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided at the top and bottom of the electrode plate group, respectively. The pressure, negative electrode plate, electrolyte, etc. will be explained in detail below.

正極はLi2Co3とCoC0,とを混合し、900℃
で10時間焼成して合成したしlCoO2の粉末100
重量部に、アセチレンブラック3重量部、グラファイト
4重量部、フッ素樹脂系結着剤7重量部を混合し、カル
ボキシメチルセルロース水溶液に懸濁させてペースト状
にした。このペーストを厚さ0.03mmのアルミ箔の
両面に塗着し、乾燥後圧延して厚さ0.19mm、幅4
0mm。
The positive electrode is a mixture of Li2Co3 and CoC0, heated at 900℃.
CoO2 powder synthesized by baking for 10 hours
To the weight part, 3 parts by weight of acetylene black, 4 parts by weight of graphite, and 7 parts by weight of a fluororesin binder were mixed, and the mixture was suspended in a carboxymethyl cellulose aqueous solution to form a paste. This paste was applied to both sides of aluminum foil with a thickness of 0.03 mm, and after drying, it was rolled to a thickness of 0.19 mm and a width of 4 mm.
0mm.

長さ250mmの極板とした。The electrode plate had a length of 250 mm.

負極は2800℃の熱処理を施したコークス(d002
=3.38人)と2200℃の熱処理を施したVGCF
 (d002=3.42人)を表1に示すような混合比
で混合し、炭素材100重量部に、フッ素樹脂系結着剤
10重量部を混合し、カルボキシメチルセルロース水溶
液に懸濁させてペースト状にした。そしてこのペースト
を厚さ0.02mmの銅箔の両面に塗着し、乾燥後圧延
して厚さ0.20mm、幅40mm、長さ270mmの
極板とした。
The negative electrode is made of coke (d002
= 3.38 people) and VGCF subjected to heat treatment at 2200℃
(d002 = 3.42 people) at the mixing ratio shown in Table 1, 100 parts by weight of carbon material, 10 parts by weight of fluororesin binder, suspended in carboxymethyl cellulose aqueous solution, and paste. It was made into a shape. This paste was applied to both sides of a copper foil having a thickness of 0.02 mm, and after drying, it was rolled to obtain an electrode plate having a thickness of 0.20 mm, a width of 40 mm, and a length of 270 mm.

そして正、負極板それぞれにリードを取りつけ、厚さ0
.025mm、幅46mm、長さ700mmのポリプロ
ピレン製のセパレータを介して巻回し、直径13.8m
m、高さ50mmの電池ケース内に収納した。電解液に
は炭酸プロピレンと炭酸エチレンの等容積混合溶媒に、
過垣素酸すチ表  1 ラムを1モル/lの割合で溶解したものを用いた。
Then, attach the leads to each of the positive and negative electrode plates, and make sure that the thickness is 0.
.. 025 mm, width 46 mm, length 700 mm, wound through a polypropylene separator, diameter 13.8 m.
It was housed in a battery case with a height of 50 mm. The electrolyte contains an equal volume mixed solvent of propylene carbonate and ethylene carbonate,
Table 1 A solution prepared by dissolving rum at a ratio of 1 mol/l was used.

そしてこの電池を封口する前に充放電操作を行い、発生
したガスを真空下で充分に脱気した後封口し、試験電池
とした。
Before sealing this battery, a charging/discharging operation was performed, and the generated gas was sufficiently degassed under vacuum, and then the battery was sealed to obtain a test battery.

そしてこれらの試験電池を充放電電流100mAh、充
電終止電正充電IV、放電終止電圧3.OVの条件下で
定電流充放電試験を行った。そのサイクル特性の比較を
第2図に示した。VGCFを用いない電池1では初期の
容量は500mAh以上と大きいが、サイクルに伴う容
量劣化が著しい。
These test batteries were then subjected to a charge/discharge current of 100 mAh, a charge end voltage of positive charge IV, and a discharge end voltage of 3. A constant current charge/discharge test was conducted under OV conditions. A comparison of the cycle characteristics is shown in Figure 2. Although the battery 1 that does not use VGCF has a large initial capacity of 500 mAh or more, the capacity deteriorates significantly with cycles.

一方、vGCFを5重量%あるいは10重量%混合した
電池2および電池3では高容量を維持したままサイクル
に伴う容量劣化が極めて少ないことがわかる。VGCF
が25重量%および100重量%の電池4、電池5にお
いては、サイクル特性は良好であるものの、容量が極端
に小さくなってしまう。これはVCCFが支配的になっ
たために、合剤の充填量が減少したことによるものであ
る。
On the other hand, it can be seen that in Batteries 2 and 3 containing 5% or 10% by weight of vGCF, the capacity deterioration due to cycling is extremely small while maintaining high capacity. VGCF
Battery 4 and Battery 5 with 25% by weight and 100% by weight have good cycle characteristics, but have extremely low capacity. This is because VCCF became dominant and the amount of the mixture filled decreased.

平均放電電圧はいずれの場合も約3.7vであった。The average discharge voltage was about 3.7v in both cases.

また同一条件で構成した試験電池1〜5を封口後、1サ
イクル目の充電終了後に試験を中止し、電池を分解して
負極板を観察した。その結果、電池1では極板と電解液
の濡れが不充分であり、中心部分に全く濡れておらず未
反応の部分が存在し、その周辺に若干の金属リチウムの
析出が観察された。電池2〜5では極板の濡れは充分で
あり、均一に反応しており、リチウムの析出など目立っ
た変化は認められなかった。
Further, after sealing test batteries 1 to 5 constructed under the same conditions, the test was stopped after the first cycle of charging was completed, the batteries were disassembled, and the negative electrode plates were observed. As a result, in Battery 1, the electrode plates and the electrolyte were insufficiently wetted, and there was a completely unwetted and unreacted area in the center, and a small amount of metallic lithium was observed to be deposited around this area. In Batteries 2 to 5, the electrode plates were sufficiently wetted and reacted uniformly, and no noticeable changes such as precipitation of lithium were observed.

比較例1 実施例において、vGCFの代わりに市販のアセチレン
ブラック(d002=3.48人)を5重量%混合した
複合炭素材を負極材に用いた以外は全〈実施例と同一条
件で構成を行い、比較例1の電池とした。
Comparative Example 1 All the configurations were the same as in the example except that a composite carbon material containing 5% by weight of commercially available acetylene black (d002 = 3.48 people) was used as the negative electrode material instead of vGCF. A battery of Comparative Example 1 was obtained.

比較例2 実施例において、VCCFの熱処理温度を1200’C
(d002=3.55人)とし、5重量%混合した以外
は全〈実施例と同一条件で構成を行い比較例2の電池と
した。
Comparative Example 2 In the example, the heat treatment temperature of VCCF was 1200'C.
(d002=3.55 people), and a battery of Comparative Example 2 was prepared under the same conditions as in Example except that 5% by weight was mixed.

比較例1および2の電池を実施例と同一条件で充放電試
験を行った。いずれの場合も極板の濡れ性は良好であっ
たが、容量が400mAh以下と小さくなり、平均放電
電圧が3,5vと低くなった。これはアセチレンブラッ
クおよびVGCF (1200℃処理品)の黒鉛化度が
不充分であることに起因する。
A charge/discharge test was conducted on the batteries of Comparative Examples 1 and 2 under the same conditions as in the Example. In all cases, the wettability of the electrode plate was good, but the capacity was small at 400 mAh or less, and the average discharge voltage was low at 3.5 V. This is due to the insufficient degree of graphitization of acetylene black and VGCF (processed at 1200°C).

発明の効果 以上の説明から明らかなように、負極にコークスの高温
焼成体と気相成長系炭素繊維とからなる複合炭素材を用
いた本発明による非水電解液二次電池は、高電圧、高容
量を有し、サイクル特性に優れた非水電解液二次電池を
提供することができるという効果がある。
Effects of the Invention As is clear from the above explanation, the non-aqueous electrolyte secondary battery according to the present invention, which uses a composite carbon material consisting of a high-temperature fired body of coke and vapor-grown carbon fibers for the negative electrode, can achieve high voltage, This has the effect of providing a non-aqueous electrolyte secondary battery with high capacity and excellent cycle characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における円筒形電池の縦断面図
、第2図はサイクル特性の比較を示す図である。 1・・・電池ケース、2・・・封口板、3・・・絶縁バ
ッキング、4・・・極板群、5・・・正極リード、6・
・・負極リード、7・・・絶縁リング、8・・・電池ケ
ース、9・・・リチウム金属、10・・・電解液。 代理人の氏名 弁理士 小蝦治 明 ほか2名+−,/
li>tワT、ス #j 2 図 tリル&(回) 手続補正書 2発明の名称 非水電解液二次電池 3補正をする者 事件との関係      特  許   出  願人柱
 所  大阪府門真市大字門真1006番地名 称 (
582)松下電器産業株式会社代表者    谷  井
  昭  雄 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内 6、補正の内容 (1)明細書の第2頁第8行の「二次次電池」を「二次
電池」に補正します。 (2)同第16頁第1行〜第16頁第2行の「、8・・
・・−電池N10・・・・・電解液」を削除します。
FIG. 1 is a longitudinal cross-sectional view of a cylindrical battery in an example of the present invention, and FIG. 2 is a diagram showing a comparison of cycle characteristics. DESCRIPTION OF SYMBOLS 1... Battery case, 2... Sealing plate, 3... Insulating backing, 4... Electrode plate group, 5... Positive electrode lead, 6...
... Negative electrode lead, 7... Insulating ring, 8... Battery case, 9... Lithium metal, 10... Electrolyte. Name of agent: Patent attorney Akira Koebushi and 2 others +-, /
li>twaT、s#j 2 Figure trill & (times) Procedural amendment 2 Name of the invention Non-aqueous electrolyte secondary battery 3 Relationship with the person making the amendment Case Patent applicant Location Kadoma City, Osaka Prefecture Oaza Kadoma 1006 address name (
582) Matsushita Electric Industrial Co., Ltd. Representative Akio Tanii 4 Agent 571 Address 6, Matsushita Electric Industrial Co., Ltd., 1006 Oaza Kadoma, Kadoma City, Osaka Contents of the amendment (1) Page 2 of the specification, No. 8 Correct "rechargeable battery" in the row to "rechargeable battery". (2) ", 8..." on page 16, line 1 to page 16, line 2
...-Battery N10... Electrolyte" is deleted.

Claims (4)

【特許請求の範囲】[Claims] (1)リチウム含有複合酸化物からなる正極と、非水電
解液と、再充電可能な負極とを備えた非水電解液二次電
池において; 前記負極はコークスを熱処理した黒鉛質材料と気相成長
系炭素繊維とからなる複合炭素材であることを特徴とす
る非水電解液二次電池。
(1) In a non-aqueous electrolyte secondary battery comprising a positive electrode made of a lithium-containing composite oxide, a non-aqueous electrolyte, and a rechargeable negative electrode; A non-aqueous electrolyte secondary battery characterized by being made of a composite carbon material made of a grown carbon fiber.
(2)上記複合炭素材における気相成長系炭素繊維の混
合比は、上記黒鉛質材料に対して重量比で20%以下で
ある特許請求の範囲第1項記載の非水電解液二次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the mixing ratio of the vapor-grown carbon fiber in the composite carbon material is 20% or less by weight relative to the graphite material. .
(3)上記黒鉛質材料は、X線広角回折法による002
面の面間隔(d002)が3.40Å以下であり、上記
気相成長系炭素繊維は、(d002)が3.45Å以下
である特許請求の範囲第1項または第2項記載の非水電
解液二次電池。
(3) The above graphite material is 002 by X-ray wide-angle diffraction method.
The nonaqueous electrolytic method according to claim 1 or 2, wherein the interplanar spacing (d002) of the planes is 3.40 Å or less, and the vapor-grown carbon fiber has a (d002) of 3.45 Å or less. Liquid secondary battery.
(4)上記正極は、LiCoO_2、LiMn_2O_
4、あるいはこれらのCoおよびMnの一部を他の元素
で置換した複合酸化物の中から選ばれる少なくとも1っ
である特許請求の範囲第1項記載の非水電解液二次電池
(4) The above positive electrode is LiCoO_2, LiMn_2O_
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is at least one selected from the group consisting of 4, or a composite oxide in which Co and Mn are partially replaced with other elements.
JP2282163A 1990-10-19 1990-10-19 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3033175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2282163A JP3033175B2 (en) 1990-10-19 1990-10-19 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2282163A JP3033175B2 (en) 1990-10-19 1990-10-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04155776A true JPH04155776A (en) 1992-05-28
JP3033175B2 JP3033175B2 (en) 2000-04-17

Family

ID=17648923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2282163A Expired - Lifetime JP3033175B2 (en) 1990-10-19 1990-10-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3033175B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
US6103373A (en) * 1995-11-01 2000-08-15 Showa Denko K.K. Carbon fiber material and electrode materials and method of manufacture therefor
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
WO2005011027A2 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
US7550232B2 (en) 2003-06-09 2009-06-23 Panasonic Corporation Lithium-ion rechargeable battery with negative electrode material mixture comprising graphite and carbon nano-tubes
EP1652247A4 (en) * 2003-07-28 2009-08-19 Showa Denko Kk High density electrode and battery using the electrode
US8388922B2 (en) 2004-01-05 2013-03-05 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
US9911972B2 (en) 2011-12-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
WO2021080006A1 (en) 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for nonaqueous electrolyte secondary battery, resin composition using same, mixture slurry, membrane electrode, and nonaqueous electrolyte secondary battery
WO2021220773A1 (en) 2020-04-27 2021-11-04 東洋インキScホールディングス株式会社 Conductive material dispersion, method for producing same, composition for secondary battery electrodes using same, electrode membrane, secondary battery and vehicle
WO2022009915A1 (en) 2020-07-07 2022-01-13 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersion liquid, and nonaqueous electrolyte secondary battery using same
CN114830378A (en) * 2019-12-26 2022-07-29 株式会社Lg新能源 Aqueous slurry for positive electrode, positive electrode composition, lithium ion secondary battery comprising positive electrode composition, and method for producing lithium ion secondary battery
KR20240105517A (en) 2021-12-28 2024-07-05 아티엔스 가부시키가이샤 Carbon nanotubes, carbon nanotube dispersion, and non-aqueous electrolyte secondary battery using the same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
US6103373A (en) * 1995-11-01 2000-08-15 Showa Denko K.K. Carbon fiber material and electrode materials and method of manufacture therefor
KR100415810B1 (en) * 1996-06-12 2004-05-14 니기소 가부시키가이샤 Non-aqueous electrolyte secondary battery
US6316146B1 (en) 1998-01-09 2001-11-13 Matsushita Electric Industrial Co., Ltd. Carbon materials for negative electrode of secondary battery and manufacturing process
US6528211B1 (en) 1998-03-31 2003-03-04 Showa Denko K.K. Carbon fiber material and electrode materials for batteries
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery
US7550232B2 (en) 2003-06-09 2009-06-23 Panasonic Corporation Lithium-ion rechargeable battery with negative electrode material mixture comprising graphite and carbon nano-tubes
EP1652247A4 (en) * 2003-07-28 2009-08-19 Showa Denko Kk High density electrode and battery using the electrode
US7572553B2 (en) 2003-07-28 2009-08-11 Showa Denko K.K. High density electrode and battery using the electrode
WO2005011027A2 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
WO2005011027A3 (en) * 2003-07-28 2005-06-30 Showa Denko Kk High density electrode and battery using the electrode
US8388922B2 (en) 2004-01-05 2013-03-05 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
US9911972B2 (en) 2011-12-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
KR20220088742A (en) 2019-10-24 2022-06-28 토요잉크Sc홀딩스주식회사 Carbon nanotube dispersion for non-aqueous electrolyte secondary battery, resin composition using same, mixture slurry, electrode film, and non-aqueous electrolyte secondary battery
WO2021080006A1 (en) 2019-10-24 2021-04-29 東洋インキScホールディングス株式会社 Carbon nanotube dispersion liquid for nonaqueous electrolyte secondary battery, resin composition using same, mixture slurry, membrane electrode, and nonaqueous electrolyte secondary battery
CN114830378A (en) * 2019-12-26 2022-07-29 株式会社Lg新能源 Aqueous slurry for positive electrode, positive electrode composition, lithium ion secondary battery comprising positive electrode composition, and method for producing lithium ion secondary battery
WO2021220773A1 (en) 2020-04-27 2021-11-04 東洋インキScホールディングス株式会社 Conductive material dispersion, method for producing same, composition for secondary battery electrodes using same, electrode membrane, secondary battery and vehicle
KR20230007337A (en) 2020-04-27 2023-01-12 토요잉크Sc홀딩스주식회사 Conductive material dispersion and its manufacturing method, and composition for secondary battery electrode using the same, electrode film, secondary battery, vehicle
WO2022009915A1 (en) 2020-07-07 2022-01-13 東洋インキScホールディングス株式会社 Carbon nanotubes, carbon nanotube dispersion liquid, and nonaqueous electrolyte secondary battery using same
KR20230034966A (en) 2020-07-07 2023-03-10 토요잉크Sc홀딩스주식회사 Carbon nanotubes, carbon nanotube dispersions, non-aqueous electrolyte secondary batteries using them
KR20240105517A (en) 2021-12-28 2024-07-05 아티엔스 가부시키가이샤 Carbon nanotubes, carbon nanotube dispersion, and non-aqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JP3033175B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
KR102316342B1 (en) Silicon-based composite, negative electrode and lithium secondary battery comprising the same
JPH04155776A (en) Nonaqueous electrolyte secondary battery
JP3532016B2 (en) Organic electrolyte secondary battery
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP4085243B2 (en) Non-aqueous secondary battery
JP2003308880A (en) Method of manufacturing lithium secondary battery
KR102244194B1 (en) Anode Active Maeterial including Graphene-Silicon Composite, Manufacturing method of the Same and Lithium Secondary Battery Comprising the Same
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP3236170B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH05314977A (en) Nonaqueous electrolytic secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH03245473A (en) Non-aqueous solvent secondary cell
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH04206479A (en) Charging method for nonaqueous electrolyte secondary battery
KR20210047643A (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JPH03285273A (en) Nonaqueous electrolyte secondary battery
JPWO2020183612A1 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
JP2850476B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP3010861B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11