JPH04139882A - Thin film transistor - Google Patents
Thin film transistorInfo
- Publication number
- JPH04139882A JPH04139882A JP26435690A JP26435690A JPH04139882A JP H04139882 A JPH04139882 A JP H04139882A JP 26435690 A JP26435690 A JP 26435690A JP 26435690 A JP26435690 A JP 26435690A JP H04139882 A JPH04139882 A JP H04139882A
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- film
- polysilicon
- deposited
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000010409 thin film Substances 0.000 title claims description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 38
- 229920005591 polysilicon Polymers 0.000 claims abstract description 38
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 65
- 239000000758 substrate Substances 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 3
- 239000004065 semiconductor Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 18
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 7
- 239000011574 phosphorus Substances 0.000 abstract description 7
- 239000011229 interlayer Substances 0.000 abstract description 6
- 150000002500 ions Chemical class 0.000 abstract description 5
- 238000000137 annealing Methods 0.000 abstract description 2
- 239000012298 atmosphere Substances 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract 2
- 238000009413 insulation Methods 0.000 abstract 1
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
Landscapes
- Thin Film Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は薄膜トランジスタに関し、特にポリシリコン膜
をチャネル層とする薄膜トランジスタに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor, and particularly to a thin film transistor using a polysilicon film as a channel layer.
従来技術による薄膜トランジスタ(T F 1” )に
ついて、第3図(a)〜(C)を参照して説明する。A conventional thin film transistor (T F 1'') will be explained with reference to FIGS. 3(a) to 3(C).
はじめに第3図(a)に示すように、P型シリコン基板
1をスチーム酸化して厚さ5000人の酸化シリコン膜
2を成長する。First, as shown in FIG. 3(a), a P-type silicon substrate 1 is steam oxidized to grow a silicon oxide film 2 with a thickness of 5000 nm.
つぎにCVD法により厚さ600人のノンドープポリシ
リコン膜3を堆積してから、ドライ02酸化によりゲー
ト酸化膜となる酸化シリコン膜4を形成する。Next, a non-doped polysilicon film 3 with a thickness of 600 nm is deposited by the CVD method, and then a silicon oxide film 4, which will become a gate oxide film, is formed by dry 02 oxidation.
つぎにCVD法により厚さ3000人の燐ドープポリシ
リコンを成長してから、フォトリソグラフィおよび異方
性エツチングによりゲート電極となる燐ドープポリシリ
コン5を形成する。Next, phosphorus-doped polysilicon 5 is grown to a thickness of 3000 nm by CVD, and then phosphorus-doped polysilicon 5, which will become a gate electrode, is formed by photolithography and anisotropic etching.
つぎに第3図(b)に示すように、ゲート電極5からド
レイン予定領域の一部までを覆うフ1 )レジスト6を
形成する。Next, as shown in FIG. 3(b), a resist 6 is formed to cover from the gate electrode 5 to a part of the planned drain region.
つぎにフォトレジスト6をマスクとして、燐を加速エネ
ルギー30keV1注大量(ドース)3x i o ”
Cm−2イオン注入してソース−ドレイン予定領域およ
びゲート電極5に不純物を導入する。Next, using the photoresist 6 as a mask, phosphorus is injected with an acceleration energy of 30 keV1 in a large amount (dose) of 3 x i o ”
Impurities are introduced into the source-drain region and the gate electrode 5 by Cm-2 ion implantation.
つぎに第3図(C)に示すように、フォトレジスト6を
除去したのち酸化雰囲気て熱処理して、先にイオン注入
された不純物を活性化することにより、ソース7、ドレ
イン7aおよびゲート電極5を形成する。Next, as shown in FIG. 3C, after removing the photoresist 6, heat treatment is performed in an oxidizing atmosphere to activate the previously ion-implanted impurities, thereby forming the source 7, drain 7a and gate electrode 5. form.
つぎに常圧CV l)法によりBPSG膜からなる層間
絶縁膜8を堆積する。Next, an interlayer insulating film 8 made of a BPSG film is deposited by a normal pressure CV l) method.
つぎに900°Cの窒素雰囲気で層間絶縁膜8をリフロ
ーして表面を平坦化する。Next, the interlayer insulating film 8 is reflowed in a nitrogen atmosphere at 900° C. to flatten the surface.
つぎにフォトリングラフィおよびRIE法によりコンタ
クトを開口したのち、ソース−ドレインおよびゲート電
極配線となるアルミ配線12を形成してTF’Tの素子
部が完成する。Next, contacts are opened by photolithography and RIE, and then aluminum wiring 12 serving as source-drain and gate electrode wiring is formed to complete the element portion of the TF'T.
従来技術のTF’Tにおいては、ドレイン拡散層とゲー
ト電極との間にノンドープポリシリコンからなる高抵抗
のオフセット領域を設けてリーク電流を低減している。In the conventional TF'T, a high resistance offset region made of non-doped polysilicon is provided between the drain diffusion layer and the gate electrode to reduce leakage current.
ところがオフセット領域を設けるためのレジストパター
ンを形成する目金わせ露光工程の追加によるコスト−1
−昇の問題があった。However, the cost -1 due to the addition of a blind exposure process to form a resist pattern to provide an offset area.
- There was a problem with Noboru.
さらに目金ぜ余裕を必要とするため微細化が国力1″に
なるという問題があった。Furthermore, there was the problem that miniaturization would become the nation's greatest strength since it required extra margin.
本発明の薄膜トランジスタは半導体基板の一主面に第1
の絶縁膜が堆積され、前記第1の絶縁膜上の一部に第1
のポリシリコン膜が形成され、全面に第2のポリシリコ
ン膜が形成され、全面に堆積された第2の絶縁膜を隔て
て前記第1のポリ7リコン膜によって形成されている段
差に対して側壁となる第3のポリシリコン膜が形成され
、全面に第3の絶縁膜が堆積され、前記第3のポリシリ
コン膜から前記第3の絶縁膜の厚さだけ離れて前記第2
のポリシリコン膜中に形成された一導電型の不純物拡散
領域を存するものである。The thin film transistor of the present invention has a first layer on one main surface of a semiconductor substrate.
an insulating film is deposited on a portion of the first insulating film, and a first insulating film is deposited on a portion of the first insulating film.
A second polysilicon film is formed on the entire surface, and a step formed by the first polysilicon film is separated from the second insulating film deposited on the entire surface. A third polysilicon film serving as a side wall is formed, a third insulating film is deposited on the entire surface, and the second polysilicon film is separated from the third polysilicon film by the thickness of the third insulating film.
It has an impurity diffusion region of one conductivity type formed in a polysilicon film.
本発明の第1の実施例について、第1図(a)〜(g)
を参照して説明する。Regarding the first embodiment of the present invention, FIGS. 1(a) to (g)
Explain with reference to.
はじめに第1図(a)に示すように、P型シリコン基板
1に厚さ4000人の酸化シリコン膜2を形成する。つ
ぎにCVD法により厚さ4000人の燐ドープポリシリ
コン9および窒化シリコン膜10を堆積する。First, as shown in FIG. 1(a), a silicon oxide film 2 having a thickness of 4,000 wafers is formed on a P-type silicon substrate 1. Next, a phosphorus-doped polysilicon film 9 and a silicon nitride film 10 are deposited to a thickness of 4000 by CVD.
つぎにフォトレジスト(図示せず)でソース予定領域を
覆って窒化膜10および燐ドープポリシリコン9を異方
性エツチングする。Next, the nitride film 10 and the phosphorus-doped polysilicon 9 are anisotropically etched while covering the intended source region with a photoresist (not shown).
つぎに第1図(b)に示すように、スチーム酸化により
厚さ2ooo人の酸化膜ンリコン膜10aを形成する。Next, as shown in FIG. 1(b), a silicon oxide film 10a having a thickness of 200 mm is formed by steam oxidation.
つぎに第1図(C)に示すように、熱燐酸により窒化膜
10のみを選択除去してから、CVD法により厚さ80
0人のノンドープポリシリコン3を堆積する。Next, as shown in FIG. 1(C), only the nitride film 10 is selectively removed using hot phosphoric acid, and then a thickness of 80 mm is removed using the CVD method.
A layer of non-doped polysilicon 3 is deposited.
つぎに第1図(d)に示すように、ドライ02酸化によ
りゲート酸化膜となる厚さ200人の酸化シリコン膜4
を成長したのち、CVD法により厚さ5000人の燐ド
ープポリシリコン5を堆積する。Next, as shown in FIG. 1(d), a silicon oxide film 4 with a thickness of 200 nm is formed to become a gate oxide film by dry 02 oxidation.
After growing, phosphorus-doped polysilicon 5 is deposited to a thickness of 5,000 wafers by CVD.
つぎに第1図(e)に示すように、異方性エツチングに
より燐ドープポリシリコン5をエッチバックして、燐ド
ープポリシリコン9の段差の側面のみに燐ドープポリシ
リコン5のサイドウメールを形成する。これがゲート電
極きなる。Next, as shown in FIG. 1(e), the phosphorus-doped polysilicon 5 is etched back by anisotropic etching to form a sidewall of the phosphorus-doped polysilicon 5 only on the side surface of the step of the phosphorus-doped polysilicon 9. Form. This becomes the gate electrode.
つぎに第1図(f)に示すように、CVD法により厚さ
2000人の酸化シリコン膜11を堆積する。Next, as shown in FIG. 1(f), a silicon oxide film 11 with a thickness of 2,000 wafers is deposited by CVD.
つぎに酸化シリコン膜11を通して燐を加速エネルギー
180keV、注入量(ドース)6×10′5cm−2
イオン注入する。Next, phosphorus is accelerated through the silicon oxide film 11 at an energy of 180 keV and an implantation amount (dose) of 6 x 10'5 cm-2.
Implant ions.
つぎに第1図(g)に示すように、厚さ5000人のB
PSG膜からなる層間絶縁膜8を堆積したのち、窒素雰
囲気でアニールしてリフロー平坦化を行なう。このとき
イオン注入した不純物が活性化されてソース7およびド
レイン7aが形成される。Next, as shown in Figure 1 (g), a B
After depositing an interlayer insulating film 8 made of a PSG film, reflow planarization is performed by annealing in a nitrogen atmosphere. At this time, the ion-implanted impurities are activated and the source 7 and drain 7a are formed.
つぎにゲート電極5およびソース−ドレイン7.7aに
コンタクトを開口し、アルミ配線12を形成してTPT
の素子部が完成する。Next, contacts are opened to the gate electrode 5 and the source-drain 7.7a, an aluminum wiring 12 is formed, and the TPT
The element section is completed.
こうしてドレイン7aとゲート電極5との間にオフセッ
トが形成される。オフセット長1は酸化膜」1の膜厚と
ほぼ等しくなる。酸化膜の膜厚を調整することにより容
易にオフセット長を制御することができる。ソース7は
ドレイン7aに比べて厚くなるため層抵抗が小さくなっ
ている。In this way, an offset is formed between the drain 7a and the gate electrode 5. The offset length 1 is approximately equal to the thickness of the oxide film 1. The offset length can be easily controlled by adjusting the thickness of the oxide film. Since the source 7 is thicker than the drain 7a, its layer resistance is lower.
つぎに本発明の第2の実施例について、第2図(a)〜
(C)を参照して説明する。Next, regarding the second embodiment of the present invention, FIGS.
This will be explained with reference to (C).
本実施例では燐1!−プポリンリコンの代すに酸化シリ
コン膜を用いてソース予定領域の段差を形成する。In this example, phosphorus is 1! - Form a step in the intended source region by using a silicon oxide film instead of silicone.
はじめに第2図(a)に示すように、P型ンリコン基板
1」二にCVD法により厚さ1.0μmの酸化シリコン
膜2を堆積する。First, as shown in FIG. 2(a), a silicon oxide film 2 having a thickness of 1.0 .mu.m is deposited on a P-type silicon substrate 1''2 by the CVD method.
つぎにソース予定領域」二に形成したフットレジスト(
図示せず)をマスクとして酸化シリコン膜2を深さ50
00人まで冗方性工・ノチングする。Next, a foot resist (
(not shown) as a mask, the silicon oxide film 2 is deposited to a depth of 50 mm.
Redundancy and notching up to 00 people.
つぎに第2図(1))に示すように、全面にノンドープ
ポリシリコン3、ゲート酸化膜となる酸化シリコン膜4
、燐ドープポリシリコン5を順次堆積する。Next, as shown in FIG. 2 (1)), a non-doped polysilicon film 3 is formed on the entire surface, and a silicon oxide film 4 that becomes a gate oxide film is formed.
, phosphorus-doped polysilicon 5 is sequentially deposited.
つぎに第2図(C)に示すように、エッチバックにより
リンドープポリシリコン5からなるゲート電極を形成し
、CVD法により酸化シリコン膜11を堆積する。Next, as shown in FIG. 2C, a gate electrode made of phosphorus-doped polysilicon 5 is formed by etching back, and a silicon oxide film 11 is deposited by CVD.
つぎに燐を加速エネルギー100 k e V 1注大
量(ドース)LX 10I6cm−”イオン注入してソ
ース7およびドレイン7aを形成する。Next, a source 7 and a drain 7a are formed by ion-implanting phosphorus at an acceleration energy of 100 k e V 1 dose LX 10 I6 cm-''.
このあと層間絶縁膜形成、コンタクト開口、アルミ配線
形成を経てTPTの素子部が完成する。Thereafter, the TPT element section is completed through the formation of an interlayer insulating film, contact openings, and aluminum wiring.
ソース予定領域予定領域の配線端部にポリシリコンチャ
ネルおよびゲート酸化膜を介してゲート電極をポリシリ
コンサイドウオールによって形成する。A gate electrode is formed by a polysilicon sidewall at the wiring end of the intended source region via a polysilicon channel and a gate oxide film.
さらにゲート電極の段差を覆うように堆積した膜厚の7
様な酸化シリコン膜を通してソース−ドレイン用の不純
物のイオン注入を行なっている。Furthermore, a film with a thickness of 7 cm was deposited to cover the step of the gate electrode.
Source-drain impurity ions are implanted through a silicon oxide film of various types.
そのためソース−ドレインおよびオフセット領域ラスべ
てセルファラインで形成するこトカテキる。Therefore, it is recommended that the source-drain and offset regions are all formed using self-aligned lines.
寸法制御が容易で微細化に適し、目合わせ露光工程を削
減することができるという効果がある。It has the advantage of being easy to control dimensions, suitable for miniaturization, and reducing alignment exposure steps.
第1図(a)〜(g)は本発明の第1の実施例を工程順
に示す断面図、第2図(a)〜(C)は本発明の第2の
実施例を工程順に示す断面図、第3図(a)〜(C)は
従来技術によるTF’Tの製造方法を工程順に示す断面
図である。
1・・・P型シリコン基板、2・・・酸化シリコン膜、
3・・・ノンドープポリシリコン、4・・・酸化シリコ
ン1]L5−*ドープポリシリコン、6・・・フォトレ
ジスト、7・・・ソース、7a・・・ドレイン、8・・
・層間絶縁膜、9・・・燐ドープポリシリコン、10・
・・窒化シリコン膜、10.11・・・酸化ンリコン膜
、12・・・−〇−
アルミ配線。
万
図
1″
第
図
兜
?
図
易
図FIGS. 1(a) to (g) are cross-sectional views showing the first embodiment of the present invention in the order of steps, and FIGS. 2(a) to (C) are cross-sectional views showing the second embodiment of the present invention in the order of steps. 3(a) to 3(C) are cross-sectional views showing a method for manufacturing TF'T according to the prior art in the order of steps. 1... P-type silicon substrate, 2... silicon oxide film,
3... Non-doped polysilicon, 4... Silicon oxide 1] L5-*doped polysilicon, 6... Photoresist, 7... Source, 7a... Drain, 8...
・Interlayer insulating film, 9... phosphorus-doped polysilicon, 10.
...Silicon nitride film, 10.11...Licon oxide film, 12...-〇- Aluminum wiring. 10,000 figures 1″ Figure helmet? Figure easy map
Claims (1)
第1の絶縁膜上の一部に第1のポリシリコン膜が形成さ
れ、全面に第2のポリシリコン膜が形成され、全面に堆
積された第2の絶縁膜を隔てて前記第1のポリシリコン
膜によって形成されている段差に対して側壁となる第3
のポリシリコン膜が形成され、全面に第3の絶縁膜が堆
積され、前記第3のポリシリコン膜から前記第3の絶縁
膜の厚さだけ離れて前記第2のポリシリコン膜中に形成
された一導電型の不純物拡散領域を有することを特徴と
する薄膜トランジスタ。A first insulating film is deposited on one main surface of the semiconductor substrate, a first polysilicon film is formed on a part of the first insulating film, a second polysilicon film is formed on the entire surface, and a second polysilicon film is formed on the entire surface. A third insulating film that forms a side wall with respect to a step formed by the first polysilicon film across the second insulating film deposited on the polysilicon film.
a polysilicon film is formed, a third insulating film is deposited on the entire surface, and a third insulating film is formed in the second polysilicon film at a distance from the third polysilicon film by the thickness of the third insulating film. A thin film transistor characterized by having an impurity diffusion region of one conductivity type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26435690A JPH04139882A (en) | 1990-10-01 | 1990-10-01 | Thin film transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26435690A JPH04139882A (en) | 1990-10-01 | 1990-10-01 | Thin film transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04139882A true JPH04139882A (en) | 1992-05-13 |
Family
ID=17402020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26435690A Pending JPH04139882A (en) | 1990-10-01 | 1990-10-01 | Thin film transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04139882A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6417057B1 (en) | 1994-06-14 | 2002-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a semiconductor device having a TFT utilizing optical annealing before a gate electrode is formed |
US6979658B2 (en) * | 1997-03-06 | 2005-12-27 | Fujitsu Limited | Method of fabricating a semiconductor device containing nitrogen in a gate oxide film |
US7374981B2 (en) * | 2003-04-11 | 2008-05-20 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, electronic device having the same, and method for manufacturing the same |
-
1990
- 1990-10-01 JP JP26435690A patent/JPH04139882A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6417057B1 (en) | 1994-06-14 | 2002-07-09 | Semiconductor Energy Laboratory Co., Ltd. | Method of forming a semiconductor device having a TFT utilizing optical annealing before a gate electrode is formed |
US6690063B2 (en) | 1994-06-14 | 2004-02-10 | Semiconductor Energy Laboratory Co., Ltd. | Thin film semiconductor integrated circuit and method for forming the same |
US6979658B2 (en) * | 1997-03-06 | 2005-12-27 | Fujitsu Limited | Method of fabricating a semiconductor device containing nitrogen in a gate oxide film |
US7005393B2 (en) | 1997-03-06 | 2006-02-28 | Fujitsu Limited | Method of fabricating a semiconductor device containing nitrogen in an oxide film |
US7374981B2 (en) * | 2003-04-11 | 2008-05-20 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, electronic device having the same, and method for manufacturing the same |
US8120111B2 (en) | 2003-04-11 | 2012-02-21 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor including insulating film and island-shaped semiconductor film |
US9362307B2 (en) | 2003-04-11 | 2016-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Thin film transistor, electronic device having the same, and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0426542B2 (en) | ||
JPH04139882A (en) | Thin film transistor | |
JP3123453B2 (en) | Method for manufacturing semiconductor device | |
KR100273296B1 (en) | Method for fabricating mos transistor | |
JP2931243B2 (en) | Method for manufacturing semiconductor device | |
KR0170436B1 (en) | Method of manufacturing mosfet | |
KR20010029029A (en) | Fabricating method of semiconductor device | |
JP2000357792A (en) | Manufacture of semiconductor device | |
JPS6373667A (en) | Manufacture of mos semiconductor device | |
JPS6154661A (en) | Manufacture of semiconductor device | |
JP2000124327A (en) | Semiconductor device and manufacture thereof | |
JPH05152321A (en) | Manufacture of semiconductor device | |
JP3311082B2 (en) | Method for manufacturing semiconductor device | |
JP3848782B2 (en) | Manufacturing method of semiconductor device | |
JPH0541516A (en) | Semiconductor device and its manufacture | |
JP3056106B2 (en) | Method for manufacturing semiconductor device | |
JP3197811B2 (en) | Method for manufacturing semiconductor device | |
JP3408299B2 (en) | Insulated gate field effect transistor and method of manufacturing the same | |
JPH04302170A (en) | Manufacture of semiconductor device | |
JPH1197687A (en) | Manufacture of insulated gate semiconductor device | |
JPH1126756A (en) | Manufacture of semiconductor device | |
JPH04305938A (en) | Manufacture of semiconductor element | |
JPS6376376A (en) | Manufacture of metal-oxide semiconductor (mos) device | |
JPH053210A (en) | Manufacture of semiconductor device | |
JPS6315748B2 (en) |