[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04136854A - Photomask and production thereof, formation of pattern by using this method and photomask blank - Google Patents

Photomask and production thereof, formation of pattern by using this method and photomask blank

Info

Publication number
JPH04136854A
JPH04136854A JP2256983A JP25698390A JPH04136854A JP H04136854 A JPH04136854 A JP H04136854A JP 2256983 A JP2256983 A JP 2256983A JP 25698390 A JP25698390 A JP 25698390A JP H04136854 A JPH04136854 A JP H04136854A
Authority
JP
Japan
Prior art keywords
transparent
semi
film
photomask
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2256983A
Other languages
Japanese (ja)
Other versions
JP3105234B2 (en
Inventor
Norio Hasegawa
昇雄 長谷川
Toshihiko Tanaka
稔彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25698390A priority Critical patent/JP3105234B2/en
Priority to KR1019910016247A priority patent/KR920006800A/en
Publication of JPH04136854A publication Critical patent/JPH04136854A/en
Application granted granted Critical
Publication of JP3105234B2 publication Critical patent/JP3105234B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To allow the formation of fine patterns and to lower the generation rate of resolution defects by adopting the constitution to provide a specific phase difference of the light passing translucent regions and light passing transparent regions and specifying the patterns of the transparent regions to prescribed patterns. CONSTITUTION:This mask is provided with the regions 4 translucent to exposing light and the regions 3 transparent thereto and is so constituted that the phase difference of the light respectively passing the regions 4 and the regions 3 is substantially 180 deg.C. The pattern in the regions 3 is specified to the pattern in a single hole, dot, space or line. The transmissivity of the exposing light of the regions 4 is preferably specified to a 1% to 50% range when the transmissivity of the exposing light of the regions 3 is designated as 100%. The thickness (t) of the film 4 is so adjusted as to attain the relation t=lambda/a(n-1) (where lambda is the wavelength of the exposing light; (n) is the refractive index of the translucent film; (a) is the value in a 1.3<=a<=4 range).

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は半導体装置等の製造に用いるホトマスり、特に
照明光の位相を変える処理を施したホトマスク、その製
造方法、それを用いたパタン形成方法及びこのホトマス
クを製造するためのホトマスクブランクスに関する。 [従来の技術] マスクパタンを転写する露光装置の解像力を向」ニさせ
る従来技術のひとつとして、マスク透過光に位相を導入
する方法がある。例えば特公昭62−50811号では
、不透明部をはさむ両側の光透過部の少なくとも一方に
位相を変える透明膜を形成している。この方法によれば
従来と同一のレンズで解像度を格段に高めることが出来
る。 また、特開昭62−67547では、単一の光透過部の
解像度向上手段として、上記単一の光透過部の両側に透
過光の位相を反転した解像限界以下の光透過部を設けて
いる。 さらにまた、特開昭53−5572にi土、回折歪が低
レベルの安定なホトマスクとして、光透過部と半透明部
とに位相差を与えたホ1〜マスクか提案されている。
[Industrial Application Field] The present invention relates to a photomask used in the manufacture of semiconductor devices, etc., particularly a photomask treated to change the phase of illumination light, a method for manufacturing the same, a method for forming a pattern using the same, and a method for manufacturing the photomask. Regarding photomask blanks. [Prior Art] One of the conventional techniques for improving the resolution of an exposure device that transfers a mask pattern is a method of introducing a phase into light transmitted through a mask. For example, in Japanese Patent Publication No. 62-50811, a transparent film that changes the phase is formed on at least one of the light transmitting parts on both sides of the opaque part. According to this method, the resolution can be significantly increased using the same lens as before. Furthermore, in Japanese Patent Laid-Open No. 62-67547, as a means for improving the resolution of a single light transmitting section, light transmitting sections below the resolution limit in which the phase of transmitted light is inverted are provided on both sides of the single light transmitting section. There is. Furthermore, Japanese Patent Application Laid-Open No. 53-5572 proposes a photomask with a phase difference between a light-transmitting part and a semi-transparent part as a stable photomask with a low level of diffraction distortion.

【発明が解決しようとする課題】[Problem to be solved by the invention]

」1記従来技術においては、通常の透過型マスクを作成
した後、透過光の位相を変えるための透明膜、いわゆる
位相シフタを形成する必要がある。。 さらに、上記位相シフタは隣合った透過部を透過する光
の位相が互いに反転するように配置する必要がある。従
って、複雑な素子パタンへの位相シフタの配置では、シ
フタの配置が困難な場合等が発生し、効率よくシックを
配置するには、試行錯誤や高度な検討が必要であり、多
大な労力が必要であった。 また、マスクの製造工程も従来に比べ倍増しており、工
程増に伴う欠陥の発生や歩留まり低下が大きな問題とな
っていた。また、透明膜の欠陥の修正も多くの労力が必
要であり、実用化の大きな障害になっていた。 本発明の目的は、微細なパタンか形成でき、解像不良の
発生率を減少できるポ1−マスクを提供することにある
。 本発明の第2の目的は、そのホl〜マスクを製造する方
法を提供することにある。 本発明の第3の目的は、そのホトマスクを製造するため
のホトマスクブランクスを提供することにある。 本発明の第4の[」的は、そのホトマスクを用いたパタ
ン形成方法を提供することにある。
In the prior art described in 1., after creating a normal transmission mask, it is necessary to form a transparent film for changing the phase of transmitted light, a so-called phase shifter. . Furthermore, the phase shifters need to be arranged so that the phases of light transmitted through adjacent transmission parts are reversed. Therefore, when arranging a phase shifter in a complex element pattern, it may be difficult to arrange the shifter, and in order to efficiently arrange the chic, trial and error and advanced consideration are required, which requires a lot of effort. It was necessary. In addition, the number of mask manufacturing steps has doubled compared to the conventional method, and the increase in the number of steps has caused major problems such as the occurrence of defects and a decrease in yield. Furthermore, repairing defects in the transparent film requires a lot of effort, which has been a major obstacle to practical application. SUMMARY OF THE INVENTION An object of the present invention is to provide a point mask that can form fine patterns and reduce the incidence of poor resolution. A second object of the present invention is to provide a method for manufacturing the mask. A third object of the present invention is to provide photomask blanks for manufacturing the photomask. A fourth object of the present invention is to provide a pattern forming method using the photomask.

【課題を解決するための手段) 上記目的は、(1)透明基板」−に、露光光に対して半
透明な領域と、透明な領域とを少なくとも有し、該半透
明な領域と、該透明な領域とをそれぞれ通過する光の位
相差が実質的に180°となる構成とし、該透明な領域
のパタンは、単一なホール、トラl−、スペース又はラ
インのパタンであることを特徴とするホトマスク、(2
)上記1記載のホトマスクおいて、上記半透明な領域の
露光光の透過率が、透明な領域の露光光の透過率を10
0%としたとき、1%から50%の範囲にあることを特
徴とするホ1−マスク、(3)透明基板上に、不透明な
領域と、半透明な領域と、透明な領域とを有し、該半透
明な領域と、該透明な領域とをそれぞれ通過する光の位
相差が実質的に180°となる構成とし、該透明な領域
のパタンは、単一なホール、ドット、スペース又はライ
ンのパタンであることを特徴とするホトマスク、 (4)上記3記載のホトマスクおいて、上記半透明な領
域の露光光の透過率が、透明な領域の露光光の透過率を
100%としたとき、1%から50%の範囲にあること
を特徴とするホトマスクによって達成される。 一ヒ記第2の目的は、(5)透明基板上に、露光光に対
し半透明な膜を少なくとも1N含む半透明層を形成する
」二程及び該半透明層の所望の部分を除去し、該半透明
層を所望のパタンとする工程を有することを特徴とする
−に記載又は2記載のホl−マスクの製造方法、(6)
透明基板上に、エツチングストッパ層を形成する工程、
該エッチングストッパ層上に露光光に対し半透明な膜を
少なくとも1層含む半透明層を形成する工程及び該半透
明層の所望の部分を除去し、該半透明層を所望のパタン
とする工程を有することを特徴とする上記1又は2記載
のホトマスクの製造方法、(7)透明基板りに、半透明
膜を形成する工程、該半透明膜を所望のパタンに除去す
る工程及び露出した該透明基板を所望の深さに除去する
工程を有することを特徴とする上記1又は2記載のホ1
−マスクの製造方法によって達成される。 −に記載3の目的は、(8)透明基板上に、Y透明な膜
の少なくとも1層を含む半透明層を有し、かつ、該半透
明層は露光光に対して透過率が1%から50%の範囲で
あり、該半透明層を構成する膜の膜厚は、 Σ ((nl−1)d、):φλ ユ=1 (ただし、d+及びnlは半透明層を構成する1番目の
膜の厚さ及び屈折率、mは半透明層を構成する膜の数、
λは關光光の波長、φは]/4≦φ≦3/4の範囲の値
である)の関係を満たすことを特徴とするホトマスクブ
ランクス、(9)l記載記載のホトマスクブランクスに
おいて、上記半透明層は、さらに透明な膜の少なくとも
IMを含む複合膜であることを特徴とするホトマスクブ
ランクス、(10)l記載又は9記載のホトマスクブラ
ンクスにおいて、上記透明基板と上記半透明層との間に
導電性簿膜を設けたことを特徴とするホトマスクブラン
クス、(]−1−) J二記載、9又は10記載のホト
マスクブランクスにおいて、−に起生透明な膜は、厚み
40 n m以下のCrよりなる膜であることを特徴と
するホトマスクブランクスによって達成される。 上記第4の目的は、(12)基板上に感光性材料の薄膜
を有する試料を準備する工程と、上記1から4のいずれ
かに記載のホトマスクを介して、該試料を所望の波長の
光で照射する工程と、該試料を現像し、該感光性材料の
パタンを形成することを特徴とするパタン形成方法によ
って達成される。 上記(5)(6)(8)(9)(1,0)における半透
明層とは、半透明な膜の少なくとも1層を有すものであ
り、他にさらに透明な膜を含む複合膜であってもよい。 すなわち、この半透明層全体として半透明であり、かつ
透明な領域との間に」−記位相差を生じさせればよい。 [作用] 半透明膜から通過した光は、光透過部を通過した光に対
して位相が反転しているため、その境界部で位相が反転
し、境界部での光強度がOに近づく。これにより、相対
的に光透過部を通過した光の強度と、パタン境界部の光
強度の比は大きくなり従来法に比ヘコンI・ラストの高
い光強度分布か得られる。 これについて図面を用いて説明する。まず従来法を第2
図を用いて説明する。第2図(a)は従来法のホトマス
クの断面図を示し、1はガラス基板、2は遮光膜のCr
膜である。光透過部3を通過した光の振幅分布は、第2
図(b)に示すように同一符号である。この光をレンズ
を通しウェハ」二に投影すると、第2図(c)に示すよ
うに、遮光部直下まで光強度が広がった分布となる。従
って、従来法では微細なパタンを形成することが困難で
あった。 これに対比して本発明を第1図で説明する。第1図(a
)は本発明のホ1〜マスクの一例の断面図である。1は
ガラス基板、4は半透明膜である。 半透明膜4の膜厚tは、 し=λ/a(n−1) (ただし、λは露光光の波長、T)は半透明膜の屈折率
、aは1.3≦a≦4 の範囲の値である)の関係とな
るように調整する。このマスクを透過した光の振幅分布
は、第1図(b)に示すように光透過部3を通過した光
が正の符号であるのに対し、半透明膜4を通過した光の
位相は反転し負の符号となる。この光をレンズを通しウ
ェハ」二に投影すると、第1図(c)に示すように、光
透過部3と半透明膜4の境界で位相反転しているため、
その直下で光強度はほぼOとなる。そのため光強度分布
の広がりが押さえられ、コントラストの高い微細なパタ
ンか形成できる。 【実施例】 以下、本発明の詳細な説明する。 (実施例1) 本発明の第1の実施例のホ1−マスクとして第1図で示
す構造のものを製造した。。第1図(a)はホトマスク
の断面図を示す。1はガラス基板、4は半透明膜である
。半透明膜4の膜厚は、t=λ/a(n−1) (ただし、λは露光光の波長、nは半透明膜の屈折率、
aは1.3≦a≦4 の範囲の値である)の関係となる
ように調整した。露光波長は水銀ランプのj線(365
nm)を用いた。ここで半透明膜4には塗布ガラスに吸
光剤を添加したものを用いた。このガラスの露光光に対
する屈折率は約1.45であったので、塗布ガラスの膜
厚は約420nmとした。また、この時露光光の透過率
が15%となるよう吸光剤の添加量を調整した。 なお、上記透過率の設定は、使用するレジストの感度、
感光特性を考慮し、決定する必要があり、15%に限ら
ないが本発明の効果を得るには1%以上が望ましい。さ
らに透過率の上限は実用的なプロセスのばらつき等を考
慮すると50%程度が望ましいが、これ以上でも効果は
得られる。より効果的なのは5から30%の範囲である
。透明な領域のパタンは、単一なホール、ドット、スペ
ース又はラインのパタンをそれぞれ形成した。 また、本発明の効果を得るには半透明膜の膜厚tは t−λ/a(n−1) におけるaが1.3≦a≦4の範囲が望ましいが。 この範囲以外でも僅かながらコン1〜ラスト向上効果は
得られる。また、半透明膜4の材料は塗布ガラスに限ら
ず、有機膜、無機膜等所望の透過率が得られ、かつ透過
した光の位相が光透過部3を通過した光の位相に対しほ
ぼ反転できれば、如何なる材料でも適用可能である。ま
た、マスクの構造は上記実施例では半透明膜4を単一の
膜で構成したが、これに限らない。 このホI・マスクを用いることにより、透過光の光強度
は、第1図(c)に示すように、光透過部3と半透明膜
4の境界の直下で光強度はほぼOとなり、そのため光強
度分布の広がりが押さえられ、コントラストの高い微細
なパタンか形成できた。 (実施例2) 第2の実施例は、第3図に示すように半透明層の構成を
多層膜とした。ガラス基板1−上に薄いCr膜6と塗布
ガラス膜7を被着し、所望のパタン部を除去した。この
場合は、薄いCr膜6で透過率を1%に調整し、塗布ガ
ラス膜7で透過部との位相差を調整した。薄いCr膜の
露光光に対する透過率は1から50%の範囲であればよ
い。塗布ガラス膜7の膜厚は上記第1の実施例で示した
半透明膜4の膜厚制限とほぼ同しでもよいが、さらに高
精度に180°の位相差を設定するため、薄いCr膜6
を透過する光の位相すれも考慮した。 即ち、この実施例では半透明層は薄いCr膜6と塗布ガ
ラス膜7とよりなり、薄いCr膜6の厚みは透過率を1
%となるように定め、塗布ガラス膜7の厚みを Σ ((n+  1)d+)=φλ (ただし、d+及びn、は半透明層を構成する5番目の
膜の厚さ及び屈折率、mは半透明層を構成する膜の数で
この実施例では2、λは露光光の波長、φは1/4≦φ
≦3/4の範囲の値である)の関係を満たすようにした
。この構造でも実施例1と同じ効果が得られた。 (実施例3) 第3の実施例では、第4図に示すように、ガラス基板1
上に、薄いCr膜6を形成し、この薄いCr膜6を所望
のパタンに除去し、しかる後ガラス基板を所望の深さに
エツチングした。薄いCr膜の膜厚は40 n m以下
とし、露光光に対する透過率を第1の実施例で示したよ
うに1、から50%の範囲に調整することが好ましい。 この実施例では1%とした。エツチング深さは、上記第
2の実施例で示した塗布ガラス膜の膜厚制限と同じく、
高精度に18o°の位相差を設定するために、薄いCr
膜6を透過する光の位相ずれを考慮して定めた。 また、ガラス基板1のエツチング深さの制御が困難な場
合には、第5図に示すような構造にすれば良い。ガラス
基板J上に、TTOからなる透明なエツチングストッパ
8を設け、その上に透明膜9、その」二に薄いCr膜6
を設けである。第4図及び第5図の構造でも実施例1と
同じ効果が得られた。 (実施例4) 第4の実施例は、第1−の実施例の加ニーにの問題点を
対策した構造である。第1図の半透明膜4は塗布ガラス
を用いたが、この材料とガラス基板1はほぼ同じ材質で
あり、半透明膜4をフッ化水素酸系の溶液等でエツチン
グする場合や、CF、系のガス等を用いたドライエツチ
ングで加工する場合、十分な選択性がとれない。従って
、高度なエツチング制御が必要となる。これに対し、本
実施例は、第6図に示すように、ガラス基板1と半透明
1摸4の間にエツチングストッパ8を配置した。 ここでは、シリコン窒化膜を用いたがこれに限らない。 また、ガラス基板上に導電材料がない場合は、電子線で
のパタン形成でチャージアンプ現象が発生し、パタンの
位置すれ等の問題が生しるので、エツチングストッパ8
をTTO膜等の導電膜とすることも有効である。その他
の方法でチャージアップを防止する場合は、導電膜を用
いる必要はない。半透明膜4の膜厚については前記と同
様にした。 以上のように本発明のマスク構造は、光透過部と半透明
部を通過する光の位相が反転するように調整されている
事が必要である。また、通常のマスク又は従来の位相シ
フト型マスクと同一基板内に本発明の構造を組合せるこ
とも有効である。即ち、露光装置とマスクの位置を整合
するために用いる合わせマーク部やマスクとウェハの位
置を整合するため用いる検出窓パターンを通常の遮光膜
で形成したところ、半透明膜を用いたときよりも検出信
号は高いSN比が得られた。 また、本発明の効果はホールパタンの形成に有効であり
、従来0.5μm径のホールパタンの形成が限界だった
光学系で0.4μm径のホールパタンか形成できた。さ
らに、焦点位置ずれによる解像度劣化も小さいことも確
認できた。 また、上記各実施例で示した本発明のホトマスクを半導
体素子の電極配線導通孔の形成に用いたところ、今まで
よりO,1μm小さい導通孔が形成できた。さらに焦点
深度の向」二に伴い、解像不良の発生率も大幅に改善で
きた。 また、言うまでもないが、本発明の効果は露光波長によ
らない。上記実施例では露光波長に1線(365n m
)を用いた例を示したが、この波長に限らない。g線(
4,36nm)、KrFエキシマレーザ光、ArFエキ
シマレーザ光等でも同様の結果が得られた。 【発明の効果) 本発明によれば、従来の透過型マスクに比べ微細なパタ
ンか形成できた。またホトマスクの作成工程も従来の透
過型マスクとほぼ同じであり、従来の位相シフトマスク
に比べ大幅に工程の簡略化が計れた。 また1本発明のホトマスクを用いて半導体素子を作成し
た結果、従来型のホ)・マスクに比ヘパタンの微細化が
実現でき、素子面積の縮小化が実現できた。さらに焦点
深度の向上に伴い、解像不良の発生率も大幅に改善でき
た。
[Means for Solving the Problems] The above objects include (1) a transparent substrate having at least a region that is semitransparent to exposure light and a region that is transparent; The structure is such that the phase difference of the light passing through each transparent area is substantially 180°, and the pattern of the transparent area is a pattern of a single hole, trough, space, or line. A photomask with (2
) In the photomask according to item 1 above, the transmittance of the exposure light in the semi-transparent area is 10% higher than the transmittance of the exposure light in the transparent area.
(3) A mask having an opaque area, a semi-transparent area, and a transparent area on a transparent substrate. The phase difference between the light passing through the translucent area and the transparent area is substantially 180°, and the pattern of the transparent area is a single hole, dot, space, or (4) In the photomask described in 3 above, the transmittance of the exposure light in the semi-transparent area is 100% of the transmittance of the exposure light in the transparent area. This is achieved by a photomask characterized in that it is in the range of 1% to 50%. The second purpose is to (5) form a semitransparent layer containing at least 1N of a film that is semitransparent to exposure light on a transparent substrate, and remove a desired portion of the semitransparent layer. (6) The method for producing a Hol-mask according to (6)
forming an etching stopper layer on the transparent substrate;
A step of forming a semitransparent layer including at least one layer of a film that is semitransparent to exposure light on the etching stopper layer, and a step of removing a desired portion of the semitransparent layer to form a desired pattern in the semitransparent layer. (7) forming a semi-transparent film on a transparent substrate; removing the semi-transparent film in a desired pattern; and exposing the exposed film. 3. The method according to item 1 or 2 above, which comprises a step of removing the transparent substrate to a desired depth.
- Achieved by a method of manufacturing a mask. - The purpose of item 3 described in (8) is to have a semi-transparent layer on a transparent substrate including at least one layer of a Y transparent film, and the semi-transparent layer has a transmittance of 1% for exposure light. The film thickness of the film constituting the semi-transparent layer is Σ ((nl-1) d, ):φλ u=1 (where d+ and nl are 1 The thickness and refractive index of the th film, m is the number of films constituting the semi-transparent layer,
A photomask blank characterized in that λ is the wavelength of the light, and φ is a value in the range of ]/4≦φ≦3/4. A photomask blank characterized in that the layer is a composite film further including at least IM of a transparent film, (10) In the photomask blank described in l or 9, there is a conductive layer between the transparent substrate and the semitransparent layer. A photomask blank characterized by being provided with a transparent film, (]-1-) In the photomask blank described in J2, 9 or 10, the transparent film formed on - is made of Cr having a thickness of 40 nm or less. This is achieved by using photomask blanks that are characterized by a film of The fourth purpose is to (12) prepare a sample having a thin film of a photosensitive material on a substrate, and expose the sample to light of a desired wavelength through the photomask according to any one of 1 to 4 above. This is achieved by a pattern forming method characterized by a step of irradiating the photosensitive material with a photosensitive material, and developing the sample to form a pattern of the photosensitive material. The semitransparent layer in (5), (6), (8), (9), and (1, 0) above refers to a composite film that has at least one layer of a semitransparent film, and further includes a transparent film. It may be. That is, this semitransparent layer as a whole is semitransparent, and a phase difference may be generated between it and the transparent region. [Operation] Since the phase of the light passing through the semi-transparent film is reversed with respect to the light passing through the light transmitting portion, the phase is reversed at the boundary, and the light intensity at the boundary approaches O. As a result, the ratio of the intensity of light passing through the light-transmitting portion to the intensity of light at the pattern boundary becomes relatively large, and a light intensity distribution with a higher ratio of I/last than the conventional method can be obtained. This will be explained using drawings. First, the conventional method is
This will be explained using figures. FIG. 2(a) shows a cross-sectional view of a conventional photomask, where 1 is a glass substrate and 2 is a Cr light shielding film.
It is a membrane. The amplitude distribution of the light passing through the light transmission section 3 is
As shown in Figure (b), they have the same reference numerals. When this light is projected onto a wafer through a lens, the distribution of light intensity spreads to just below the light shielding part, as shown in FIG. 2(c). Therefore, it has been difficult to form fine patterns using conventional methods. In contrast, the present invention will be explained with reference to FIG. Figure 1 (a
) is a sectional view of an example of the mask of the present invention. 1 is a glass substrate, and 4 is a semi-transparent film. The film thickness t of the semi-transparent film 4 is: λ/a(n-1) (where λ is the wavelength of the exposure light, T) is the refractive index of the semi-transparent film, and a is 1.3≦a≦4. Adjust so that the relationship is within the range of values). The amplitude distribution of the light transmitted through this mask is as shown in FIG. It is reversed and has a negative sign. When this light is projected onto the wafer 2 through a lens, the phase is reversed at the boundary between the light transmitting part 3 and the semi-transparent film 4, as shown in FIG.
Directly below that, the light intensity becomes approximately O. Therefore, the spread of the light intensity distribution is suppressed, and a fine pattern with high contrast can be formed. [Example] The present invention will be explained in detail below. (Example 1) A mask having the structure shown in FIG. 1 was manufactured as a first example mask of the present invention. . FIG. 1(a) shows a cross-sectional view of the photomask. 1 is a glass substrate, and 4 is a semi-transparent film. The thickness of the semi-transparent film 4 is t=λ/a(n-1) (where λ is the wavelength of the exposure light, n is the refractive index of the semi-transparent film,
The relationship was adjusted so that a was in the range of 1.3≦a≦4. The exposure wavelength is the J-line of a mercury lamp (365
nm) was used. Here, the semi-transparent film 4 was made of coated glass to which a light absorbing agent was added. Since the refractive index of this glass with respect to exposure light was approximately 1.45, the film thickness of the coated glass was approximately 420 nm. Further, at this time, the amount of the light absorbing agent added was adjusted so that the transmittance of exposure light was 15%. Note that the transmittance setting above depends on the sensitivity of the resist used,
It is necessary to decide taking photosensitivity characteristics into consideration, and although it is not limited to 15%, it is preferably 1% or more in order to obtain the effects of the present invention. Further, the upper limit of the transmittance is desirably about 50% in consideration of variations in practical processes, but the effect can be obtained even if the transmittance is higher than this. More effective is a range of 5 to 30%. The pattern of transparent areas formed a single hole, dot, space or line pattern, respectively. Further, in order to obtain the effects of the present invention, it is desirable that the thickness t of the semitransparent film is in the range of 1.3≦a≦4 in t-λ/a(n-1). Even outside this range, the effect of improving contrast 1 to last can be obtained, albeit slightly. In addition, the material of the semi-transparent film 4 is not limited to coated glass, but may also be an organic film or an inorganic film, etc. The desired transmittance can be obtained, and the phase of the transmitted light is almost reversed to the phase of the light passing through the light transmitting part 3. If possible, any material can be used. Furthermore, although the semitransparent film 4 is composed of a single film in the above embodiment, the structure of the mask is not limited to this. By using this photo mask, the light intensity of the transmitted light becomes almost O just below the boundary between the light transmitting part 3 and the semi-transparent film 4, as shown in FIG. 1(c). The spread of the light intensity distribution was suppressed, and a fine pattern with high contrast could be formed. (Example 2) In the second example, as shown in FIG. 3, the structure of the semi-transparent layer was a multilayer film. A thin Cr film 6 and a coated glass film 7 were deposited on a glass substrate 1, and a desired pattern portion was removed. In this case, the transmittance was adjusted to 1% with the thin Cr film 6, and the phase difference with the transparent portion was adjusted with the coated glass film 7. The transmittance of the thin Cr film for exposure light may be in the range of 1 to 50%. The thickness of the coated glass film 7 may be approximately the same as the thickness limit of the semi-transparent film 4 shown in the first embodiment, but in order to set a phase difference of 180° with higher precision, a thin Cr film may be used. 6
We also took into account the phase shift of the light passing through. That is, in this embodiment, the semitransparent layer consists of a thin Cr film 6 and a coated glass film 7, and the thickness of the thin Cr film 6 is such that the transmittance is 1.
%, and the thickness of the coated glass film 7 is Σ ((n+ 1) d+) = φλ (where d+ and n are the thickness and refractive index of the fifth film constituting the semi-transparent layer, m is the number of films constituting the semi-transparent layer, which is 2 in this example, λ is the wavelength of the exposure light, and φ is 1/4≦φ
≦3/4). With this structure, the same effects as in Example 1 were obtained. (Example 3) In the third example, as shown in FIG.
A thin Cr film 6 was formed thereon, this thin Cr film 6 was removed in a desired pattern, and then the glass substrate was etched to a desired depth. It is preferable that the thickness of the thin Cr film is 40 nm or less, and the transmittance of the exposure light is adjusted in the range of 1 to 50% as shown in the first embodiment. In this example, it was set to 1%. The etching depth is the same as the thickness limit of the coated glass film shown in the second embodiment.
In order to set a phase difference of 18o° with high precision, thin Cr
It was determined in consideration of the phase shift of light transmitted through the film 6. Furthermore, if it is difficult to control the etching depth of the glass substrate 1, a structure as shown in FIG. 5 may be used. A transparent etching stopper 8 made of TTO is provided on a glass substrate J, a transparent film 9 is placed on top of the etching stopper 8, and a thin Cr film 6 is placed on top of the transparent etching stopper 8.
This is provided. The same effects as in Example 1 were obtained with the structures shown in FIGS. 4 and 5. (Embodiment 4) The fourth embodiment has a structure in which the problem with the knee of the first embodiment is addressed. Coated glass is used for the semitransparent film 4 in FIG. 1, but this material and the glass substrate 1 are made of almost the same material. When processing by dry etching using a similar gas, sufficient selectivity cannot be obtained. Therefore, sophisticated etching control is required. In contrast, in this embodiment, as shown in FIG. 6, an etching stopper 8 is disposed between the glass substrate 1 and the semi-transparent layer 4. Although a silicon nitride film is used here, it is not limited to this. Furthermore, if there is no conductive material on the glass substrate, a charge amplification phenomenon will occur during pattern formation with an electron beam, resulting in problems such as pattern misalignment.
It is also effective to use a conductive film such as a TTO film. When preventing charge-up by other methods, there is no need to use a conductive film. The thickness of the semi-transparent film 4 was the same as described above. As described above, the mask structure of the present invention needs to be adjusted so that the phases of light passing through the light-transmitting part and the semi-transparent part are reversed. It is also effective to combine the structure of the present invention with a normal mask or a conventional phase shift type mask within the same substrate. In other words, when the alignment marks used to align the positions of the exposure equipment and the mask and the detection window patterns used to align the positions of the mask and wafer were formed using a normal light-shielding film, the results were better than when using a semi-transparent film. A high SN ratio was obtained for the detection signal. Further, the effect of the present invention is effective in forming a hole pattern, and a hole pattern with a diameter of 0.4 μm can be formed using an optical system, which conventionally had a limit of forming a hole pattern with a diameter of 0.5 μm. Furthermore, it was confirmed that resolution deterioration due to focal position shift was also small. Furthermore, when the photomask of the present invention shown in each of the above-mentioned Examples was used to form an electrode wiring conduction hole of a semiconductor element, a conduction hole that was 0.1 μm smaller than the conventional one could be formed. Furthermore, as the depth of focus increased, the incidence of poor resolution was also significantly improved. Furthermore, it goes without saying that the effects of the present invention do not depend on the exposure wavelength. In the above embodiment, the exposure wavelength is one line (365 nm
), but the wavelength is not limited to this. g-line (
Similar results were obtained with KrF excimer laser light, ArF excimer laser light, etc. [Effects of the Invention] According to the present invention, a finer pattern can be formed than in the conventional transmission type mask. Furthermore, the process for creating a photomask is almost the same as that for a conventional transmission type mask, and the process is significantly simplified compared to that for a conventional phase shift mask. Furthermore, as a result of fabricating a semiconductor device using the photomask of the present invention, it was possible to achieve a finer specific hepatane pattern and to reduce the device area compared to the conventional mask. Furthermore, as the depth of focus improved, the incidence of poor resolution was also significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のホトマスクの断面図、透過
光の振幅分布図及び光強度図、第2図は従来のホトマス
クの断面図、透過光の振幅分布図及び光強度図、第3図
、第4図、第5図、第6図は本発明の他の実施例の断面
図である。 1・・・ガラス基板    2・・・Cr膜3 ・光透
過部     4・半透明膜6・薄いCr膜    7
 塗布ガラス膜8・・エツチングストッパ 9・・透明j模
FIG. 1 is a cross-sectional view of a photomask according to an embodiment of the present invention, an amplitude distribution diagram of transmitted light, and a light intensity diagram. FIG. 2 is a cross-sectional view of a conventional photomask, a diagram of amplitude distribution of transmitted light, and a diagram of light intensity. 3, 4, 5, and 6 are cross-sectional views of other embodiments of the present invention. 1... Glass substrate 2... Cr film 3 - Light transmitting part 4 - Semi-transparent film 6 - Thin Cr film 7
Coated glass film 8...Etching stopper 9...Transparent pattern

Claims (1)

【特許請求の範囲】 1、透明基板上に、露光光に対して半透明な領域と、透
明な領域とを少なくとも有し、該半透明な領域と、該透
明な領域とをそれぞれ通過する光の位相差が実質的に1
80°となる構成とし、該透明な領域のパタンは、単一
なホール、ドット、スペース又はラインのパタンである
ことを特徴とするホトマスク。 2、請求項1記載のホトマスクおいて、上記半透明な領
域の露光光の透過率が、透明な領域の露光光の透過率を
100%としたとき、1%から50%の範囲にあること
を特徴とするホトマスク。 3、透明基板上に、不透明な領域と、半透明な領域と、
透明な領域とを有し、該半透明な領域と該透明な領域と
をそれぞれ通過する光の位相差が実質的に180°とな
る構成とし、該透明な領域のパタンは、単一なホール、
ドット、スペース又はラインのパタンであることを特徴
とするホトマスク。 4、請求項3記載のホトマスクおいて、上記半透明な領
域の露光光の透過率が、透明な領域の露光光の透過率を
100%としたとき、1%から50%の範囲にあること
を特徴とするホトマスク。 5、透明基板上に、露光光に対し半透明な膜を少なくと
も1層含む半透明層を形成する工程及び該半透明層の所
望の部分を除去し、該半透明層を所望のパタンとする工
程を有することを特徴とする請求項1又は2記載のホト
マスクの製造方法。 6、透明基板上に、エッチングストッパ層を形成する工
程、該エッチングストッパ層上に露光光に対し半透明な
膜を少なくとも1層含む半透明層を形成する工程及び該
半透明層の所望の部分を除去し、該半透明層を所望のパ
タンとする工程を有することを特徴とする請求項1又は
2記載のホトマスクの製造方法。 7、透明基板上に、半透明膜を形成する工程、該半透明
膜を所望のパタンに除去する工程及び露出した該透明基
板を所望の深さに除去する工程を有することを特徴とす
る請求項1又は2記載のホトマスクの製造方法。 8、透明基板上に、半透明な膜の少なくとも1層を含む
半透明層を有し、かつ、該半透明層は露光光に対して透
過率が1%から50%の範囲であり、該半透明層を構成
する膜の膜厚は、 ▲数式、化学式、表等があります▼ (ただし、d_i及びn_iは半透明層を構成するi番
目の膜の厚さ及び屈折率、mは半透明層を構成する膜の
数、λは露光光の波長、φは1/4≦φ≦3/4の範囲
の値である)の関係を満たすことを特徴とするホトマス
クブランクス。 9、請求項8記載のホトマスクブランクスにおいて、上
記半透明層は、さらに透明な膜の少なくとも1層を含む
複合膜であることを特徴とするホトマスクブランクス。 10、請求項8又は9記載のホトマスクブランクスにお
いて、上記透明基板と上記半透明層との間に導電性薄膜
を設けたことを特徴とするホトマスクブランクス。 11、請求項8、9又は10記載のホトマスクブランク
スにおいて、上記半透明な膜は、厚み40nm以下のC
rよりなる膜であることを特徴とするホトマスクブラン
クス。 12、基板上に感光性材料の薄膜を有する試料を準備す
る工程と、請求項1から4のいずれかに記載のホトマス
クを介して、該試料を所望の波長の光で照射する工程と
、該試料を現像し、該感光性材料のパタンを形成するこ
とを特徴とするパタン形成方法。
[Claims] 1. On a transparent substrate, there is at least a region that is semitransparent to exposure light and a region that is transparent, and light that passes through the semitransparent region and the transparent region, respectively. The phase difference is essentially 1
1. A photomask having a configuration of 80°, and characterized in that the pattern of the transparent area is a pattern of a single hole, dot, space, or line. 2. In the photomask according to claim 1, the transmittance of the exposure light in the semi-transparent region is in the range of 1% to 50% when the transmittance of the exposure light in the transparent region is 100%. A photomask featuring 3. On a transparent substrate, an opaque area and a semi-transparent area,
The transparent area has a configuration in which the phase difference of light passing through the translucent area and the transparent area is substantially 180°, and the pattern of the transparent area is a single hole. ,
A photomask characterized by a pattern of dots, spaces or lines. 4. In the photomask according to claim 3, the transmittance of the exposure light in the semi-transparent region is in the range of 1% to 50%, when the transmittance of the exposure light in the transparent region is 100%. A photomask featuring 5. Forming a semi-transparent layer containing at least one film that is semi-transparent to exposure light on a transparent substrate, and removing a desired portion of the semi-transparent layer to form a desired pattern on the semi-transparent layer. 3. The method of manufacturing a photomask according to claim 1, further comprising the steps of: 6. Forming an etching stopper layer on the transparent substrate; forming a semitransparent layer containing at least one film that is semitransparent to exposure light on the etching stopper layer; and forming a desired portion of the semitransparent layer. 3. The method of manufacturing a photomask according to claim 1, further comprising the step of removing the semi-transparent layer to form a desired pattern. 7. A claim characterized by comprising the steps of forming a semi-transparent film on a transparent substrate, removing the semi-transparent film in a desired pattern, and removing the exposed transparent substrate to a desired depth. Item 2. A method for manufacturing a photomask according to item 1 or 2. 8. A semi-transparent layer including at least one layer of a semi-transparent film is provided on a transparent substrate, and the semi-transparent layer has a transmittance of 1% to 50% for exposure light, and The film thickness of the film constituting the semi-transparent layer is ▲Mathematical formula, chemical formula, table, etc.▼ (However, d_i and n_i are the thickness and refractive index of the i-th film constituting the semi-transparent layer, m is the translucent A photomask blank characterized by satisfying the following relationship: the number of films constituting a layer, λ is the wavelength of exposure light, and φ is a value in the range of 1/4≦φ≦3/4. 9. The photomask blank according to claim 8, wherein the semitransparent layer is a composite film further including at least one layer of a transparent film. 10. The photomask blank according to claim 8 or 9, characterized in that a conductive thin film is provided between the transparent substrate and the semi-transparent layer. 11. The photomask blank according to claim 8, 9 or 10, wherein the semi-transparent film is made of carbon having a thickness of 40 nm or less.
A photomask blank characterized by being a film made of r. 12. A step of preparing a sample having a thin film of a photosensitive material on a substrate, and a step of irradiating the sample with light of a desired wavelength through the photomask according to any one of claims 1 to 4. A pattern forming method comprising developing a sample to form a pattern of the photosensitive material.
JP25698390A 1990-09-28 1990-09-28 Method for manufacturing semiconductor device Expired - Lifetime JP3105234B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25698390A JP3105234B2 (en) 1990-09-28 1990-09-28 Method for manufacturing semiconductor device
KR1019910016247A KR920006800A (en) 1990-09-28 1991-09-18 Mask, manufacturing method thereof, pattern formation method using the same and mask blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25698390A JP3105234B2 (en) 1990-09-28 1990-09-28 Method for manufacturing semiconductor device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2000007856A Division JP3238921B2 (en) 1990-09-28 2000-01-17 Method for manufacturing semiconductor device
JP2000007857A Division JP3215394B2 (en) 1990-09-28 2000-01-17 Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04136854A true JPH04136854A (en) 1992-05-11
JP3105234B2 JP3105234B2 (en) 2000-10-30

Family

ID=17300097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25698390A Expired - Lifetime JP3105234B2 (en) 1990-09-28 1990-09-28 Method for manufacturing semiconductor device

Country Status (2)

Country Link
JP (1) JP3105234B2 (en)
KR (1) KR920006800A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052259A (en) * 1991-06-25 1993-01-08 Nec Corp Photomask
JPH052261A (en) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> Mask and projection exposure method using the same
DE4339481A1 (en) * 1992-11-21 1994-05-26 Ulvac Coating Corp Phase-shift mask for semiconductor device mfr. - has pattern contg. two transparent sections and phase reversal introduced by one section of pattern deposited as metal silicide, nitride or oxide film
DE4404453A1 (en) * 1993-02-12 1994-08-25 Mitsubishi Electric Corp Attenuation (reduction) phase-shift mask and method for its production
EP0643331A2 (en) * 1993-08-17 1995-03-15 Dai Nippon Printing Co., Ltd. Halftone phase shift photomask, halftone phase shift photomask blank, and method of producing the blank
US5426503A (en) * 1993-10-12 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Method of testing a phase shift mask and a testing apparatus used therein in the ultraviolet wavelength range
JPH07168343A (en) * 1993-10-08 1995-07-04 Dainippon Printing Co Ltd Phase-shift mask and its production
US5429897A (en) * 1993-02-12 1995-07-04 Mitsubishi Denki Kabushiki Kaisha Attenuating type phase shifting mask and method of manufacturing thereof
US5429896A (en) * 1992-12-07 1995-07-04 Hitachi, Ltd. Photomask and pattern forming method employing the same
US5464713A (en) * 1993-09-24 1995-11-07 Mitsubishi Denki Kabushiki Kaisha Phase shift mask and method for repairing a defect of a phase shift mask
US5547787A (en) * 1992-04-22 1996-08-20 Kabushiki Kaisha Toshiba Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask
US5589305A (en) * 1990-11-29 1996-12-31 Kabushiki Kaisha Toshiba Method of fabricating a reticle
US5593801A (en) * 1993-02-12 1997-01-14 Mitsubishi Denki Kabushiki Kaisha Attenuating type phase shifting mask, method of manufacturing thereof and semiconductor device manufactured by using the mask
US5619056A (en) * 1993-12-16 1997-04-08 Mitsubishi Denki Kabushiki Kaisha SRAM semiconductor device
US5629115A (en) * 1993-04-30 1997-05-13 Kabushiki Kaisha Toshiba Exposure mask and method and apparatus for manufacturing the same
US5635315A (en) * 1995-06-21 1997-06-03 Hoya Corporation Phase shift mask and phase shift mask blank
US5644381A (en) * 1994-07-11 1997-07-01 Mitsubishi Denki Kabushiki Kaisha Method of exposure employing phase shift mask of attenuation type
US5660956A (en) * 1990-11-29 1997-08-26 Kabushiki Kaisha Toshiba Reticle and method of fabricating reticle
US5674647A (en) * 1992-11-21 1997-10-07 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
US5700601A (en) * 1994-06-29 1997-12-23 Hitachi, Ltd. Photomask, manufacture of photomask, formation of pattern, manufacture of semiconductor device, and mask pattern design system
EP0838726A1 (en) 1996-10-24 1998-04-29 Toppan Printing Co., Ltd. Halftone phase shift mask, blank for the same, and methods of manufacturing these
US5792596A (en) * 1995-02-17 1998-08-11 Nec Corporation Pattern forming method
US5827623A (en) * 1995-10-31 1998-10-27 Nec Corporation Optical proximity correction halftone type phase shift photomask
JPH10293392A (en) * 1998-04-16 1998-11-04 Hitachi Ltd Manufacture of semiconductor device
US6004699A (en) * 1997-02-28 1999-12-21 Nec Corporation Photomask used for projection exposure with phase shifted auxiliary pattern
US6048647A (en) * 1994-04-05 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Phase shift mask of attenuation type and manufacturing method thereof
US6150059A (en) * 1997-10-31 2000-11-21 Nec Corporation Photomask and method of exposure using same
WO2002005032A1 (en) * 2000-07-07 2002-01-17 Hitachi, Ltd. Method of manufacturing integrated circuit
US6451489B1 (en) 1999-09-21 2002-09-17 Shin-Etsu Chemical Co., Ltd. Phase shift photomask
US6599667B2 (en) 2000-04-27 2003-07-29 Dai Nippon Printing Co., Ltd. Halftone phase shift photomask and blank for halftone phase shift photomask
US6656644B2 (en) 2000-07-07 2003-12-02 Hitachi Ltd. Manufacturing method of photomask and photomask
US6677107B1 (en) 1999-06-30 2004-01-13 Hitacji, Ltd. Method for manufacturing semiconductor integrated circuit device, optical mask used therefor, method for manufacturing the same, and mask blanks used therefor
US6692875B2 (en) 2000-04-20 2004-02-17 Infineon Technologies Ag Mask for optical projection systems, and a process for its production
US6790564B2 (en) 2000-12-25 2004-09-14 Renesas Technology Corporation Photomask and manufacturing method of an electronic device therewith
JP2004273794A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Manufacturing method of x-ray mask and semiconductor device using x-ray mask manufactured by the same
US7005216B2 (en) 2001-12-28 2006-02-28 Renesas Technology Corp. Photo mask
US7115341B2 (en) 2002-02-22 2006-10-03 Hoya Corporation Halftone phase shift mask blank, halftone phase shift mask, and method of producing the same
US7166392B2 (en) 2002-03-01 2007-01-23 Hoya Corporation Halftone type phase shift mask blank and halftone type phase shift mask
US7217503B2 (en) 2001-04-24 2007-05-15 Canon Kabushiki Kaisha Exposure method and apparatus
JP2008310090A (en) * 2007-06-15 2008-12-25 Shin Etsu Chem Co Ltd Halftone phase shift mask
US7556892B2 (en) 2004-03-31 2009-07-07 Shin-Etsu Chemical Co., Ltd. Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
US7649625B2 (en) 2008-03-28 2010-01-19 Kabushiki Kaisha Topcon Optical apparatus, photomask inspecting apparatus, and exposure apparatus
JP2011107735A (en) * 2011-03-11 2011-06-02 Hoya Corp Halftone type phase shift mask blank and manufacturing method of halftone type phase shift mask

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5660956A (en) * 1990-11-29 1997-08-26 Kabushiki Kaisha Toshiba Reticle and method of fabricating reticle
US5589305A (en) * 1990-11-29 1996-12-31 Kabushiki Kaisha Toshiba Method of fabricating a reticle
US5595844A (en) * 1990-11-29 1997-01-21 Kabushiki Kaisha Toshiba Method of exposing light in a method of fabricating a reticle
US5837405A (en) * 1990-11-29 1998-11-17 Kabushiki Kaisha Toshiba Reticle
JPH052261A (en) * 1991-06-24 1993-01-08 Nippon Telegr & Teleph Corp <Ntt> Mask and projection exposure method using the same
JPH052259A (en) * 1991-06-25 1993-01-08 Nec Corp Photomask
US5547787A (en) * 1992-04-22 1996-08-20 Kabushiki Kaisha Toshiba Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask
US5620815A (en) * 1992-04-22 1997-04-15 Kabushiki Kaisha Toshiba Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask
US5679484A (en) * 1992-04-22 1997-10-21 Kabushiki Kaisha Toshiba Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask
US5830607A (en) * 1992-11-21 1998-11-03 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
US5474864A (en) * 1992-11-21 1995-12-12 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
US5629114A (en) * 1992-11-21 1997-05-13 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask comprising a semitransparent region
DE4339481C2 (en) * 1992-11-21 1998-08-06 Ulvac Coating Corp Absorption phase mask, manufacturing process therefor and use thereof
US5691090A (en) * 1992-11-21 1997-11-25 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
US5674647A (en) * 1992-11-21 1997-10-07 Ulvac Coating Corporation Phase shift mask and manufacturing method thereof and exposure method using phase shift mask
DE4339481A1 (en) * 1992-11-21 1994-05-26 Ulvac Coating Corp Phase-shift mask for semiconductor device mfr. - has pattern contg. two transparent sections and phase reversal introduced by one section of pattern deposited as metal silicide, nitride or oxide film
US5851703A (en) * 1992-12-07 1998-12-22 Hitachi, Ltd. Photomask and pattern forming method employing the same
US6087074A (en) * 1992-12-07 2000-07-11 Hitachi, Ltd. Photomask and pattern forming method employing the same
US6258513B1 (en) 1992-12-07 2001-07-10 Hitachi, Ltd. Photomask and pattern forming method employing the same
US5578421A (en) * 1992-12-07 1996-11-26 Hitachi, Ltd. Photomask and pattern forming method employing the same
US6013398A (en) * 1992-12-07 2000-01-11 Hitachi, Ltd. Photomask and pattern forming method employing the same
US6733953B2 (en) 1992-12-07 2004-05-11 Renesas Technology Corp. Photomask and pattern forming method employing the same
US6383718B2 (en) 1992-12-07 2002-05-07 Hitachi, Ltd. Photomask and pattern forming method employing the same
US5656400A (en) * 1992-12-07 1997-08-12 Hitachi, Ltd. Photomask and pattern forming method employing the same
US5429896A (en) * 1992-12-07 1995-07-04 Hitachi, Ltd. Photomask and pattern forming method employing the same
US7115344B2 (en) 1992-12-07 2006-10-03 Renesas Technology Corp. Photomask and pattern forming method employing the same
DE4404453A1 (en) * 1993-02-12 1994-08-25 Mitsubishi Electric Corp Attenuation (reduction) phase-shift mask and method for its production
US5593801A (en) * 1993-02-12 1997-01-14 Mitsubishi Denki Kabushiki Kaisha Attenuating type phase shifting mask, method of manufacturing thereof and semiconductor device manufactured by using the mask
US5429897A (en) * 1993-02-12 1995-07-04 Mitsubishi Denki Kabushiki Kaisha Attenuating type phase shifting mask and method of manufacturing thereof
US5629115A (en) * 1993-04-30 1997-05-13 Kabushiki Kaisha Toshiba Exposure mask and method and apparatus for manufacturing the same
EP0643331A3 (en) * 1993-08-17 1996-09-18 Mitsubishi Electric Corp Halftone phase shift photomask, halftone phase shift photomask blank, and method of producing the blank.
EP0643331A2 (en) * 1993-08-17 1995-03-15 Dai Nippon Printing Co., Ltd. Halftone phase shift photomask, halftone phase shift photomask blank, and method of producing the blank
US5464713A (en) * 1993-09-24 1995-11-07 Mitsubishi Denki Kabushiki Kaisha Phase shift mask and method for repairing a defect of a phase shift mask
JPH07168343A (en) * 1993-10-08 1995-07-04 Dainippon Printing Co Ltd Phase-shift mask and its production
US5426503A (en) * 1993-10-12 1995-06-20 Mitsubishi Denki Kabushiki Kaisha Method of testing a phase shift mask and a testing apparatus used therein in the ultraviolet wavelength range
US5841153A (en) * 1993-12-16 1998-11-24 Mitsubishi Denkikabushiki Kaisha SRAM semiconductor device
US5994719A (en) * 1993-12-16 1999-11-30 Mitsubishi Denki Kabushiki Kaisha SRAM semiconductor device
US5619056A (en) * 1993-12-16 1997-04-08 Mitsubishi Denki Kabushiki Kaisha SRAM semiconductor device
US6048647A (en) * 1994-04-05 2000-04-11 Mitsubishi Denki Kabushiki Kaisha Phase shift mask of attenuation type and manufacturing method thereof
US5700601A (en) * 1994-06-29 1997-12-23 Hitachi, Ltd. Photomask, manufacture of photomask, formation of pattern, manufacture of semiconductor device, and mask pattern design system
US5895741A (en) * 1994-06-29 1999-04-20 Hitachi, Ltd. Photomask, manufacture of photomask, formation of pattern, manufacture of semiconductor device, and mask pattern design system
US5644381A (en) * 1994-07-11 1997-07-01 Mitsubishi Denki Kabushiki Kaisha Method of exposure employing phase shift mask of attenuation type
US5792596A (en) * 1995-02-17 1998-08-11 Nec Corporation Pattern forming method
US5804337A (en) * 1995-06-21 1998-09-08 Hoya Corporation Phase shift mask and phase shift mask blank
US5858582A (en) * 1995-06-21 1999-01-12 Hoya Corporation Phase shift mask and phase shift mask blank
US5635315A (en) * 1995-06-21 1997-06-03 Hoya Corporation Phase shift mask and phase shift mask blank
US5827623A (en) * 1995-10-31 1998-10-27 Nec Corporation Optical proximity correction halftone type phase shift photomask
EP0838726A1 (en) 1996-10-24 1998-04-29 Toppan Printing Co., Ltd. Halftone phase shift mask, blank for the same, and methods of manufacturing these
US6004699A (en) * 1997-02-28 1999-12-21 Nec Corporation Photomask used for projection exposure with phase shifted auxiliary pattern
US6150059A (en) * 1997-10-31 2000-11-21 Nec Corporation Photomask and method of exposure using same
JPH10293392A (en) * 1998-04-16 1998-11-04 Hitachi Ltd Manufacture of semiconductor device
US7125651B2 (en) 1999-06-30 2006-10-24 Renesas Technology Corp. Method of manufacturing semiconductor integrated circuit device optical mask therefor, its manufacturing method, and mask blanks
US6677107B1 (en) 1999-06-30 2004-01-13 Hitacji, Ltd. Method for manufacturing semiconductor integrated circuit device, optical mask used therefor, method for manufacturing the same, and mask blanks used therefor
US6451489B1 (en) 1999-09-21 2002-09-17 Shin-Etsu Chemical Co., Ltd. Phase shift photomask
KR100573857B1 (en) * 1999-09-21 2006-04-25 신에쓰 가가꾸 고교 가부시끼가이샤 Phase shift photomask
US6692875B2 (en) 2000-04-20 2004-02-17 Infineon Technologies Ag Mask for optical projection systems, and a process for its production
US6599667B2 (en) 2000-04-27 2003-07-29 Dai Nippon Printing Co., Ltd. Halftone phase shift photomask and blank for halftone phase shift photomask
CN100334687C (en) * 2000-07-07 2007-08-29 株式会社日立制作所 Method of manufacturing integrated circuit
US6794207B2 (en) 2000-07-07 2004-09-21 Renesas Technology Corp. Method of manufacturing integrated circuit
US6656644B2 (en) 2000-07-07 2003-12-02 Hitachi Ltd. Manufacturing method of photomask and photomask
US6846598B2 (en) 2000-07-07 2005-01-25 Hitachi, Ltd. Manufacturing method of photomask and photomask
US6936406B2 (en) 2000-07-07 2005-08-30 Renesas Technology Corp. Method of manufacturing integrated circuit
US6958292B2 (en) 2000-07-07 2005-10-25 Renesas Technology Corp. Method of manufacturing integrated circuit
WO2002005032A1 (en) * 2000-07-07 2002-01-17 Hitachi, Ltd. Method of manufacturing integrated circuit
US6790564B2 (en) 2000-12-25 2004-09-14 Renesas Technology Corporation Photomask and manufacturing method of an electronic device therewith
US7217503B2 (en) 2001-04-24 2007-05-15 Canon Kabushiki Kaisha Exposure method and apparatus
US7005216B2 (en) 2001-12-28 2006-02-28 Renesas Technology Corp. Photo mask
US7115341B2 (en) 2002-02-22 2006-10-03 Hoya Corporation Halftone phase shift mask blank, halftone phase shift mask, and method of producing the same
US7632612B2 (en) 2002-02-22 2009-12-15 Hoya Corporation Halftone phase shift mask blank, halftone phase shift mask, and method of producing the same
US7166392B2 (en) 2002-03-01 2007-01-23 Hoya Corporation Halftone type phase shift mask blank and halftone type phase shift mask
US7611808B2 (en) 2002-03-01 2009-11-03 Hoya Corporation Halftone type phase shift mask blank and halftone type phase shift mask
JP2004273794A (en) * 2003-03-10 2004-09-30 Mitsubishi Electric Corp Manufacturing method of x-ray mask and semiconductor device using x-ray mask manufactured by the same
US7556892B2 (en) 2004-03-31 2009-07-07 Shin-Etsu Chemical Co., Ltd. Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method
JP2008310090A (en) * 2007-06-15 2008-12-25 Shin Etsu Chem Co Ltd Halftone phase shift mask
JP4528803B2 (en) * 2007-06-15 2010-08-25 信越化学工業株式会社 Halftone phase shift mask
US7649625B2 (en) 2008-03-28 2010-01-19 Kabushiki Kaisha Topcon Optical apparatus, photomask inspecting apparatus, and exposure apparatus
JP2011107735A (en) * 2011-03-11 2011-06-02 Hoya Corp Halftone type phase shift mask blank and manufacturing method of halftone type phase shift mask

Also Published As

Publication number Publication date
JP3105234B2 (en) 2000-10-30
KR920006800A (en) 1992-04-28

Similar Documents

Publication Publication Date Title
JPH04136854A (en) Photomask and production thereof, formation of pattern by using this method and photomask blank
US5716758A (en) Process for forming fine pattern for semiconductor device utilizing multiple interlaced exposure masks
US5700606A (en) Photomask and a manufacturing method thereof
JPH0690505B2 (en) Photo mask
KR100263900B1 (en) Mask and the manufacturing method
KR100223325B1 (en) Method for manufacturing fine pattern of semiconductor device
KR19980071555A (en) Photomask used for exposure and its production method
US5695896A (en) Process for fabricating a phase shifting mask
JPH0980735A (en) Mask for exposure and its production
JP3164039B2 (en) Photomask and method of manufacturing the same
US5876878A (en) Phase shifting mask and process for forming comprising a phase shift layer for shifting two wavelengths of light
JP2003524201A (en) Novel chromeless alternating reticle for manufacturing semiconductor device morphology
JPS63216052A (en) Exposing method
JPH0720624A (en) Halftone phase-shift mask, its preparation and production of semiconductor device
JP3110855B2 (en) Method of manufacturing projection exposure substrate and pattern forming method using this substrate
JPH08106151A (en) Phase shift mask and its production
JP3215394B2 (en) Method for manufacturing electrode wiring conduction hole and method for manufacturing semiconductor device
US20030203286A1 (en) High-transmittance halftone phase shift mask and manufacturing method of semiconductor device
JP3110801B2 (en) Photomask manufacturing method and photomask
JP3178391B2 (en) Photomask design method
JPH0566554A (en) Photomask
JPH08254813A (en) Phase shift mask and production of semiconductor device using that
JP3469570B2 (en) Manufacturing method of exposure mask
JP3322007B2 (en) Halftone phase shift mask and resist exposure method
JP3238921B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11