JPH04154182A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH04154182A JPH04154182A JP28041190A JP28041190A JPH04154182A JP H04154182 A JPH04154182 A JP H04154182A JP 28041190 A JP28041190 A JP 28041190A JP 28041190 A JP28041190 A JP 28041190A JP H04154182 A JPH04154182 A JP H04154182A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- light
- wavelength
- laser device
- filter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 91
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 230000002238 attenuated effect Effects 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 abstract description 17
- 230000010355 oscillation Effects 0.000 abstract description 15
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 9
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光ディスクの高速化に有用な光源である半導体
レーザ装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser device that is a light source useful for increasing the speed of optical discs.
100μm程度の間隔で独立に駆動できる半導体レーザ
素子を集積した半導体レーザ装置は光ディスクのデータ
の並列処理を可能にする光源として期待されている。半
導体レーザ素子と、光出力をモニターする検出器を備え
た半導体レーザ装置は、第5図に示すように半導体レー
ザ素子201.202の後方出射端面側に1個のフォト
ダイオード203を設け、時間分解で光出力を検出する
構成が一般に知られている。A semiconductor laser device that integrates semiconductor laser elements that can be driven independently at intervals of about 100 μm is expected to be a light source that enables parallel processing of data on optical discs. As shown in FIG. 5, a semiconductor laser device equipped with a semiconductor laser element and a detector for monitoring optical output is equipped with one photodiode 203 on the rear emitting end face side of the semiconductor laser elements 201 and 202, and a time-resolved photodiode 203. A configuration for detecting optical output is generally known.
また各素子の光出力を常に独立に検出する構造の半導体
レーザ装置として、第6図に示すような構造が(サンヨ
ーテクニカルレヒュ(SANYOTECI−1sICA
L REVIEW Vol、20 No、1 pp、7
1988))知られている。この図では3個の半導体レ
ーザ素子211.212.21:3の後方出射端面に半
導体レーザ素子と同じ間隔て3つの講215.216.
217を有する光ガイド220を近接して配置し、さら
に光ガイドの各溝の後方に独立な光検出器221.22
2.223を配置している。各半導体レーザ素子の光は
光ガイド220に設けた1215 216.217に依
ってそれぞれ別の光検出器に導かれるため、素子ごとに
独立に光出力をすることができる。In addition, as a semiconductor laser device with a structure that always detects the optical output of each element independently, there is a structure shown in Figure 6 (SANYOTECI-1sICA).
L REVIEW Vol. 20 No. 1 pp. 7
1988)) known. In this figure, three semiconductor laser elements 211, 212, 21:3 have three laser beams 215, 216, .
A light guide 220 with 217 is arranged in close proximity, and an independent photodetector 221.22 is placed behind each groove of the light guide.
2.223 is placed. Since the light from each semiconductor laser element is guided to a separate photodetector by the 1215, 216, and 217 provided in the light guide 220, each element can output light independently.
さらに従来第7図に示すような半導体レーザ装置が第3
5回応用物理学関係連合講演会講演予稿集(30p−Z
Q−3p8981988)に記載されている。これは発
振波長780nmと830nmの個別の二つの半導体レ
ーザ素子301,302をステム310.311の相対
した面上にマウントしたちので、二つのビームの波長が
異なるためフィルターを用いればビームの分離が可能で
ある。しかし光検出器は備えていなかった。Furthermore, the conventional semiconductor laser device as shown in FIG.
Proceedings of the 5th Applied Physics Association Lecture Conference (30p-Z
Q-3p8981988). In this case, two individual semiconductor laser elements 301 and 302 with oscillation wavelengths of 780 nm and 830 nm are mounted on opposite surfaces of a stem 310 and 311, so since the wavelengths of the two beams are different, a filter can be used to separate the beams. It is possible. However, it was not equipped with a photodetector.
しかしながら従来の技術では時間分解てしか各半導体レ
ーザ素子の出力を独立に検出することができないため、
時間分解できないような使用方法例えば複数の半導体レ
ーザ素子を同時に連続発振させる場合には各半導体レー
ザ素子の光出力を独立に検出、制御することはできなか
った。また第6図に示す従来例では、半導体レーザ素子
と光ガイド、また光ガイドと光検出器との位置合わせか
難しく、位置ずれによるクロストークの増大を招く心配
があった。また半導体レーザ装置そのものが大型化する
ことを避けることができなかった。However, with conventional technology, the output of each semiconductor laser element can be detected independently only by time resolution.
When used in a manner that cannot be resolved in time, for example, when a plurality of semiconductor laser elements are continuously oscillated at the same time, it is not possible to independently detect and control the optical output of each semiconductor laser element. Furthermore, in the conventional example shown in FIG. 6, it is difficult to align the semiconductor laser element and the light guide, or the light guide and the photodetector, and there is a concern that crosstalk may increase due to positional deviation. Furthermore, it was impossible to avoid increasing the size of the semiconductor laser device itself.
また第7図の従来例においては2つのビームの波長が異
なるためフィルター等を用いることにより各レーザビー
ムを分離することができるが、各半導体レーザ素子の間
隔や光の出射位置が同じ半導体基板上に形成し独立駆動
できるように電気的に分離された構造に比べ、精度良く
決めることが難しいため、実用上使い難い。In addition, in the conventional example shown in Fig. 7, since the wavelengths of the two beams are different, each laser beam can be separated by using a filter, etc. However, the spacing between the semiconductor laser elements and the light emission position are the same on the semiconductor substrate. Compared to an electrically isolated structure that can be formed and driven independently, it is difficult to determine it accurately, making it difficult to use in practice.
本発明の目的は各レーザ素子の光出力を容易に分離して
検出が可能な半導体レーザ装置を提供することにある。An object of the present invention is to provide a semiconductor laser device in which the optical outputs of each laser element can be easily separated and detected.
本発明による半導体レーザ装置は3つあり、その1つは
、活性層がバンドギャップの寮なる2つの量子井戸から
なる半導体レーザ素子を複数個同一半導体基板上に形成
し、且つそれらが電気的に分離されていることを特徴と
している。There are three types of semiconductor laser devices according to the present invention, one of which has a plurality of semiconductor laser elements formed on the same semiconductor substrate, each consisting of two quantum wells in which the active layer is a bandgap dormer, and in which they are electrically connected. It is characterized by being separated.
本発明による第2の半導体レーザ装置は、上記半導体レ
ーザ装置の後方、光出射方向に2つの独立な光検出器を
備え、少なくともいずれか一方の光検出器の受光面に、
半導体レーザ素子の活性層を形成するいずれか一方のバ
ンドギャップに相当する光の波長を減衰するフィルター
を設けたことを特徴としている。A second semiconductor laser device according to the present invention includes two independent photodetectors in the light output direction behind the semiconductor laser device, and has a light-receiving surface of at least one of the photodetectors.
It is characterized by providing a filter that attenuates the wavelength of light corresponding to one of the band gaps forming the active layer of the semiconductor laser element.
また本発明による第3の半導体レーザ装置は、上記第2
の半導体レーザ装置において、フィルターを設けた光検
出器の受光面が、そのフィルターによって減衰されない
波長で動作しているレーザ素子の後方出射端面の発光点
より、減衰される波長で動作している半導体レーザ素子
の後方出射端面の発光点からの距離の短い領域に位置す
ることを特徴としている。Further, a third semiconductor laser device according to the present invention includes the second semiconductor laser device described above.
In a semiconductor laser device, the light-receiving surface of a photodetector equipped with a filter operates at a wavelength that is attenuated from the light emitting point at the rear output end face of the laser element, which operates at a wavelength that is not attenuated by the filter. It is characterized by being located at a short distance from the light emitting point of the rear emitting end face of the laser element.
活性層がバンドギャップの異なる2つ量子井戸からなる
半導体レーザ素子は光出力により発振波長が、その2つ
の量子井戸のエネルギーギャップに相当する波長の間で
スイッチングすることが第37回応用物理学関係連合講
演会講演予稿集(28aSa−13p9801990)
に記載されテイル。すなわち電流を高水準に注入した高
出力動作時には、低出力動作時より50nm近く短い波
長で発振する。In a semiconductor laser device whose active layer consists of two quantum wells with different band gaps, the oscillation wavelength is switched depending on the optical output between the wavelengths corresponding to the energy gaps of the two quantum wells. Proceedings of the Joint Lecture Conference (28aSa-13p9801990)
Described in the tail. That is, during high-output operation with a high level of current injected, oscillation occurs at a wavelength nearly 50 nm shorter than during low-output operation.
同一半導体基板上にこのレーザ構造を集積し、独立に駆
動できるように電気的に分離しアレイレーザ素子を形成
して半導体レーザ装置とする。一方の半導体レーザ素子
を光ディスクの記録のために高出力で、もう一方の半導
体レーザ素子を記録直後の再生のために低出力で駆動す
る場合、同じレーザ構造でありながら隣合う2つの半導
体レーザ素子は異なる発振波長で動作する。しかも同一
基板上に形成するので半導体レーザ素子の間隔や発光点
位置は厳密に決めることができる。These laser structures are integrated on the same semiconductor substrate, electrically separated so that they can be driven independently, and an array laser element is formed to form a semiconductor laser device. When driving one semiconductor laser element at high output for recording on an optical disk and the other semiconductor laser element at low output for reproduction immediately after recording, two semiconductor laser elements that are adjacent to each other even though they have the same laser structure operate at different oscillation wavelengths. Moreover, since they are formed on the same substrate, the spacing between the semiconductor laser elements and the position of the light emitting point can be precisely determined.
そこで2つの光検出器を用い、一方の受光部にこの2つ
の波長を分離てきるようなフィルターを備えれば、フィ
ルターを備えた検出器の出力よりフィルターに減衰され
ない波長で動作している半導体レーザ素子の光出力を検
出することができる。もう一方の光検出器には両方の素
子の光出力の和が検出されるため、これより先に述べた
光出力を差し引くことにより、フィルターで減衰される
波長で動作している半導体レーザ素子の光出力を検出す
ることができる。Therefore, if two photodetectors are used and one of the photodetectors is equipped with a filter that can separate these two wavelengths, the output of the detector equipped with the filter will be higher than that of the semiconductor operating at a wavelength that is not attenuated by the filter. The optical output of the laser element can be detected. Since the other photodetector detects the sum of the optical outputs of both elements, by subtracting the optical output mentioned earlier, the output of the semiconductor laser element operating at the wavelength attenuated by the filter can be detected. Light output can be detected.
さらに2素子の半導体レーザ装置において、常に決まっ
た一方の半導体レーザ素子が低出力、もう一方が高出力
で動作させる場合、フィルターを備えた検出器の受光面
が、そのフィルターでより減衰の少ない方の波長で動作
している半導体レーザ素子の後方出射端面で、且つ、も
う一方のフィルターで減衰される波長で動作している半
導体レーザ素子の後方出射端面の発光点より距離の短い
領域に位置することにより、フィルターを有する検出器
に入射するフィルターで減衰されない光の量に対するフ
ィルターで減衰される波長の光の量を減少させ、2つの
光出力の分離をより容易にする。Furthermore, in a two-element semiconductor laser device, when one semiconductor laser element is always operated at low output and the other at high output, the light-receiving surface of the detector equipped with a filter is located at the rear emitting end facet of a semiconductor laser element operating at a wavelength of , and at a shorter distance than the light emitting point at the rear emitting end facet of a semiconductor laser element operating at a wavelength attenuated by the other filter. This reduces the amount of light at wavelengths that are attenuated by the filter relative to the amount of light that is not attenuated by the filter that is incident on the detector having the filter, making it easier to separate the two light outputs.
本発明の第1の実施例として第1図に半導体レーザ素子
を2つ並べてレーザアレイを構成した半導体レーザ装置
を示す。ここで用いた半導体レーザ素子は、第2図に示
すように、活性層1が近接したGaAs井戸10とAl
GaAs井戸11の2層の量子井戸からなっている。G
aAs量子井戸10のエネルギーギャップに相当する光
の波長が0.83μmで、AlGaAs量子井戸11の
エネルギーギャップに相当する光の波長が0.78μm
になっている。GaAs基板5上に2個の半導体レーザ
素子2.3が発光位置の間隔は100μmで形成されて
いる。2個の半導体レーザ素子の間にはそれぞれの半導
体レーザ素子を電気的に独立に駆動するために活性層を
含む半導体層を完全に分離する7116が設けられてい
る。半導体レーザ装置はGaAs基板5側がCu8のス
テムにIn7でマウントされている。この半導体レーザ
装置は出力10mWを境に発振波長が830nmと78
0nmの間でスイッチングする。一方を書き込みの30
mW、もう一方を読み出しの3mWで動作させれば、書
き込み側のレーザ発振波長は830nm、読みだし側の
レーザ発振波長は780nmと、同じ半導体基板上に形
成した同じレーザ構造であるにも関わらず、それぞれの
発振波長は50nmも異なる。そこで両者の波長をフィ
ルターで分離してやれば独立に光出力を検出することが
できる。As a first embodiment of the present invention, FIG. 1 shows a semiconductor laser device in which two semiconductor laser elements are arranged side by side to form a laser array. As shown in FIG. 2, the semiconductor laser device used here has an active layer 1 in a GaAs well 10 and an Al
It consists of two layers of quantum wells including a GaAs well 11. G
The wavelength of light corresponding to the energy gap of the aAs quantum well 10 is 0.83 μm, and the wavelength of light corresponding to the energy gap of the AlGaAs quantum well 11 is 0.78 μm.
It has become. Two semiconductor laser elements 2.3 are formed on a GaAs substrate 5 with an interval of 100 μm between their light emitting positions. A layer 7116 is provided between the two semiconductor laser elements to completely separate the semiconductor layers including the active layer in order to electrically drive each semiconductor laser element independently. In the semiconductor laser device, the GaAs substrate 5 side is mounted on a Cu8 stem using In7. This semiconductor laser device has an oscillation wavelength of 830 nm and 78 nm with an output of 10 mW.
Switching between 0 nm and 0 nm. Write 30 on one side
mW and the other side is operated at 3 mW for reading, the laser oscillation wavelength on the write side is 830 nm and the laser oscillation wavelength on the read side is 780 nm, even though they are the same laser structure formed on the same semiconductor substrate. , their respective oscillation wavelengths differ by 50 nm. Therefore, if both wavelengths are separated using a filter, the optical output can be detected independently.
本発明の第2の実施例を第3図に示す。2個の半導体レ
ーザ素子101.102のうち一方の半導体レーザ素子
は3mWの低出力、もう一方の半導体レーザ素子は30
mWの高出力で駆動している。レーザアレイの後方光出
射端面後方の出射光に対し垂直な面に2個のSiフォト
ダイオード105.106をその受光面がいずれもレー
ザの後方出射点から等位置になるように配置している。A second embodiment of the invention is shown in FIG. Of the two semiconductor laser elements 101 and 102, one semiconductor laser element has a low output of 3 mW, and the other semiconductor laser element has a low output of 30 mW.
It is driven with a high output of mW. Two Si photodiodes 105 and 106 are arranged on a plane perpendicular to the emitted light behind the rear light emitting end face of the laser array so that their light receiving surfaces are both equidistant from the rear emitting point of the laser.
そしてその内の1個、図では上方のフォトダイオード1
05の受光面に800nm以下の波長の光を減衰するフ
ィルターを備え、下方のフォトダイオード106の受光
面には800nm以上の波長の光を減衰するフィルター
を備えている。これにより3mWの低出力で動作してい
る半導体レーザ素子の出力は発振波長が830nmであ
るため、上方のフォトダイオード105では検出される
が、下方のフォトダイオード106では光がフィルター
で減衰されて検出されない、またもう一方の30nWの
高出力で動作している半導体レーザ素子の発振波長は7
80nmであるため、先はどとは逆に上方のフォトダイ
オード105では検出されず、下方のフォトダイオード
106で検出される。すなわち各半導体レーザ素子の光
出力を個別に検出することができる。また2つの半導体
し−ザ素子101.102のいずれが低出力でいずれが
高出力であっても別々に検出できる。And one of them, the upper photodiode 1 in the figure
The light-receiving surface of the lower photodiode 106 is equipped with a filter that attenuates light with a wavelength of 800 nm or less, and the light-receiving surface of the lower photodiode 106 is equipped with a filter that attenuates light with a wavelength of 800 nm or more. As a result, the output of the semiconductor laser device operating at a low output of 3 mW has an oscillation wavelength of 830 nm, so it is detected by the upper photodiode 105, but the light is attenuated by the filter and detected by the lower photodiode 106. On the other hand, the oscillation wavelength of the semiconductor laser device operating at a high output of 30 nW is 7.
Since the wavelength is 80 nm, it is not detected by the upper photodiode 105, but is detected by the lower photodiode 106. That is, the optical output of each semiconductor laser element can be detected individually. Furthermore, it is possible to separately detect which of the two semiconductor elements 101 and 102 has a low output and which has a high output.
第4図に本発明の第3の実施例を示す。2つの半導体レ
ーザ素子111,112のうち、半導体レーザ素子11
1は常に3mWの低出力で、また半導体レーザ素子11
2は常に30mWの高出力で駆動させる。半導体レーザ
素子111の後方出射端面方向の出射光に対して垂直な
面100上の、半導体レーザ素子111の導波路を後方
出射方向に延長した交点に、800nm以下の波長を減
衰させるフィルターを備えたSiフォトダイオード10
5の受光面がくるように配置し、もう−方の半導体レー
ザ素子112の導波路を後方出射方向に延長した交点に
、800nm以上の波長を減衰させるフィルターを備え
たSiフォトダイオード106の受光面がくるように配
置しな。3mWで動作する半導体レーザ素子111の発
振波長は830nmであるのでその後方のフォトダイオ
ード105では検出されるが、半導体レーザ素子の後方
のフォトダイオード106ではフィルターに減衰されて
検出されない。さらにその際、もともとフォトタイオー
ド106に入射する半導体レーザ素子111の光量も、
半導体レーザ素子の光出射方向(導波路の延長方向)に
対し角度107を有するため、後方のフォトダイオード
に入射する光量に対して10分の1から100分の1程
度となる。30mWで動作する半導体レーザ素子112
に対してはまったく逆の構成か成り立つ。このようにフ
ィルターによる減衰だけではなく、フォトダイオードへ
の入射光量にも差を設けるような位置構成にすることに
より2つの半導体レーザ素子の光検出をより低いタロス
トークで行え、検出精度を高めることができた。FIG. 4 shows a third embodiment of the invention. Among the two semiconductor laser elements 111 and 112, the semiconductor laser element 11
1 always has a low output of 3 mW, and the semiconductor laser element 11
2 is always driven at a high output of 30 mW. A filter for attenuating wavelengths of 800 nm or less is provided at the intersection of the waveguide of the semiconductor laser element 111 extended in the rear emission direction on the plane 100 perpendicular to the emitted light in the direction of the rear emission end face of the semiconductor laser element 111. Si photodiode 10
The light-receiving surface of the Si photodiode 106 is arranged so that the light-receiving surface of the Si photodiode 106 is placed so that the light-receiving surface of the Si photodiode 106 is located at the intersection of the waveguide of the other semiconductor laser element 112 extending in the backward emission direction. Arrange it so that Since the oscillation wavelength of the semiconductor laser device 111 operating at 3 mW is 830 nm, it is detected by the photodiode 105 behind it, but it is attenuated by a filter and not detected by the photodiode 106 behind the semiconductor laser device. Furthermore, at that time, the amount of light from the semiconductor laser element 111 originally incident on the photodiode 106 is also
Since it has an angle of 107 with respect to the light emission direction of the semiconductor laser element (extension direction of the waveguide), the amount of light incident on the rear photodiode is approximately 1/10 to 1/100. Semiconductor laser element 112 operating at 30mW
The exact opposite configuration holds true for . In this way, by configuring the positions so that there is a difference not only in the attenuation by the filter but also in the amount of light incident on the photodiode, the light detection of the two semiconductor laser elements can be performed with lower Talostalk and the detection accuracy can be increased. did it.
本発明により各レーザ出力を容易に分離、独立に検出で
きる発振波長の異なるレーザアレイ素子が同一基板上に
精度よく作製でき、光ディスクの高速化に有効な光源で
ある半導体レーザ装置を提供することができた。According to the present invention, laser array elements with different oscillation wavelengths that can easily separate and independently detect each laser output can be fabricated with high accuracy on the same substrate, and it is possible to provide a semiconductor laser device that is an effective light source for increasing the speed of optical discs. did it.
第1図は本発明による第1の実施例を示す図、第2図は
第1図の半導体レーザ装置の活性層の構造を示した図で
ある。第3図および第4図は本発明による第2及び第3
の実施例を示した図、第5図、第6図、第7図は従来例
を示した図である。
1・・・活性層、2.3,101.102・・・半導体
レーザ素子、5・・・GaAs基板、7・・・In、8
・・・Cuステム、10・・・GaAs量子井戸、11
・・・A I GaAs量子井戸、105−800 n
m以下減衰のフィルターを備えたSiフォトダイオー
ド、106・・・800nm以上減衰のフィルターを備
えたSiフォトダイオード、107・・・角度、111
・・・3mWで駆動している半導体レーザ素子、112
・・・30mWで駆動している半導体レーザ素子、20
1,202,211,212,213・・・従来例の半
導体レーザ素子、203,211,222.223・・
・Siフォトダイオード、215゜216.217・・
・渭(導波路)、220・・・光ガイド、301・・・
発振波長780nmの半導体レーザ素子、
302・・・発振波長830nmの半導体レーザ素子、
10゜
1・・・Cuステム。FIG. 1 is a diagram showing a first embodiment of the present invention, and FIG. 2 is a diagram showing the structure of an active layer of the semiconductor laser device of FIG. 1. FIGS. 3 and 4 show the second and third embodiments according to the present invention.
5, 6, and 7 are diagrams showing conventional examples. DESCRIPTION OF SYMBOLS 1... Active layer, 2.3, 101.102... Semiconductor laser element, 5... GaAs substrate, 7... In, 8
...Cu stem, 10...GaAs quantum well, 11
...A I GaAs quantum well, 105-800 n
Si photodiode equipped with a filter with attenuation of m or less, 106...Si photodiode equipped with a filter with attenuation of 800 nm or more, 107... Angle, 111
...Semiconductor laser element driven at 3 mW, 112
...Semiconductor laser element driven at 30 mW, 20
1,202,211,212,213...Conventional semiconductor laser element, 203,211,222,223...
・Si photodiode, 215°216.217...
・Wave (waveguide), 220... light guide, 301...
Semiconductor laser element with an oscillation wavelength of 780 nm, 302...Semiconductor laser element with an oscillation wavelength of 830 nm, 10°1...Cu stem.
Claims (1)
らなる半導体レーザ素子を同一半導体基板上に複数個配
列・形成し、且つそれらが電気的に分離されていること
を特徴とする半導体レーザ装置。 2、請求項1記載の半導体レーザ装置の後方、光出射方
向に2つの独立な光検出器を備え、少なくともいずれか
一方の光検出器の受光面に、半導体レーザ装置の活性層
を形成するいずれか一方のバンドギャップに相当する光
の波長を減衰するフィルターを設けたことを特徴とする
半導体レーザ装置。 3、請求項2記載の半導体レーザ装置において、フィル
ターを設けた光検出器の受光面が、そのフィルターによ
って減衰されない波長で動作しているレーザ素子の後方
出射端面の発光点より、減衰される波長で動作している
レーザ素子の後方出射端面の発光点からの距離の短い領
域に位置することを特徴とする半導体レーザ装置。[Claims] 1. A plurality of semiconductor laser devices whose active layers are composed of two quantum wells with different band gaps are arranged and formed on the same semiconductor substrate, and are electrically isolated. Semiconductor laser device. 2. A device comprising two independent photodetectors in the light emission direction behind the semiconductor laser device according to claim 1, and an active layer of the semiconductor laser device is formed on the light receiving surface of at least one of the photodetectors. A semiconductor laser device characterized by being provided with a filter that attenuates a wavelength of light corresponding to one of the band gaps. 3. In the semiconductor laser device according to claim 2, the light-receiving surface of the photodetector provided with a filter has a wavelength that is attenuated from a light-emitting point on the rear emitting end face of the laser element operating at a wavelength that is not attenuated by the filter. 1. A semiconductor laser device that is located in a region at a short distance from a light emitting point of a rear emitting end face of a laser element operating in the semiconductor laser device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28041190A JPH04154182A (en) | 1990-10-18 | 1990-10-18 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28041190A JPH04154182A (en) | 1990-10-18 | 1990-10-18 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04154182A true JPH04154182A (en) | 1992-05-27 |
Family
ID=17624668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28041190A Pending JPH04154182A (en) | 1990-10-18 | 1990-10-18 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04154182A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004614A1 (en) * | 1998-07-14 | 2000-01-27 | Sharp Kabushiki Kaisha | Semiconductor laser device |
JP2001160647A (en) * | 1999-09-24 | 2001-06-12 | Sharp Corp | Semiconductor laser device, optical transmission device, optical transmission system, electronic apparatus, control unit, connector, communication device, optical transmission method and data transmitting and receiving method |
-
1990
- 1990-10-18 JP JP28041190A patent/JPH04154182A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000004614A1 (en) * | 1998-07-14 | 2000-01-27 | Sharp Kabushiki Kaisha | Semiconductor laser device |
US6456635B1 (en) | 1998-07-14 | 2002-09-24 | Sharp Kabushiki Kaishiki | Semiconductor laser device |
JP2001160647A (en) * | 1999-09-24 | 2001-06-12 | Sharp Corp | Semiconductor laser device, optical transmission device, optical transmission system, electronic apparatus, control unit, connector, communication device, optical transmission method and data transmitting and receiving method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5679947A (en) | Optical device having a light emitter and a photosensor on the same optical axis | |
US5793790A (en) | Optical device | |
JPS61161759A (en) | Integrated optoelectronics device | |
KR100782285B1 (en) | Semiconductor laser apparatus, laser coupler, data reproduction apparatus, data recording apparatus and production method of semiconductor laser apparatus | |
JPH04207079A (en) | Reception/emission compound element | |
EP0392714B1 (en) | A semiconductor laser device | |
US5438208A (en) | Mirror coupled monolithic laser diode and photodetector | |
CA2038334C (en) | Apparatus and method for detecting the power level in single and multi-stripe integrated lasers | |
JP3799616B2 (en) | Optical device | |
JPH04154182A (en) | Semiconductor laser | |
US5894467A (en) | Multiple VSEL assembly for read/write and tracking applications in optical disks | |
JPS6258432A (en) | Integrated optical pickup head | |
JPS61265742A (en) | Optical head | |
JPH06111362A (en) | Mutichannel optical laser system, data reading method and multichannel beam deflector | |
JPS62195191A (en) | Light emitting/receiving device | |
JP2843874B2 (en) | Optical integrated device | |
JP3533273B2 (en) | Optical device | |
JPS62217226A (en) | Optical control device | |
US6107646A (en) | Variable light source and optical pickup apparatus for different-type optical disc using the same | |
JPH07153111A (en) | Optical head | |
JPH0642355Y2 (en) | Semiconductor laser device | |
JP2681980B2 (en) | Semiconductor laser device | |
JP3674266B2 (en) | Laser equipment | |
JPH0627975Y2 (en) | Semiconductor laser device | |
JPH02230783A (en) | Semiconductor laser device |