[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04140405A - Steam turbine power generation equipment - Google Patents

Steam turbine power generation equipment

Info

Publication number
JPH04140405A
JPH04140405A JP26178090A JP26178090A JPH04140405A JP H04140405 A JPH04140405 A JP H04140405A JP 26178090 A JP26178090 A JP 26178090A JP 26178090 A JP26178090 A JP 26178090A JP H04140405 A JPH04140405 A JP H04140405A
Authority
JP
Japan
Prior art keywords
pressure
steam
turbine section
low
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26178090A
Other languages
Japanese (ja)
Inventor
Shoji Nishijima
西島 捷二
Yukio Ueno
幸男 上野
Masamichi Torigoe
鳥越 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP26178090A priority Critical patent/JPH04140405A/en
Publication of JPH04140405A publication Critical patent/JPH04140405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボイラと、このボイラからの蒸気により駆動
される抽気復水タービンと、このタービンにより駆動さ
れる発電機とを備えた蒸気タービン発電設備、特に負荷
の急増域に対して適切な運転のできる蒸気タービン発電
設備に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a steam turbine comprising a boiler, an extraction condensing turbine driven by steam from the boiler, and a generator driven by the turbine. The present invention relates to power generation equipment, particularly steam turbine power generation equipment that can be operated appropriately in areas where the load suddenly increases.

〔従来の技術〕[Conventional technology]

ボイラと、このボイラからの蒸気が主蒸気系を経て供給
される抽気復水タービンと、このタービンで発生する動
力を電力に変換して電力負荷に供給する発電機とを備え
る蒸気タービン発電設備が知られている。
A steam turbine power generation facility is equipped with a boiler, an extraction condensation turbine to which steam from the boiler is supplied via the main steam system, and a generator that converts the power generated by the turbine into electric power and supplies it to the electric load. Are known.

抽気復水タービンは高圧タービン部と低圧タービン部と
からなる蒸気タービンと、このタービンからの排気を復
水して大気圧以下の所定圧力に保持する復水器とを備え
ている。なお、高圧タービン部の入口には高圧蒸気加減
弁、いわゆる主蒸気加減弁が、また低圧タービンの入口
には低圧蒸気加減弁、いわゆる抽気加減弁が設けられて
いる。
The extraction condensation turbine includes a steam turbine including a high-pressure turbine section and a low-pressure turbine section, and a condenser that condenses exhaust gas from the turbine and maintains it at a predetermined pressure below atmospheric pressure. A high-pressure steam control valve, so-called main steam control valve, is provided at the inlet of the high-pressure turbine section, and a low-pressure steam control valve, so-called bleed air control valve, is provided at the inlet of the low-pressure turbine.

上記の蒸気タービンにはタービン負荷に応じた蒸気量の
蒸気がボイラから高圧蒸気加減弁を経て供給され、そし
て高圧タービン部の排気の一部を抽気した抽気蒸気は抽
気系に供給され、この抽気1気の圧力を低圧蒸気加減弁
により制御して抽気圧力を所定圧力に制御し、一方発電
機から電力を電力負荷に供給している。
The above-mentioned steam turbine is supplied with steam in an amount corresponding to the turbine load from the boiler via a high-pressure steam control valve, and extracted steam obtained by extracting a part of the exhaust gas from the high-pressure turbine section is supplied to the extraction system. The pressure of 1 atmosphere is controlled by a low-pressure steam control valve to control the extraction pressure to a predetermined pressure, while power is supplied from the generator to the power load.

また、高圧タービン部をバイパスして高圧バイパス弁を
備え、主蒸気系と抽気系とを接続する高圧バイパス系と
、低圧タービン部をバイパスして低圧バイパス弁を備え
、抽気系と復水器又は蒸気アキュムレータとを接続する
低圧バイパス系とが設けられ、主蒸気系を流れるボイラ
からの蒸気の圧力が負荷急減等により所定圧力より上昇
したときには高圧バイパス弁が開になってボイラからの
余剰の蒸気を抽気系に逃がし、また抽気系の蒸気の圧力
が所定圧力より上昇したときには低圧バイパス弁が開に
なって抽気系の余剰の蒸気を復水器又は蒸気アキヱムレ
ータに逃がしている。
In addition, a high-pressure bypass system that bypasses the high-pressure turbine section and includes a high-pressure bypass valve that connects the main steam system and the extraction system, and a low-pressure bypass valve that bypasses the low-pressure turbine section and connects the extraction system and the condenser or A low-pressure bypass system is provided that connects the steam accumulator, and when the pressure of steam flowing through the main steam system from the boiler rises above a predetermined pressure due to a sudden load drop, etc., the high-pressure bypass valve opens and excess steam from the boiler is removed. When the pressure of steam in the bleed system rises above a predetermined pressure, a low-pressure bypass valve is opened to release excess steam from the bleed system to the condenser or steam accumulator.

(発明が解決しようとする課Ia) 上記の蒸気タービン発電設備において、電力負荷が急減
した場合には、高圧蒸気加減弁は急速にその開度を小さ
くして高圧タービン部が通常許容できない負荷変化速度
で高圧タービン部に流入する蒸気量を急減する。この急
減する蒸気量により温度変化が大きくなってケーシング
やロータの熱応力が大きくなり、高圧タービン部の寿命
が短くなる。一方ポイラにおいても負荷急減に応じてボ
イラでの発生蒸気量を低減する必要があり、このためボ
イラの許容負荷降下速度を超えた運転を余儀なくされる
という問題がある。
(Problem Ia to be Solved by the Invention) In the above steam turbine power generation equipment, when the power load suddenly decreases, the high pressure steam control valve rapidly reduces its opening and the high pressure turbine section normally cannot tolerate the load change. This rapidly reduces the amount of steam flowing into the high-pressure turbine section. This sudden decrease in the amount of steam causes large temperature changes, increasing thermal stress on the casing and rotor, and shortening the life of the high-pressure turbine section. On the other hand, in the case of a boiler as well, it is necessary to reduce the amount of steam generated in the boiler in response to a sudden load drop, which causes a problem in that the boiler is forced to operate at a rate exceeding the allowable load drop rate.

また電力負荷が急増した場合には、高圧蒸気加減弁は急
速にその開度を大きくして高圧タービン部が通常許容で
きない負荷変化速度で高圧タービン部に流入する蒸気量
を急増する。この急増する蒸気量により温度変化が太き
(なってケーシングやロータの熱応力が大きくなり、高
圧タービン部の寿命が短かくなるという問題がある。一
方、ボイラにおいても負荷急増に応して発生する蒸気量
を増加する必要があり、このためボイラの許容負荷増加
速度を超えた運転を余儀なくされ、またタービンの負荷
増加に追随できないという問題がある。
Furthermore, when the power load increases rapidly, the high pressure steam control valve rapidly increases its opening degree to rapidly increase the amount of steam flowing into the high pressure turbine section at a load change rate that the high pressure turbine section normally cannot tolerate. This rapidly increasing amount of steam causes a problem of large temperature changes (which increases thermal stress on the casing and rotor, shortening the life of the high-pressure turbine section.On the other hand, boilers also experience problems due to the sudden increase in load). Therefore, the boiler is forced to operate at a rate exceeding the allowable load increase rate, and there is a problem in that it is unable to keep up with the increase in turbine load.

本発明の目的は、電力負荷の急増減時、高圧タービン部
の寿命を短かくすることなく、タービンとボイラとが適
切な負荷変化速度で運転できる蒸気タービン発電設備を
提供することである。
An object of the present invention is to provide a steam turbine power generation facility in which a turbine and a boiler can be operated at an appropriate load change rate without shortening the life of a high-pressure turbine section when the power load suddenly decreases.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明によればボイラと、
このボイラからの蒸気が供給される高圧タービン部と低
圧タービン部とからなる蒸気タービンと、このタービン
からの排気を復水にし、大気圧以下の所定圧力に保持す
る復水器と、蒸気タービンに接続される発電機とからな
り、前記蒸気タービンには高圧タービン部の入口に設け
られ、高圧タービン部の排気部から抽気して抽気系に供
給する抽気蒸気の圧力を制御する高圧蒸気加減弁と、低
圧タービン部の入口に設けられ、高圧タービン部からの
抽気蒸気以外の排気が流れ、発電機から電力負荷に供給
し、電力系統から買電する電力を制御する低圧蒸気加減
弁とを備え、さらに高圧タービン部をバイパスし、主蒸
気系と抽気系とを接続して所定圧力で開になる圧力調整
弁を有する高圧バイパス系と、電力負荷の急増減時、圧
力調整弁と高圧蒸気加減弁とをそれぞれ開閉する速度!
[節回能な開閉手段とを備えるものとする。
In order to solve the above problems, according to the present invention, a boiler;
A steam turbine consists of a high-pressure turbine section and a low-pressure turbine section to which steam from the boiler is supplied, a condenser that converts the exhaust gas from this turbine into condensate and maintains it at a predetermined pressure below atmospheric pressure, and a steam turbine. The steam turbine includes a high-pressure steam regulating valve that is provided at the inlet of the high-pressure turbine section and controls the pressure of extracted steam extracted from the exhaust section of the high-pressure turbine section and supplied to the extraction system. , a low-pressure steam regulating valve that is provided at the inlet of the low-pressure turbine section, through which exhaust gas other than extracted steam from the high-pressure turbine section flows, and which controls the power that is supplied from the generator to the power load and purchased from the power grid, Furthermore, there is a high-pressure bypass system that bypasses the high-pressure turbine section, connects the main steam system and the extraction system, and has a pressure regulating valve that opens at a predetermined pressure. and the speed of opening and closing respectively!
[It shall be equipped with flexible opening/closing means.

〔作用] ボイラ、抽気復水タービン、発電機等からなる蒸気ター
ビン発電設#において、抽気復水タービンに設けられる
高圧蒸気加減弁により高圧タービン部からの排気の一部
を抽気する抽気蒸気の圧力制御を行ない、一方電力負荷
に供給し、電力系統から買電をする電力は低圧タービン
部を流れる蒸気量を制御する低圧蒸気加減弁により買電
量が所定量になるように電力制御することにより、電力
制御に伴う電力負荷の増減は低圧タービン部で行なわれ
る。この際低圧タービン部は高圧タービン部に比べて低
温であるので負荷の急増域による温度変化は小さく、こ
のため低圧タービン部の熱応力は小さく、しかも材料の
許容応力も高くとれる。
[Operation] In a steam turbine power generation facility consisting of a boiler, an extraction condensation turbine, a generator, etc., the pressure of extracted steam is extracted from a part of the exhaust gas from the high pressure turbine section by a high pressure steam control valve provided in the extraction condensation turbine. On the other hand, the power that is supplied to the power load and purchased from the power grid is controlled so that the amount of power purchased is a predetermined amount using a low-pressure steam control valve that controls the amount of steam flowing through the low-pressure turbine section. Increases and decreases in the power load associated with power control are performed in the low-pressure turbine section. At this time, since the low-pressure turbine section is at a lower temperature than the high-pressure turbine section, the temperature change due to the rapid increase in load is small, and therefore the thermal stress of the low-pressure turbine section is small, and the allowable stress of the material is also high.

したがって高圧タービン部と低圧タービン部との電力負
荷割合を適切に選び、低圧タービン部で低圧蒸気加減弁
により電力を制御することにより、電力負荷の増減に良
好に対応できる。
Therefore, by appropriately selecting the power load ratio between the high-pressure turbine section and the low-pressure turbine section and controlling the power in the low-pressure turbine section using the low-pressure steam control valve, it is possible to respond favorably to increases and decreases in the power load.

また、電力負荷の負N急減等により、主蒸気系の蒸気圧
力が所定圧力を超えれば、圧力調整弁は開になり余剰の
蒸気は抽気系に流れる。そして、主蒸気系の蒸気圧力が
所定圧力になれば圧力調整弁は閉になり、主蒸気系の蒸
気圧力は運転圧力に保持される。
Further, if the steam pressure in the main steam system exceeds a predetermined pressure due to a sudden decrease in negative N in the power load, etc., the pressure regulating valve is opened and excess steam flows to the extraction system. When the steam pressure of the main steam system reaches a predetermined pressure, the pressure regulating valve is closed, and the steam pressure of the main steam system is maintained at the operating pressure.

電力負荷の急減時には低圧蒸気加減弁の急閉による抽気
系の圧力上昇を検知して高圧蒸気加減弁を開閉手段によ
りボイラの許容負荷降下速度に相応する速度で閉じ、ボ
イラの負荷降下速度が許容値を超えないようにする。
When the power load suddenly decreases, the pressure rise in the bleed system due to the sudden closing of the low-pressure steam regulator is detected, and the high-pressure steam regulator closes at a speed commensurate with the boiler's allowable load drop rate using the opening/closing means, and the boiler's load drop rate is permissible. Do not exceed the value.

電力負荷の増加が予定されるときには、予めボイラの発
生蒸気量を増加させる蓄熱運転が行なわれる。この限に
は高圧蒸気加減弁、圧力調整弁を開閉手段によりボイラ
の最大許容負荷上昇に相当する弁開速度で開にすること
により、ボイラやタービンを適切な負荷増加速度で運転
する。
When an increase in the power load is planned, a heat storage operation is performed in advance to increase the amount of steam generated by the boiler. To this extent, the boiler and turbine are operated at an appropriate load increase rate by opening the high-pressure steam control valve and the pressure control valve at an opening speed corresponding to the maximum allowable load increase of the boiler using the opening/closing means.

電力負荷を蓄熱運転後、急増する場合、高圧蒸気加減弁
を開閉手段により高圧タービン部の最大許容負荷増加に
相当する速度で開き、この際圧力調整弁を高圧蒸気加減
弁とこの圧力調整弁とを流れる寥気量の和がボイラの最
大許容負荷増に相当する速度で動作させることにより、
ボイラと高圧タービン部との負荷増加速度が許容値を超
えないようにする。
If the power load suddenly increases after thermal storage operation, the high-pressure steam regulator opens and closes the high-pressure steam regulator at a speed corresponding to the maximum allowable load increase of the high-pressure turbine section. By operating the boiler at a speed where the sum of the amount of air flowing through the boiler corresponds to the maximum allowable load increase,
Prevent the load increase rate of the boiler and high-pressure turbine section from exceeding an allowable value.

〔実施例〕〔Example〕

以下図面に基づいて本発明の実施例について説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の実施例による蒸気タービン発電設備の
系統図である。第1図において蒸気タービン1は高圧タ
ービン部4と低圧タービン部5とからなり、高圧タービ
ン部4の入口にボイラ2からの蒸気を主蒸気系6とを経
て高圧タービン部4に流入させる高圧蒸気加減弁7と、
高圧タービン部4からの排気の一部を抽気して脱気器1
4゜プロセス11に接続される抽気系8に供給し、残り
の排気を低圧タービン部5に流入させる低圧蒸気加減弁
9とを備えている。ここで高圧蒸気加減弁7は抽気系8
に供給する抽気蒸気の圧力を制御し、低圧蒸気加減弁9
はAPC(自動電力調整装置)による電力系統42から
の買電量が所定量になるように制御する(以下APcM
fljという)、なお抽気系8には逃し弁27が設けら
れている。
FIG. 1 is a system diagram of a steam turbine power generation facility according to an embodiment of the present invention. In FIG. 1, a steam turbine 1 consists of a high-pressure turbine section 4 and a low-pressure turbine section 5, and high-pressure steam is introduced into the inlet of the high-pressure turbine section 4 from which steam from a boiler 2 flows into the high-pressure turbine section 4 via a main steam system 6. Adjustment valve 7,
A part of the exhaust gas from the high pressure turbine section 4 is extracted into a deaerator 1.
A low pressure steam control valve 9 is provided for supplying the steam to the extraction system 8 connected to the 4° process 11 and for causing the remaining exhaust gas to flow into the low pressure turbine section 5. Here, the high pressure steam control valve 7 is the extraction system 8
The low pressure steam control valve 9 controls the pressure of the extracted steam supplied to the
controls the amount of electricity purchased from the power system 42 by the APC (automatic power controller) to a predetermined amount (hereinafter referred to as APcM).
flj), and the bleed system 8 is provided with a relief valve 27.

発電機10は蒸気タービン1に接続され、ボイラ1から
の蒸気が蒸気タービンに流れて仕事する仕事量に応じた
電力を発電し、工場電力系統41に接続される工場負荷
40に電力を供給する。なお、工場電力系統41には電
力を買電する電力系統42が接続されている。
The generator 10 is connected to the steam turbine 1, and the steam from the boiler 1 flows to the steam turbine to generate electric power according to the amount of work done, and supplies electric power to a factory load 40 connected to a factory power system 41. . Note that a power system 42 for purchasing power is connected to the factory power system 41.

復水器3は低圧タービン部5からの排気を復水にして大
気圧以下の所定圧力に保持する。
The condenser 3 condenses the exhaust gas from the low-pressure turbine section 5 and maintains it at a predetermined pressure below atmospheric pressure.

復水器3とボイラ2には脱気器給水ポンプ12゜低圧給
水加熱器13.脱気器14.ボイラ給水ポンプ15とを
備えた給水系16が接続されている。
The condenser 3 and boiler 2 are equipped with a deaerator feed water pump 12° and a low pressure feed water heater 13. Deaerator 14. A water supply system 16 including a boiler water supply pump 15 is connected.

脱気器14は脱気器14内に流入する給水を加熱脱気す
る蒸気を供給するために抽気系8に接続されている。ま
た低圧給水加熱器I3には復水器3からの復水を含む給
水を加熱する蒸気を低圧タービン部5から抽気して供給
する低圧抽気系18が接続されている。なお19は低圧
給水加熱器13にて生じたドレンを復水器3に戻すドレ
ン系である。また20は補給水を復水器3に供給する補
給水系である。
The deaerator 14 is connected to the extraction system 8 in order to supply steam for heating and deaerating the feed water flowing into the deaerator 14 . Further, a low-pressure extraction system 18 is connected to the low-pressure feedwater heater I3 to extract and supply steam for heating the feedwater containing condensate from the condenser 3 from the low-pressure turbine section 5. Note that 19 is a drain system that returns drain generated in the low-pressure feed water heater 13 to the condenser 3. Further, 20 is a make-up water system that supplies make-up water to the condenser 3.

主蒸気系6と抽気系8とには高圧タービン部4をバイパ
スして高圧圧力調整弁22を備えた高圧バイパス系23
が接続されている。高圧圧力調整弁22は主蒸気系6の
蒸気圧力が所定圧力になったとき開になるとともに後述
する調整弁開閉制御器により所定の速度で開閉できる。
The main steam system 6 and the extraction system 8 are provided with a high-pressure bypass system 23 that bypasses the high-pressure turbine section 4 and is equipped with a high-pressure pressure regulating valve 22.
is connected. The high-pressure pressure regulating valve 22 opens when the steam pressure of the main steam system 6 reaches a predetermined pressure, and can be opened and closed at a predetermined speed by a regulating valve opening/closing controller described later.

抽気系8と復水器3とには低圧タービン部5をバイパス
して低圧圧力調整弁24を備えた低圧バイパス系25が
接続されている。低圧圧力調整弁24は抽気系8の抽気
蒸気の圧力が所定圧力になったとき開になる。
A low-pressure bypass system 25 that bypasses the low-pressure turbine section 5 and includes a low-pressure pressure regulating valve 24 is connected to the extraction system 8 and the condenser 3 . The low-pressure pressure regulating valve 24 opens when the pressure of the extracted steam in the extraction system 8 reaches a predetermined pressure.

なお抽気系8には抽気圧力が異常高の所定圧力になった
とき、抽気系8の蒸気を大気に逃す逃し弁27が設けら
れている。
The bleed system 8 is provided with a relief valve 27 that releases steam in the bleed system 8 to the atmosphere when the bleed pressure reaches a predetermined abnormally high pressure.

ここで抽気系8の抽気蒸気の所定圧力で開、または制御
される逃し弁27.低圧圧力調整弁24.高圧蒸気加減
弁7.高圧圧力調整弁22の設定圧力は上記の順で順次
小さくしている。
Here, the relief valve 27 is opened or controlled at a predetermined pressure of the extracted steam in the extraction system 8. Low pressure pressure regulating valve 24. High pressure steam control valve7. The set pressure of the high-pressure pressure regulating valve 22 is gradually decreased in the above order.

制御部30は回転数検出器31で検出された回転数。The control unit 30 detects the rotation speed detected by the rotation speed detector 31.

電力検出器32で検出された買電電力、圧力検出器33
で検出された主蒸気系6の蒸気圧力、圧力検出器34で
検出された抽気系8の抽気蒸気圧力が入力され、これら
の入力信号により高圧蒸気加減弁7゜低圧蒸気加減弁9
を制御して調速を行なう調速機。
Purchased power detected by power detector 32, pressure detector 33
The steam pressure of the main steam system 6 detected by the pressure detector 34 and the bleed steam pressure of the bleed system 8 detected by the pressure detector 34 are input, and these input signals cause the high pressure steam control valve 7 and the low pressure steam control valve 9 to be input.
A speed governor that controls speed.

電力負荷を設定する負荷設定器、抽気圧力を制御するた
め高圧蒸気加減弁を制御する抽気圧力制御器、電力負荷
に供給し、電力系統から所定量買電するように電力をA
PCIIllするため低圧蒸気加減弁を制御するAPC
Mm器、負荷の急増減時高圧蒸気加減弁と高圧圧力調整
弁の弁開閉速度をそれぞれ制御する加減弁開閉制御器 
g整弁開閉制御器等から構成される。
A load setting device that sets the power load, a bleed pressure controller that controls the high-pressure steam regulator to control the bleed pressure, and a bleed pressure controller that controls the bleed pressure to supply electricity to the power load and purchase a predetermined amount of electricity from the power grid.
APC that controls the low pressure steam control valve for PCIIll
Adjustment valve opening/closing controller that controls the valve opening/closing speed of the high-pressure steam adjustment valve and high-pressure pressure adjustment valve when the load suddenly decreases.
g Consists of valve opening/closing controller, etc.

このような構成による蒸気タービン発電設備の運転につ
いて説明する。この発電設備の定常運転は下記のように
して行なわれる。
The operation of the steam turbine power generation equipment with such a configuration will be explained. Steady operation of this power generation equipment is performed as follows.

ボイラ2から蒸気が蒸気タービン1に供給されると、高
圧蒸気加減弁7を経て高圧タービン部4に流入して仕事
をし、その排気の一部は取出されて抽気系8に供給され
る。そして残りの排気は低圧蒸気加減弁9を経て低圧タ
ービン部5に流れて仕事をし、その排気は復水器3に導
かれて復水となり、大気圧以下の所定圧力に保持される
。なお、この際復水器3内の不凝縮ガスは図示しないエ
ゼクタ−により外部に排出される。
When steam is supplied from the boiler 2 to the steam turbine 1, it flows into the high-pressure turbine section 4 through the high-pressure steam control valve 7 and does work, and a part of the exhaust gas is taken out and supplied to the extraction system 8. The remaining exhaust gas passes through the low-pressure steam control valve 9 and flows to the low-pressure turbine section 5 to perform work, and the exhaust gas is led to the condenser 3 and becomes condensed water, where it is maintained at a predetermined pressure below atmospheric pressure. At this time, the non-condensable gas in the condenser 3 is discharged to the outside by an ejector (not shown).

発電機IOは蒸気が高圧、低圧タービン部4,5を流れ
て仕事をした仕事量に相応する電力を発生し、電力負荷
の工場負荷40に供給する。この際所定量の電力を電力
系統42から買電している。
The generator IO generates electric power corresponding to the amount of work performed by steam flowing through the high-pressure and low-pressure turbine sections 4 and 5, and supplies it to a factory load 40 as an electric power load. At this time, a predetermined amount of power is purchased from the power system 42.

復水器3内の復水と補給水とが混合した給水は脱気器給
水ポンプ12により昇圧されて低圧給水加熱器13にて
低圧抽気系18を経る。抽気蒸気により加熱昇温された
後、脱気器14に送水される。送水された給水は脱気器
14にて抽気系8を経る抽気蒸気により加熱脱気され、
ボイラ給水ポンプ15により昇圧されてボイラ2に供給
される。ボイラ2に供給された給水はボイラ2にて蒸気
となり、前述のように蒸気タービンlに送られる。
The feed water, which is a mixture of condensate and make-up water in the condenser 3, is pressurized by the deaerator feed water pump 12 and passes through the low pressure bleed water system 18 at the low pressure feed water heater 13. After being heated and heated by the extracted steam, the water is sent to the deaerator 14. The supplied water is heated and degassed in the deaerator 14 by extraction steam passing through the extraction system 8.
The pressure is increased by the boiler feed water pump 15 and the water is supplied to the boiler 2 . The feed water supplied to the boiler 2 is turned into steam in the boiler 2, and is sent to the steam turbine 1 as described above.

なお、復水器3には抽気系8を経て外部に供給される蒸
気量に見合う補給水が補給水系20を経て供給される。
Note that the condenser 3 is supplied with make-up water via the make-up water system 20 in an amount corresponding to the amount of steam supplied to the outside via the extraction system 8 .

ところで、プロセス11や脱気器14の消費蒸気量の変
化により抽気系8の蒸気圧力が変化したときには圧力検
出器34で検出した圧力が入力される制御部30内の抽
気圧力制御器により高圧蒸気加減弁7が制御され、抽気
圧力は所定圧力に保持される。
By the way, when the steam pressure in the bleed system 8 changes due to a change in the amount of steam consumed by the process 11 or the deaerator 14, the bleed pressure controller in the control unit 30 to which the pressure detected by the pressure detector 34 is input controls the high-pressure steam. The regulating valve 7 is controlled and the bleed pressure is maintained at a predetermined pressure.

また工場負荷40の電力負荷が変化したときには電力検
出器32により検出した買電電力が入力される制御部3
0内のA P CIJ御を行なうAPCIII御器によ
り低圧蒸気加減弁9を制御し、買電電力を所定量に制御
して発電機10から所要の電力が電力負荷に供給される
Further, when the power load of the factory load 40 changes, the purchased power detected by the power detector 32 is input to the control unit 3.
The low-pressure steam control valve 9 is controlled by the APC III controller that performs APCIJ control within 0, and the purchased power is controlled to a predetermined amount, so that the required power is supplied from the generator 10 to the power load.

上記の場合主蒸気系6の蒸気圧力はボイラ3の燃焼によ
り運転圧力になるように運転される。この際主蒸気系6
の蒸気圧力が所定圧力を超えれば高圧圧力調整弁22は
開になり、高圧バイパス系23を経て抽気系8に余剰の
蒸気を逃がす。
In the above case, the main steam system 6 is operated such that the steam pressure in the main steam system 6 reaches the operating pressure due to combustion in the boiler 3. At this time, the main steam system 6
When the steam pressure exceeds a predetermined pressure, the high-pressure pressure regulating valve 22 is opened, and excess steam is released to the extraction system 8 via the high-pressure bypass system 23.

次に電力負荷が急減した場合について説明する。Next, a case where the power load suddenly decreases will be explained.

この場合には電力検出器32で検出した買電電力が入力
される制御部30のAPCIIll器により低圧蒸気加
減弁9が制御されて急、閉され、買電量が所定量になる
ようにAPC@御される。この際低圧蒸気加減弁9の急
閉により抽気系8の抽気圧力が上昇する。この圧力上昇
を圧力検出器34により検出し、この検出圧力が入力さ
れる制御部30の加減弁開閉制御器により高圧蒸気加減
弁7はボイラ2の最大許容降下速度に相当する弁閉速度
で閉し、急減した負荷に対応する蒸気をタービンに供給
するようにする。
In this case, the low-pressure steam control valve 9 is controlled and suddenly closed by the APC III device of the control unit 30 to which the purchased power detected by the power detector 32 is input, and the APC@ be controlled. At this time, the bleed pressure in the bleed system 8 increases due to the sudden closing of the low pressure steam control valve 9. This pressure rise is detected by the pressure detector 34, and the high-pressure steam regulator 7 is closed at a valve closing speed corresponding to the maximum allowable descending speed of the boiler 2 by the regulator valve opening/closing controller of the control unit 30 to which this detected pressure is input. Then, steam is supplied to the turbine to cope with the sudden load reduction.

この際抽気系8の抽気圧力がさらに上昇し、所定圧力を
超えれば圧力検出器34での検出圧力により低圧圧力調
整弁24は開になり、余剰の蒸気を低圧バイパス系25
を経て復水器3に逃し、抽気系8の抽気圧力を制御する
。そして負荷の減小が止まり、一定負荷になると低圧蒸
気加減弁9は閉め止まり、低圧圧力調整弁24は閉にな
って抽気圧力は制御される。
At this time, the bleed pressure in the bleed system 8 further increases, and if it exceeds a predetermined pressure, the pressure detected by the pressure detector 34 opens the low pressure regulating valve 24, and excess steam is transferred to the low pressure bypass system 25.
The air is released to the condenser 3 via the air bleed system 8, and the bleed pressure of the bleed air system 8 is controlled. When the load stops decreasing and reaches a constant load, the low-pressure steam control valve 9 stops closing, the low-pressure pressure control valve 24 closes, and the bleed pressure is controlled.

つぎに、負荷増加が予定されたとき予めボイラの発生蒸
気量を増加させてお(蓄熱運転について説明する。この
場合には高圧蒸気加減弁7を制御部30内の加減弁開閉
制御器によりボイラ2の最大許容負荷上昇に相当する弁
開速度で開にする。この際タービンへの蒸気供給量が増
加し、かつAPC@御が働いて低圧蒸気加減弁9が閉方
向に閉じられ、抽気系8の抽気圧力は上昇する。この圧
力上昇により抽気圧力が所定圧力を超えれば低圧圧力調
整弁24は開になり余剰の蒸気を復水器3に逃す、そし
て低圧蒸気加減弁9の開度が所定の値になると、高圧蒸
気加減弁7はその開度が保持される。その後は制御部3
0の調整弁開閉制御器により高圧圧力調整弁22をボイ
ラの最大許容負荷上昇に相当する弁開速度で開き、所定
のボイラ蒸気量になるまでボイラを運転し、この状態を
保持する。
Next, when a load increase is scheduled, the amount of steam generated by the boiler is increased in advance (thermal storage operation will be explained. The valve is opened at a valve opening speed corresponding to the maximum allowable load increase in step 2. At this time, the amount of steam supplied to the turbine increases, and the APC @ control operates to close the low pressure steam control valve 9 in the closing direction, and the extraction system The bleed pressure at 8 increases. If the bleed pressure exceeds a predetermined pressure due to this pressure increase, the low pressure pressure regulating valve 24 opens to release excess steam to the condenser 3, and the opening degree of the low pressure steam regulating valve 9 increases. When the predetermined value is reached, the high pressure steam control valve 7 maintains its opening degree.After that, the control unit 3
The high-pressure pressure regulating valve 22 is opened at a valve opening speed corresponding to the maximum allowable load increase of the boiler by the regulating valve opening/closing controller of No. 0, and the boiler is operated until a predetermined boiler steam amount is reached, and this state is maintained.

このようにして増加が予定される負荷量に相応する蒸気
量をボイラにて発生するようにすることにより、負荷上
昇時には急速にタービン負荷をとることができる。
By causing the boiler to generate an amount of steam corresponding to the amount of load that is expected to increase in this manner, the turbine load can be rapidly increased when the load increases.

つぎに電力負荷を急増する場合について説明する。この
場合には前述の蓄熱運転が終了しているものとする。こ
の場合高圧蒸気加減弁7を制御部30の加減弁開閉制御
器により高圧タービン部4の最大許容変化増に相当する
速度で開にする。この際、高圧圧力調整弁22は調整弁
開閉制御器により高圧蒸気加減弁7と高圧圧力調整弁2
2とを流れる蒸気流量の和がボイラの最大許容負荷増に
相当する速度で動作する。
Next, a case where the power load increases rapidly will be explained. In this case, it is assumed that the heat storage operation described above has been completed. In this case, the high-pressure steam control valve 7 is opened at a speed corresponding to the maximum permissible change increase in the high-pressure turbine section 4 by the control section 30's control valve opening/closing controller. At this time, the high-pressure pressure regulating valve 22 is controlled by the regulating valve opening/closing controller to control the high-pressure steam control valve 7 and the high-pressure pressure regulating valve 2.
The boiler operates at a speed where the sum of the steam flow rates flowing through the boiler and the boiler corresponds to the maximum allowable load increase.

このようにして電力負荷が急増して主負荷になり、ボイ
ラ3の発生蒸気量が電力負荷に相応する蒸気量になれば
高圧圧力調整弁22は閉になり、定常運転状態になる。
In this way, the power load rapidly increases and becomes the main load, and when the amount of steam generated by the boiler 3 reaches the amount of steam corresponding to the power load, the high-pressure pressure regulating valve 22 is closed and a steady operating state is established.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば抽気復
水タービンの高圧蒸気加減弁により油気圧力を制御し、
APC制御による電力制御を低圧蒸気加減弁により行な
い、さらに高圧タービン部をバイパスして主蒸気系と、
抽気系とに接続する高圧バイパス系の高圧圧力調整弁及
び前記高圧蒸気加減弁をボイラや高圧タービン部の負荷
変化速度に相当する開閉動作ができるようにしたことに
より、電力のAPC@御は低温の低圧タービン部の蒸気
の仕事量の変化により行なわせるので、電力負荷が急変
しても温度変化による熱応力が太き(ならず、また材料
の許容応力も大きくとれ、したがってタービンの寿命を
長くすることができる。
As is clear from the above description, according to the present invention, the oil pressure is controlled by the high pressure steam control valve of the extraction condensation turbine,
Power control by APC control is performed by a low-pressure steam control valve, and the high-pressure turbine section is bypassed to connect to the main steam system.
By making the high-pressure pressure regulating valve of the high-pressure bypass system connected to the extraction system and the high-pressure steam regulating valve open and close corresponding to the load change rate of the boiler and high-pressure turbine section, APC @ control of electric power can be performed at low temperatures. This is done by changing the amount of work of the steam in the low-pressure turbine section, so even if the power load suddenly changes, thermal stress due to temperature changes will not be large (and the allowable stress of the material can be large), thus extending the life of the turbine. can do.

また、電力負荷の急減時、高圧蒸気加減弁がボイラの許
容負荷降下速度に相当する速度で閉し、また蓄熱運転時
には高圧蒸気加減弁、高圧圧力調整弁をボイラの許容負
荷上昇に相当する速度で開にし、さらに負荷急増時には
高圧蒸気加減弁をタービンの高圧タービン部の許容負荷
変化に相当する速度で開にし、この際高圧圧力調整弁は
高圧蒸気加減弁と高圧圧力調整弁とを流れる流量の和が
ボイラの最大許容負荷増に相当する速度で動作するので
、上記の負荷急減時、蓄熱運転時、負荷急増時のいずれ
の場合でもボイラやタービンは適切な負荷変化速度で運
転でき、したがってボイラやタービンの大きな寿命消費
がなくなるという効果がある。
In addition, when the power load suddenly decreases, the high-pressure steam control valve closes at a speed corresponding to the allowable load drop rate of the boiler, and during thermal storage operation, the high-pressure steam control valve and high-pressure pressure control valve close at a speed corresponding to the allowable load increase of the boiler. When the load suddenly increases, the high-pressure steam regulating valve is opened at a speed corresponding to the permissible load change of the high-pressure turbine section of the turbine. The boiler and turbine operate at a speed corresponding to the boiler's maximum allowable load increase, so the boiler and turbine can operate at an appropriate load change rate in any of the above cases, such as sudden load reduction, heat storage operation, or sudden load increase. This has the effect of eliminating large life consumption of boilers and turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による蒸気タービン発電設備の
系統図である。 1:蒸気タービン、2:ボイラ、3:復水器、4:高圧
タービン部、5:低圧タービン部、6:主蒸気系、7:
高圧蒸気加減弁、8:抽気系、9:低圧蒸気加減弁、1
0:発電機、22:高圧圧力調整弁、23:高圧バイパ
ス系、24:低圧圧力調整弁、25:低圧バイパス系、
30:制御部、42:電力系統、/−
FIG. 1 is a system diagram of a steam turbine power generation facility according to an embodiment of the present invention. 1: Steam turbine, 2: Boiler, 3: Condenser, 4: High pressure turbine section, 5: Low pressure turbine section, 6: Main steam system, 7:
High pressure steam control valve, 8: Extraction system, 9: Low pressure steam control valve, 1
0: Generator, 22: High pressure pressure regulation valve, 23: High pressure bypass system, 24: Low pressure pressure regulation valve, 25: Low pressure bypass system,
30: Control unit, 42: Power system, /-

Claims (1)

【特許請求の範囲】[Claims] 1)ボイラと、このボイラからの蒸気が供給される高圧
タービン部と低圧タービン部とからなる蒸気タービンと
、このタービンからの排気を復水にし、大気圧以下の所
定圧力に保持する復水器と、蒸気タービンに接続される
発電機とからなり、前記蒸気タービンには高圧タービン
部の入口に設けられ、高圧タービン部の排気部から抽気
して抽気系に供給する抽気蒸気の圧力を制御する高圧蒸
気加減弁と、低圧タービン部の入口に設けられ、高圧タ
ービン部からの抽気蒸気以外の排気が流れ、発電機から
電力負荷に供給し、電力系統から買電する電力を制御す
る低圧蒸気加減弁とを備え、さらに高圧タービン部をバ
イパスし、主蒸気系と抽気系とを接続して所定圧力で開
になる圧力調整弁を有する高圧バイパス系と、電力負荷
の急増減時、圧力調整弁と高圧蒸気加減弁とをそれぞれ
開閉する速度調節可能な開閉手段とを備えたことを特徴
とする蒸気タービン発電設備。
1) A steam turbine consisting of a boiler, a high-pressure turbine section and a low-pressure turbine section to which steam from the boiler is supplied, and a condenser that converts the exhaust gas from the turbine into condensate and maintains it at a predetermined pressure below atmospheric pressure. and a generator connected to a steam turbine, which is installed at the inlet of a high-pressure turbine section and controls the pressure of extracted steam extracted from the exhaust section of the high-pressure turbine section and supplied to the extraction system. A high-pressure steam control valve and a low-pressure steam control valve installed at the inlet of the low-pressure turbine section that allows exhaust gas other than extracted steam from the high-pressure turbine section to flow, and controls the power that is supplied from the generator to the power load and purchased from the power grid. A high-pressure bypass system has a pressure regulating valve that bypasses the high-pressure turbine section, connects the main steam system and the extraction system, and opens at a predetermined pressure. A steam turbine power generation facility characterized by comprising speed-adjustable opening/closing means for opening and closing a high-pressure steam control valve and a high-pressure steam control valve.
JP26178090A 1990-09-29 1990-09-29 Steam turbine power generation equipment Pending JPH04140405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26178090A JPH04140405A (en) 1990-09-29 1990-09-29 Steam turbine power generation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26178090A JPH04140405A (en) 1990-09-29 1990-09-29 Steam turbine power generation equipment

Publications (1)

Publication Number Publication Date
JPH04140405A true JPH04140405A (en) 1992-05-14

Family

ID=17366599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26178090A Pending JPH04140405A (en) 1990-09-29 1990-09-29 Steam turbine power generation equipment

Country Status (1)

Country Link
JP (1) JPH04140405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392700A (en) * 2011-08-23 2012-03-28 福建省石狮热电有限责任公司 Novel backpressure turbine with low vacuum regenerative heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392700A (en) * 2011-08-23 2012-03-28 福建省石狮热电有限责任公司 Novel backpressure turbine with low vacuum regenerative heat

Similar Documents

Publication Publication Date Title
RU2508454C2 (en) Power plant with bypass control valve
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JP2000161014A5 (en)
US4819436A (en) Deaerator pressure control system
JPS61107004A (en) Controller for temperature of outlet of heat recovery steam generator for complex cycle generation plant
JP2000161014A (en) Combined power generator facility
JPH0353443B2 (en)
US4402183A (en) Sliding pressure flash tank
JPH0454802B2 (en)
JP3132834B2 (en) Gas turbine combustor steam cooling system
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
US3609384A (en) Control means for stabilizing a steam-driven reheat-type turbine generator after sudden runback of electric generation
JP2737884B2 (en) Steam turbine generator
JPH04140405A (en) Steam turbine power generation equipment
JP4415189B2 (en) Thermal power plant
JP2511007B2 (en) Auxiliary steam device
JPH10317916A (en) Thermal power plant
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0539703A (en) Steam turbine power generating facility
GB2176248A (en) Turbine control
JPH0128202B2 (en)
JPH02163402A (en) Compound electric power plant and its operation
JPH11166403A (en) Turbine bypass steam supply device
JPH0610621A (en) Repowering system of steam power generation facility