JPH04134681A - Head positioning mechanism - Google Patents
Head positioning mechanismInfo
- Publication number
- JPH04134681A JPH04134681A JP25596790A JP25596790A JPH04134681A JP H04134681 A JPH04134681 A JP H04134681A JP 25596790 A JP25596790 A JP 25596790A JP 25596790 A JP25596790 A JP 25596790A JP H04134681 A JPH04134681 A JP H04134681A
- Authority
- JP
- Japan
- Prior art keywords
- head
- actuator
- sub
- positioning mechanism
- thermal expansion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006073 displacement reaction Methods 0.000 claims description 61
- 101000606504 Drosophila melanogaster Tyrosine-protein kinase-like otk Proteins 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 229910000861 Mg alloy Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 229910001234 light alloy Inorganic materials 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000238413 Octopus Species 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
Landscapes
- Moving Of The Head To Find And Align With The Track (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要]
磁気ディスク装置等における記録ディスクに対するヘッ
ド位置決め機構に関し、
アクセスアームの一部に微小変位素子を、該アクセスア
ームの構造部材の熱膨脹率と整合するように組み込んだ
ピギーバックアクチュエータからなる副アクチュエータ
を設けることにより、該副アクチュエータでの異常熱変
形がなく、かつデータ用ヘッドを独立して高精度に位置
決めすることを可能とすることを目的とし、
記録ディスクの半径方向に主アクチュエータにより揺動
するアクセスアームとヘッドを支持したヘッド支持ばね
とを、枠構造支持体により連結したヘッド位置決め機構
において、前記枠構造支持体のヘッド側に伸びる梁の全
体、または一部に微小変位素子と、該枠構造支持体を構
成する他の梁の熱膨脹率と整合する補償用部材との接続
体からなる微小変位用副アクチュエータを設け、該副ア
クチュエータによりヘッド支持ばねを主アクチュエータ
とは独立して記録ディスクの半径方向に微小変位可能と
した構成とする。[Detailed Description of the Invention] [Summary] Regarding a head positioning mechanism for a recording disk in a magnetic disk device, etc., a minute displacement element is incorporated into a part of an access arm so as to match the coefficient of thermal expansion of a structural member of the access arm. By providing a sub-actuator consisting of a piggyback actuator, the sub-actuator is free from abnormal thermal deformation and the data head can be positioned independently and with high precision. In a head positioning mechanism in which an access arm that swings in the radial direction by a main actuator and a head support spring that supports the head are connected by a frame structure support, the whole or part of the beam extending toward the head side of the frame structure support is A sub-actuator for micro-displacement consisting of a micro-displacement element and a connection body with a compensating member that matches the coefficient of thermal expansion of the other beams constituting the frame structure support is provided in the section, and the sub-actuator mainly controls the head support spring. The structure is such that the recording disk can be slightly displaced in the radial direction independently of the actuator.
また、前記枠構造支持体は、ヘッド支持ばねに接続され
る第1の梁と、この第1の梁及びアクセスアームにそれ
ぞれ接続された第2の梁と、これらの梁を接続する第3
の梁とを三角形に枠組した形状からなり、該第3の梁の
全体、または一部に前記微小変位用副アクチュエータを
組み込んだ構成とする。The frame structure support body also includes a first beam connected to the head support spring, a second beam connected to the first beam and the access arm, respectively, and a third beam connecting these beams.
The third beam has a triangular frame shape, and the micro-displacement sub-actuator is incorporated in the whole or a part of the third beam.
更に、前記微小変位用副アクチュエータに組み込まれた
微小変位素子は、積層型圧電素子、若しくは磁歪素子か
らなる構成とする。Further, the minute displacement element incorporated in the minute displacement sub-actuator is configured to include a laminated piezoelectric element or a magnetostrictive element.
本発明は磁気ディスク装置等における記録ディスクに対
するヘッド位置決め機構に関するものである。The present invention relates to a head positioning mechanism for a recording disk in a magnetic disk device or the like.
近年、電算機システムの外部記憶装置として用いられて
いる磁気ディスク装置では、情報処理量の増大と多様化
に伴って記録密度の向上が著しく、特に高トランク密度
化においては磁気ヘッドのより高精度な位置決めが不可
欠であり、ヘッド位置決め系の精密機構技術を高めるこ
とが重要となる。In recent years, the recording density of magnetic disk devices used as external storage devices for computer systems has significantly improved as the amount of information processed has increased and become more diverse.In particular, higher trunk densities have led to improvements in the precision of magnetic heads. accurate positioning is essential, and it is important to improve the precision mechanism technology of the head positioning system.
また、そのような高トラツク密度化に伴い、例えばサー
ボ面サーボ方式によるヘッド位置決め等にあっては、磁
気ディスクに対するサーボ位置決め用磁気へンドとデー
タ用磁気ヘッドとが、装置内の温度変化等による僅かな
熱変形などにより微小にずれて磁気ディスクに対するデ
ータ用磁気ヘッドが位置ずれを起こす所謂、サーマルオ
フトラックが生じてリード・ライトエラーが発生し易い
傾向にある。このため、そのような磁気ディスクに対す
るデータ用磁気ヘッドのサーマルオフトランクを低減し
てヘッド位置決め精度を高める機構が要望されている。In addition, with such high track density, for example, in head positioning using the servo surface servo method, the magnetic head for servo positioning with respect to the magnetic disk and the magnetic head for data may be affected by changes in temperature within the device, etc. There is a tendency for read/write errors to occur due to so-called thermal off-track, in which the data magnetic head is misaligned with respect to the magnetic disk due to slight thermal deformation. Therefore, there is a need for a mechanism that reduces thermal off-trunk of a data magnetic head with respect to such a magnetic disk and improves head positioning accuracy.
磁気ディスク装置における高トラツク密度化では10μ
−以下のトラックピッチが要求され、またオフトラック
量もサブミクロンのオーダーが要求されている。従って
、オフトラックの最も主因とされているサーマルオフト
ラックを低減するために、ヘッド位置決め機構の熱的な
歪みや変形の減少緩和を図った多(の機構技術の改良を
行ってきた。しかし、オフトラック量もサブミクロンの
オーダーとなると低減対策にも限界があった。10μ for high track density in magnetic disk drives
-The following track pitch is required, and the off-track amount is also required to be on the order of submicrons. Therefore, in order to reduce thermal off-track, which is considered to be the main cause of off-track, many mechanical technology improvements have been made to reduce and alleviate thermal distortion and deformation of the head positioning mechanism.However, When the off-track amount was on the order of submicrons, there were limits to measures to reduce it.
そこでそのようなオフトラックを積極的に補正するヘッ
ド位置決め機構として、複数枚の磁気ディスクの各デー
タ面に対して、第4図に示すようにデータ用磁気ヘッド
3とサーボ面にサーボ位置決め用磁気ヘッド(図示せず
)とをヘッド支持ばね2を介して例えばボイスコイルモ
ータ(VoiceCoi IMotor、 V CM)
駆動の主アクチュエータ(図示省略)に連結されたアク
セスアーム1により支持し、かつ該アクセスアーム1の
一部に積層型圧電素子等の微小変位素子4を組み込んだ
副アクチュエータ5、所謂ピギーバックアクチュエータ
を用いたヘッド位置決め機構が提案されている。Therefore, as a head positioning mechanism that actively corrects such off-track, as shown in FIG. For example, a voice coil motor (VCM) is connected to the head (not shown) via a head support spring 2.
A sub actuator 5, a so-called piggyback actuator, is supported by an access arm 1 connected to a main drive actuator (not shown) and has a minute displacement element 4 such as a laminated piezoelectric element incorporated in a part of the access arm 1. A head positioning mechanism has been proposed.
この位置決め機構では、前記磁気ディスクのサーボ面に
予め記録されたサーボ位置情報をサーボ位置決め用磁気
ヘッドで読み出し、そのサーボ位置情報に基づいて前記
主アクチュエータを駆動することにより、各データ用磁
気ヘッド3を対応する磁気ディスクの各データ面におけ
る目標記録トラックに移動すると共に、前記副アクチュ
エータ5を駆動して各データ用磁気ヘッド3をそれぞれ
独立して記録トラックと直交する左右方向に微小に揺動
変位させて当該目標記録トラックに精度よく位置決めし
、或いはサーマルオフトラックによるヘッドの位置ずれ
を補正する。In this positioning mechanism, the servo position information recorded in advance on the servo surface of the magnetic disk is read by the servo positioning magnetic head, and the main actuator is driven based on the servo position information, so that each data magnetic head 3 is moved to the target recording track on each data surface of the corresponding magnetic disk, and the sub-actuator 5 is driven to independently slightly oscillate each data magnetic head 3 in the left and right direction orthogonal to the recording track. to accurately position the head on the target recording track, or to correct positional deviation of the head due to thermal off-track.
ところで前記アクセスアームIの一部に組み込まれた微
小変位素子4、例えば積層型圧電素子は複数のPZT素
子を積層した構成からなり、その両端子間に電圧を印加
することにより数μmのオーダーで変位するので、各デ
ータ用磁気ヘッド3の位置情報が常に正確に得られれば
、各データ用磁気ヘッド3を1〜2μ霧のオーダで微小
に変位制御することは可能であるが、その積層型圧電素
子がアクセスアーム1の一部に単純に組み込まれた構造
にあっては、該アクセスアーム1の構成部材との熱膨脹
率の違いにより生しる偏った熱変形が大きな問題となる
。By the way, the minute displacement element 4 incorporated in a part of the access arm I, for example, a laminated piezoelectric element, has a structure in which a plurality of PZT elements are laminated, and by applying a voltage between both terminals, the minute displacement element 4 can be moved on the order of several μm. Therefore, if the positional information of each data magnetic head 3 is always accurately obtained, it is possible to minutely control the displacement of each data magnetic head 3 on the order of 1 to 2 μm mist. In a structure in which the piezoelectric element is simply incorporated into a part of the access arm 1, uneven thermal deformation caused by a difference in coefficient of thermal expansion with the constituent members of the access arm 1 poses a major problem.
即ち、前記アクセスアームIは一般にアルミニウム系の
軽合金が用いられ、その熱膨脹率が20X10−6程度
であるのに対し、P Z T (PbZrO:+とPb
Ti0.+との同容体)からなる積層型圧電素子の熱膨
脹率は5.OX 10−6程度であり、単なる温度変化
だけでアクセスアーム1の積層型圧電素子が組み込まれ
た部分が熱変形し、かつ大きな熱応力が発生してデータ
用磁気ヘッド3を逆に位置づれさせてしまい、本来のヘ
ッド位置決め機構の熱変形を補償するための副アクチュ
エータ5が熱変形発生手段となるといった不都合が生し
る問題があった。That is, the access arm I is generally made of an aluminum-based light alloy and has a coefficient of thermal expansion of about 20X10-6.
Ti0. The coefficient of thermal expansion of a laminated piezoelectric element consisting of a compound (equivalent to +) is 5. OX is approximately 10-6, and the portion of the access arm 1 in which the laminated piezoelectric element is incorporated is thermally deformed due to a mere temperature change, and a large thermal stress is generated, causing the data magnetic head 3 to be repositioned in the opposite direction. Therefore, there is a problem in that the sub actuator 5, which is intended to compensate for the thermal deformation of the original head positioning mechanism, becomes a thermal deformation generating means.
本発明は上記した従来の問題点に鑑み、アクセスアーム
の一部に、微小変位素子を該アクセスアームの構造部材
の熱膨脹率と整合するように組み込んだピギーバックア
クチュエータからなる副アクチュエータを設けることに
より、該副アクチュエータでの偏った異常熱変形がなく
、かつデータ用ヘッドを独立して高精度に位置決めする
ことを可能とする新規なヘッド位置決め機構を提供する
ことを目的とするものである。In view of the above-mentioned conventional problems, the present invention provides a sub-actuator, which is a piggyback actuator, in which a minute displacement element is incorporated in a part of the access arm so as to match the coefficient of thermal expansion of the structural member of the access arm. It is an object of the present invention to provide a novel head positioning mechanism which is free from uneven thermal deformation in the sub-actuator and which enables independent and highly accurate positioning of the data head.
本発明は上記した目的を達成するため、記録ディスクの
半径方向に主アクチュエータにより揺動するアクセスア
ームとヘッドを支持したヘッド支持ばねとを、枠構造支
持体により連結したベンド位置決め機構において、前記
枠構造支持体のヘッド側に伸びる梁の全体、または一部
に微小変位素子と、該枠構造支持体を構成する他の梁の
熱膨脹率と整合する補償用部材との接続体からなる微小
変位用副アクチュエータを設け、該副アクチュエータに
よりヘッド支持ばねを主アクチュエータとは独立して記
録ディスクの半径方向に微小変位可能とした構成とする
。In order to achieve the above object, the present invention provides a bend positioning mechanism in which an access arm that swings in the radial direction of a recording disk by a main actuator and a head support spring that supports a head are connected by a frame structure support. For micro-displacement, consisting of a micro-displacement element on the whole or a part of the beam extending toward the head side of the structural support, and a connection body with a compensating member that matches the coefficient of thermal expansion of the other beams that make up the frame structural support. A sub-actuator is provided, and the sub-actuator allows the head support spring to be slightly displaced in the radial direction of the recording disk independently of the main actuator.
また、前記枠構造支持体は、ヘッド支持ばねに接続され
る第1の梁と、この第1の梁及びアクセスアームにそれ
ぞれ接続された第2の梁と、これらの梁を接続する第3
の梁とを三角形に枠組した形状からなり、該第3の梁の
全体、または一部に前記微小変位用副アクチュエータを
組み込んだ構成とする。The frame structure support body also includes a first beam connected to the head support spring, a second beam connected to the first beam and the access arm, respectively, and a third beam connecting these beams.
The third beam has a triangular frame shape, and the micro-displacement sub-actuator is incorporated in the whole or a part of the third beam.
更に、前記微小変位用副アクチュエータに組み込まれた
微小変位素子は、積層型圧電素子、若しくは磁歪素子か
らなる構成とする。Further, the minute displacement element incorporated in the minute displacement sub-actuator is configured to include a laminated piezoelectric element or a magnetostrictive element.
本発明では、記録ディスクの半径方向に主アクチュエー
タにより揺動するアクセスアームとヘッドを支持したヘ
ッド支持ばねとを、該ヘッド支持ばねと接続される第1
の梁と、この第1の梁及びアクセスアームとそれぞれ接
続される第2の梁と、これらの梁を接続する第3の梁と
を三角形に枠組した形状からなり、該第3の梁の全体、
または−部にPZTを用いた積層型圧電素子等からなる
微小変位素子と、該枠構造支持体を構成す・る他の梁の
熱膨脹率と整合する補償用部材との接続体からなる微小
変位用副アクチュエータを組み込んだ枠構造支持体によ
り連結した構成とすることにより、当該副アクチュエー
タが環境温度の変化より偏った異常熱変形を起こす恐れ
が解消され、複数のデータ用ヘッドを主アクチュエータ
により対応する各磁気ディスクの当該目標記録トラック
に同時に移動させると共に、前記副アクチュエータを駆
動じて前記各磁気ヘッドをそれぞれ独立して微小に揺動
変位させ、当該目標記録トラックに高精度に位置決めす
る、或いはサーマルオフトラック等による位置ずれを精
度良く補正することが可能となる。In the present invention, an access arm that swings in the radial direction of a recording disk by a main actuator and a head support spring that supports a head are connected to a first access arm that is connected to the head support spring.
A beam, a second beam that is connected to the first beam and the access arm, and a third beam that connects these beams are framed in a triangular shape, and the entire third beam is ,
Or a micro-displacement device consisting of a connection body of a micro-displacement element made of a laminated piezoelectric element or the like using PZT in the negative part, and a compensating member that matches the coefficient of thermal expansion of the other beams constituting the frame structure support. By connecting the secondary actuators using a frame structure support, the risk of abnormal thermal deformation of the secondary actuators due to changes in environmental temperature is eliminated, and multiple data heads can be handled by the main actuator. simultaneously moving each of the magnetic disks to the target recording track, and driving the sub-actuator to independently slightly oscillate each of the magnetic heads to position them on the target recording track with high precision; It becomes possible to accurately correct positional deviations due to thermal off-track and the like.
以下図面を用いて本発明の実施例について詳細に説明す
る。Embodiments of the present invention will be described in detail below with reference to the drawings.
第1図は本発明に係るヘッド位置決め機構の一実施例を
示す斜視図、第2図はそのヘッド位置決め機構における
微小変位用副アクチュエータを説明するための要部平面
図である。FIG. 1 is a perspective view showing an embodiment of a head positioning mechanism according to the present invention, and FIG. 2 is a plan view of essential parts for explaining a sub-actuator for minute displacement in the head positioning mechanism.
第1図において、11は例えばボイスコイルモータ(V
oiceCoil Motor、 V CM)駆動の揺
動型主アクチュエータ、12は該揺動型主アクチュエー
タ11に取り付けられた複数のアクセスアームであり、
この複数のアクセスアーム12と、データ用磁気ヘッド
14をそれぞれ支持したヘッド支持ばね13の取付は端
部とは、第2図に示すように該ヘッド支持ばね13と接
続される第1の梁15aと、この第1の梁15a及びア
クセスアーム12とそれぞれ接続される第2の梁15b
と、これら第1.第2の梁1.5a、15bを接続する
第3の梁15cとを三角形に枠組したアルミニウム(A
l2)からなる形状からなり、その第3の梁15cの全
体、または一部にPZTによる熱膨脹率が5.0X10
−bの積層型圧電素子等からなる微小変位素子17と、
該微小変位素子17と組み合わせてAlからなる前記他
の第1.第2の梁15a、 15bの熱膨脹率20X1
0−’と整合するAfよりも熱膨脹率が26XIO−”
と大きい、例えばマグネシウム合金からなる補償用の金
属部材18とを所定の長さ比で組み合わせた接続体から
なる微小変位用副アクチュエータ19を組み込んだ枠構
造支持体15により連結した構成としている。In FIG. 1, 11 is a voice coil motor (V
12 is a plurality of access arms attached to the swing type main actuator 11;
The ends of the head support springs 13 that support the plurality of access arms 12 and data magnetic heads 14 are attached to the first beams 15a connected to the head support springs 13, as shown in FIG. and a second beam 15b connected to the first beam 15a and the access arm 12, respectively.
And these first. An aluminum (A
12), and the third beam 15c has a thermal expansion coefficient of 5.0X10 due to PZT in whole or in part.
-b minute displacement element 17 consisting of a laminated piezoelectric element or the like;
In combination with the minute displacement element 17, the other first. Thermal expansion coefficient of the second beams 15a and 15b is 20X1
The coefficient of thermal expansion is 26XIO-” than Af, which is consistent with 0-’
and a large compensating metal member 18 made of, for example, a magnesium alloy, connected by a frame structure support 15 incorporating a micro-displacement sub-actuator 19 made of a connecting body in a predetermined length ratio.
前記した三角形状のアルミニウム(A f ”)からな
る枠構造支持体15における第3の梁15cに組み合わ
せて設けた積層型圧電素子等からなる微小変位素子17
とマグネシウム合金からなる補償用の金属部材18とし
ては、第3図に示すようにこれら両者を組み合わせた全
長を!、微小変位素子17の長さをfp、その熱膨脹率
(5,OX 10−’)をαp、また補償用の金属部材
18の長さをi!m、その熱膨脹率(26XIO−’)
をα−1更にA2枠構造支持体15の熱膨脹率(20X
10−’)をαaとすれば、次の関係式により、lp
/l=cαI−αa)/(αm−αp)ffip/fζ
は0.3となるので、全長lに対する微小変位素子エフ
と補償用の金属部材工8とを3=7の比率の長さで組み
合わせることにより、Alからなる枠構造支持体15の
熱膨脹率と、微小変位素子17と補償用の金属部材18
との合成熱膨脹率とが整合され、環境温度等が変化して
も前記iからなる枠構造支持体15の伸び量(lαa)
ΔTと微小変位素子17と補償用の金属部材18との合
成伸び量(l蒙αs+j!pαρ)八Tが等しくなるの
で、該微小変位用側アクチュエコタ19が環境温度の変
化等により偏った異常熱変形や熱応力を起こす恐れがな
(なる。A minute displacement element 17 made of a laminated piezoelectric element or the like is provided in combination with the third beam 15c of the frame structure support 15 made of triangular aluminum (A f '') described above.
As shown in FIG. 3, the compensating metal member 18 made of a magnesium alloy and a magnesium alloy has a total length that is a combination of both! , the length of the minute displacement element 17 is fp, its coefficient of thermal expansion (5, OX 10-') is αp, and the length of the compensation metal member 18 is i! m, its coefficient of thermal expansion (26XIO-')
α-1 and A2 frame structure support 15 coefficient of thermal expansion (20X
10-') is αa, then lp
/l=cαI−αa)/(αm−αp)ffip/fζ
is 0.3, so by combining the minute displacement element F and the compensating metal member 8 with a length ratio of 3=7, the thermal expansion coefficient of the frame structure support 15 made of Al and , minute displacement element 17 and compensation metal member 18
The synthetic thermal expansion coefficient is matched with
Since ΔT and the combined elongation of the minute displacement element 17 and the compensating metal member 18 (αs+j!pαρ)8T are equal, the minute displacement side actuator 19 is biased due to changes in environmental temperature, etc. There is no risk of thermal deformation or thermal stress.
また、その副アクチュエータ19における微小変位素子
17に電圧を印加すると、該微小変位素子17の変位に
よりデータ用磁気ヘッド14を支持したヘッド支持ばね
13が第2図に破線で示すように揺動変位する。該デー
タ用磁気ヘッド14の幅をwh、前記三角形状のAlか
らなる枠構造支持体15の幅をwbとすると、該枠構造
支持体15の変位に対するデータ用磁気ヘッド14の変
位拡大率Wh/Wbは図中の寸法比の場合、約2となる
。When a voltage is applied to the minute displacement element 17 in the sub-actuator 19, the displacement of the minute displacement element 17 causes the head support spring 13, which supports the data magnetic head 14, to swing as shown by the broken line in FIG. do. When the width of the data magnetic head 14 is wh and the width of the triangular frame structure support 15 made of aluminum is wb, the displacement magnification rate of the data magnetic head 14 with respect to the displacement of the frame structure support 15 is Wh/ Wb is approximately 2 in the case of the dimension ratio shown in the figure.
従って、ヘッド変位量を2μmとすれば、前記微小変位
用副アクチュエータ19の変位量は1μ−程度でよく、
積層型圧電素子からなる微小変位素子17への印加電圧
としては数十V程度で容易に変位を発生させることがで
きる。Therefore, if the head displacement amount is 2 μm, the displacement amount of the minute displacement sub-actuator 19 may be about 1 μm.
Displacement can be easily generated by applying a voltage of about several tens of volts to the minute displacement element 17 made of a laminated piezoelectric element.
更に、前記微小変位用副アクチュエータ19を構成する
枠構造支持体15におけ第1の梁15aと第2の梁15
bとの一端部同士が接続された部分を円弧状に切り欠い
てヒンジ16を設けることにより、その部分での剛性を
低下させて変位時の応力集中による破壊を防ぎ、かつ変
位を容易にしている。Furthermore, the first beam 15a and the second beam 15 in the frame structure support 15 constituting the minute displacement sub-actuator 19 are
By providing the hinge 16 by cutting out the part where the ends of the hinge 16 and b are connected in an arc shape, the rigidity at that part is reduced to prevent damage due to stress concentration during displacement, and to facilitate displacement. There is.
このような構成のヘッド位置決め機構とすることにより
、回転する複数枚の磁気ディスクの各デ−タ面に対応す
る全てのデータ用磁気ヘッド14を、サーボ情報に基づ
いて前記揺動型主アクチュエータ11により同時に所定
の目標記録トラックにアクセス動作すると共に、その個
々のデータ用磁気ヘッド14を支持するヘッド支持ばね
13とアクセスアーム12間に設けた前記微小変位用副
アクチュエータ19における積層型圧電素子からなる微
小変位素子17に電圧を印加することにより、該副アク
チュエータ19が環境温度の変化等により偏った異常熱
変形や熱応力を起こすことなく、その各データ用磁気ヘ
ッド14を更にそれぞれ独立して記録トラックと交叉す
る方向に微小に揺動変位させることができ、この微小な
揺動変位をその後読み出した位置決め情報により制御す
ることによって各データ用磁気ヘッド14をそれぞれ当
該目標記録トラックに精度良く位置決めすることができ
、またサーマルオフトラック等による位置ずれも精度良
く補正することが可能となる。With the head positioning mechanism having such a configuration, all data magnetic heads 14 corresponding to each data surface of a plurality of rotating magnetic disks can be moved to the oscillating main actuator 11 based on servo information. The micro-displacement sub-actuator 19 is composed of a laminated piezoelectric element, which is provided between the access arm 12 and the head support spring 13 that supports the individual data magnetic heads 14. By applying a voltage to the minute displacement element 17, the sub actuator 19 can further independently record data on each data magnetic head 14 without causing abnormal thermal deformation or thermal stress due to changes in environmental temperature, etc. It is possible to make a minute rocking displacement in the direction intersecting the track, and by controlling this minute rocking displacement using the positioning information read out afterwards, each data magnetic head 14 is positioned on the target recording track with high precision. It is also possible to accurately correct positional deviations due to thermal off-track and the like.
なお、上記したように前記補償用の金属部材18として
、例えばマグネシウム等の軽合金を用いる所以は、熱膨
脹率の整合用とは別に、アクチュエータ全体の慣性モー
メントの低減に有利であり、第3図に示すようにように
主アクチュエータ11の揺動中心側に比重の大きいPZ
Tからなる微小変位素子17を、また該揺動中心より離
れた側にマグネシウム合金からなる補償用の金属部材1
8を組合わせて配設した構成により、前記微小変位素子
17の比重が8程度と大きいにもかかわらずアクチュエ
ータ全体の慣性モーメントは、総アルミニウム製のアク
チュエータの場合とほぼ同等に低減され、その効果はよ
り大きくなる利点がある。As mentioned above, the reason why a light alloy such as magnesium is used as the compensating metal member 18 is not only for matching the coefficient of thermal expansion but also for reducing the moment of inertia of the entire actuator, as shown in FIG. As shown in FIG.
A fine displacement element 17 made of T is provided, and a compensating metal member 1 made of magnesium alloy is placed on the side far from the center of oscillation.
8, the moment of inertia of the entire actuator is reduced to almost the same as that of an all-aluminum actuator, even though the specific gravity of the minute displacement element 17 is as large as about 8. has the advantage of being larger.
また、以上の実施例では微小変位用副アクチュエータ1
9を構成する微小変位素子17として積層型圧電素子を
用いた場合の例で説明したが、本発明はこの例に限定さ
れるものではなく、例えば磁歪素子等を用いるようにし
ても良く、同様な効果が得られる。In addition, in the above embodiment, the minute displacement sub-actuator 1
Although the present invention has been described using an example in which a laminated piezoelectric element is used as the minute displacement element 17 constituting the microdisplacement element 9, the present invention is not limited to this example. You can get the following effect.
更に、本発明のヘッド位置決め機構はサーボ面サーボ方
式に限らず、データ面サーボ方式等の各種ヘッド位置決
め制御方式に適用できることばいうまでもなく、その他
、光学ヘッドを用いたディスク装置や光磁気ディスク装
置等にも適用可能である。Furthermore, it goes without saying that the head positioning mechanism of the present invention is applicable not only to the servo surface servo method but also to various head positioning control methods such as the data surface servo method, as well as to disk devices using optical heads and magneto-optical disks. It is also applicable to devices, etc.
以上の説明から明らかなように、本発明に係るヘッド位
置決め機構によれば1、主アクチュエータと、該主アク
チュエータに取り付けられたアクセスアームと磁気ヘッ
ドを支持したヘッド支持ばねとの間に、環境温度の変化
等により偏った異常熱変形や熱応力の発生を防止するよ
うに補償した微小変位用副アクチュエータを設けた2段
アクチュエータを構成しているため、データ用ヘッドを
独立してディスク面の所定の記録トラック位置に精度良
く位置決め、或いはサーマルオフトラック等を所定記録
トラック位置に高精度に位置補正することが可能となり
、信転性の高い高密度記録で大容量の各種ディスク装置
が実現できる優れた利点を有する。As is clear from the above description, according to the head positioning mechanism according to the present invention, 1. the environmental temperature is The two-stage actuator is equipped with a sub-actuator for minute displacement that is compensated to prevent uneven thermal deformation or thermal stress caused by changes in the data head. It is possible to accurately position the recording track position of the recording track, or to correct the position of the thermal off track etc. to the predetermined recording track position with high precision, and it is an excellent feature that can realize various large capacity disk devices with high reliability and high density recording. It has many advantages.
第1図は本発明に係るヘッド位置決め機構の一実施例を
示す斜視図、
第2図は本発明に係る微小変位用副アクチュエータを説
明するための要部平面図、
第3図は本発明に係る微小変位用副アクチュエータの細
部を説明するための構成図、
第4図は従来のヘッド位置決め機構における微小変位用
副アクチュエータを説明する
ための要部平面図である。
第1図〜第3図において、
11は揺動型主アクチュエータ、12はアクセスアーム
、13はヘッド支持ばね、14はデータ用磁気ヘッド、
15は枠構造支持体、15aは第1の梁、15bは第2
の梁、15cは第3の梁、16はヒンジ、17は微小変
位素子、工8は補償用の金属部材、19は微小変位用副
アクチュエータをそれぞれ示す。
(Jda)ΔT
秤蛸^1珈−r信串2・1γ74−、I−夕め柑Htt
tθB力澗りN閃第3図FIG. 1 is a perspective view showing an embodiment of the head positioning mechanism according to the present invention, FIG. 2 is a plan view of essential parts for explaining the sub-actuator for minute displacement according to the present invention, and FIG. 3 is a perspective view showing an embodiment of the head positioning mechanism according to the present invention. FIG. 4 is a block diagram for explaining the details of such a sub-actuator for minute displacement, and FIG. 4 is a plan view of a main part for explaining the sub-actuator for minute displacement in a conventional head positioning mechanism. 1 to 3, 11 is a swing type main actuator, 12 is an access arm, 13 is a head support spring, 14 is a data magnetic head,
15 is a frame structure support body, 15a is a first beam, 15b is a second beam
15c is a third beam, 16 is a hinge, 17 is a micro-displacement element, 8 is a compensating metal member, and 19 is a sub-actuator for micro-displacement. (Jda) ΔT Scale octopus ^1 coffee-r Shinkushi 2・1γ74-, I-YumekanHtt
tθB force latitude N flash Figure 3
Claims (3)
1)により揺動するアクセスアーム(12)とヘッド(
14)を支持したヘッド支持ばね(13)とを、枠構造
支持体(15)により連結したヘッド位置決め機構にお
いて、 前記枠構造支持体(15)のヘッド側に伸びる梁の全体
、または一部に微小変位素子(17)と、該枠構造支持
体(15)を構成する他の梁の熱膨脹率と整合する補償
用部材(18)との接続体からなる微小変位用副アクチ
ュエータ(19)を設け、該副アクチュエータ(19)
によりヘッド支持ばね(13)を主アクチュエータ(1
1)とは独立して記録ディスクの半径方向に微小変位可
能としたことを特徴とするヘッド位置決め機構。(1) The main actuator (1
1) swings the access arm (12) and the head (
In a head positioning mechanism in which a head support spring (13) supporting a head support spring (14) is connected by a frame structure support (15), the entire or part of the beam extending toward the head side of the frame structure support (15) is A sub actuator (19) for minute displacement is provided, which is a connection body of a minute displacement element (17) and a compensating member (18) that matches the coefficient of thermal expansion of another beam constituting the frame structure support (15). , the sub actuator (19)
The head support spring (13) is connected to the main actuator (1
A head positioning mechanism characterized by being capable of minute displacements in the radial direction of a recording disk independently of (1).
13)に接続される第1の梁(15a)と、この第1の
粱(15a)及びアクセスアーム(12)にそれぞれ接
続された第2の梁(15b)と、これらの梁(15a、
15b)を接続する第3の梁(15c)とを三角形に枠
組した形状からなり、該第3の梁(15c)の全体、ま
たは一部に前記微小変位用副アクチュエータ(19)を
組み込んだことを特徴とする請求項1記載のヘッド位置
決め機構。(2) The frame structure support (15) has a head support spring (
13), a second beam (15b) connected to the first beam (15a) and the access arm (12), and these beams (15a,
15b) and a third beam (15c) connecting the third beam (15c), the micro-displacement sub-actuator (19) is incorporated in the whole or a part of the third beam (15c). The head positioning mechanism according to claim 1, characterized in that:
込まれた微小変位素子(17)は、積層型圧電素子、若
しくは磁歪素子からなることを特徴とする請求項1、ま
たは2記載のヘッド位置決め機構。(3) The head positioning mechanism according to claim 1 or 2, wherein the minute displacement element (17) incorporated in the minute displacement sub-actuator (19) is composed of a laminated piezoelectric element or a magnetostrictive element. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25596790A JPH04134681A (en) | 1990-09-25 | 1990-09-25 | Head positioning mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25596790A JPH04134681A (en) | 1990-09-25 | 1990-09-25 | Head positioning mechanism |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04134681A true JPH04134681A (en) | 1992-05-08 |
Family
ID=17286065
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25596790A Pending JPH04134681A (en) | 1990-09-25 | 1990-09-25 | Head positioning mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04134681A (en) |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998020486A1 (en) * | 1996-11-01 | 1998-05-14 | Seagate Technology, Inc. | Actuator arm integrated piezoelectric microactuator |
US6069771A (en) * | 1996-11-04 | 2000-05-30 | Seagate Technology, Inc. | Gimbal micropositioning device |
US6108175A (en) * | 1996-12-16 | 2000-08-22 | Seagate Technology, Inc. | Bimorph piezoelectric microactuator head and flexure assembly |
US6157522A (en) * | 1998-04-07 | 2000-12-05 | Seagate Technology Llc | Suspension-level microactuator |
US6215629B1 (en) | 1998-04-16 | 2001-04-10 | Seagate Technology Llc | Unitary synchronous flexure microactuator |
US6222706B1 (en) | 1997-03-31 | 2001-04-24 | Seagate Technology Llc | Flexure microactuator |
US6233124B1 (en) | 1998-11-18 | 2001-05-15 | Seagate Technology Llc | Piezoelectric microactuator suspension assembly with improved stroke length |
US6268984B1 (en) | 1999-01-22 | 2001-07-31 | Seagate Technology Llc | Magnet configuration for head-level microactuator |
US6268983B1 (en) * | 1997-12-25 | 2001-07-31 | Matsushita Electric Industrial Co., Ltd. | Head actuator driven by piezoelectric element |
US6289564B1 (en) | 1997-08-15 | 2001-09-18 | Seagate Technology Llc | Method of making a piezoelectric microactuator for precise head positioning |
US6297936B1 (en) | 1998-11-09 | 2001-10-02 | Seagate Technology Llc | Integral load beam push-pull microactuator |
US6320730B1 (en) | 1998-09-26 | 2001-11-20 | Seagate Technology Llc | Low-stress disc drive microactuator cradle |
US6351354B1 (en) | 1999-05-07 | 2002-02-26 | Seagate Technology Llc | Head to flexure interconnection for disc drive microactuator |
US6359758B1 (en) | 1998-06-11 | 2002-03-19 | Seagate Technology, Llc | Rigid body microactuator having elastic joint attachment |
US6392848B1 (en) | 1998-03-20 | 2002-05-21 | Fujitsu Limited | Head carriage assembly and disk device incorporating thereof |
US6414823B1 (en) | 1999-06-09 | 2002-07-02 | Seagate Technology Llc | Coil-structures for magnetic microactuator |
US6414822B1 (en) | 1998-06-11 | 2002-07-02 | Seagate Technology Llc | Magnetic microactuator |
US6498706B1 (en) | 1999-03-15 | 2002-12-24 | Fujitsu Limited | Dual driving unit for a magnetic head carriage assembly and magnetic disk drive |
US6507463B1 (en) | 1999-06-11 | 2003-01-14 | Seagate Technology, Inc. | Micro disc drive employing arm level microactuator |
US6574077B1 (en) | 1999-12-02 | 2003-06-03 | Seagate Technology Llc | Microactuator assembly having improved standoff configuration |
US6614628B2 (en) | 2001-01-19 | 2003-09-02 | Seagate Technology Llc | Moving coil micro actuator with reduced rotor mass |
US6683758B2 (en) | 2000-06-01 | 2004-01-27 | Seagate Technology Llc | Fabrication method for integrated microactuator coils |
US6683757B1 (en) | 2000-04-05 | 2004-01-27 | Seagate Technology Llc | Slider-level microactuator for precise head positioning |
US6697232B1 (en) | 2000-03-24 | 2004-02-24 | Seagate Technology Llc | Bonded transducer-level electrostatic microactuator for disc drive system |
US6765766B2 (en) | 2000-07-11 | 2004-07-20 | Seagate Technology Llc | Bonding tub improved electromagnetic microactuator in disc drives |
US6778350B2 (en) | 2000-10-06 | 2004-08-17 | Seagate Technology Llc | Feed forward control of voice coil motor induced microactuator disturbance |
US6785086B1 (en) | 2000-04-05 | 2004-08-31 | Seagate Technology Llc | Transducer-level microactuator with dual-axis control |
US6798609B1 (en) | 1999-07-28 | 2004-09-28 | Seagate Technology, Inc. | Magnetic microactuator with capacitive position sensor |
US6831539B1 (en) | 2003-08-28 | 2004-12-14 | Seagate Technology Llc | Magnetic microactuator for disc with integrated head connections and limiters drives |
US6851120B2 (en) | 2000-07-13 | 2005-02-01 | Seagate Technology Llc | Micro-actuator structure for improved stability |
JP2005322395A (en) * | 2004-04-30 | 2005-11-17 | Headway Technologies Inc | Recording head, reproducing head, reproducing and recording head and displacement method of reproducing and recording head |
-
1990
- 1990-09-25 JP JP25596790A patent/JPH04134681A/en active Pending
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298545B1 (en) | 1996-11-01 | 2001-10-09 | Seagate Technology Llc | Method of making an actuator arm integrated piezoelectric microactuator |
WO1998020486A1 (en) * | 1996-11-01 | 1998-05-14 | Seagate Technology, Inc. | Actuator arm integrated piezoelectric microactuator |
US6052251A (en) * | 1996-11-01 | 2000-04-18 | Seagate Technology, Inc. | Actuator arm integrated piezoelectric microactuator |
US6069771A (en) * | 1996-11-04 | 2000-05-30 | Seagate Technology, Inc. | Gimbal micropositioning device |
US6108175A (en) * | 1996-12-16 | 2000-08-22 | Seagate Technology, Inc. | Bimorph piezoelectric microactuator head and flexure assembly |
US6222706B1 (en) | 1997-03-31 | 2001-04-24 | Seagate Technology Llc | Flexure microactuator |
US6289564B1 (en) | 1997-08-15 | 2001-09-18 | Seagate Technology Llc | Method of making a piezoelectric microactuator for precise head positioning |
US6362542B1 (en) | 1997-08-15 | 2002-03-26 | Seagate Technology Llc | Piezoelectric microactuator for precise head positioning |
US6268983B1 (en) * | 1997-12-25 | 2001-07-31 | Matsushita Electric Industrial Co., Ltd. | Head actuator driven by piezoelectric element |
US6392848B1 (en) | 1998-03-20 | 2002-05-21 | Fujitsu Limited | Head carriage assembly and disk device incorporating thereof |
US6157522A (en) * | 1998-04-07 | 2000-12-05 | Seagate Technology Llc | Suspension-level microactuator |
US6215629B1 (en) | 1998-04-16 | 2001-04-10 | Seagate Technology Llc | Unitary synchronous flexure microactuator |
US6414822B1 (en) | 1998-06-11 | 2002-07-02 | Seagate Technology Llc | Magnetic microactuator |
US6359758B1 (en) | 1998-06-11 | 2002-03-19 | Seagate Technology, Llc | Rigid body microactuator having elastic joint attachment |
US6320730B1 (en) | 1998-09-26 | 2001-11-20 | Seagate Technology Llc | Low-stress disc drive microactuator cradle |
US6297936B1 (en) | 1998-11-09 | 2001-10-02 | Seagate Technology Llc | Integral load beam push-pull microactuator |
US6233124B1 (en) | 1998-11-18 | 2001-05-15 | Seagate Technology Llc | Piezoelectric microactuator suspension assembly with improved stroke length |
US6268984B1 (en) | 1999-01-22 | 2001-07-31 | Seagate Technology Llc | Magnet configuration for head-level microactuator |
US6634083B1 (en) | 1999-01-22 | 2003-10-21 | Seagate Technology Llc | Method of forming a magnet/keeper assembly for head level microactuator |
US6498706B1 (en) | 1999-03-15 | 2002-12-24 | Fujitsu Limited | Dual driving unit for a magnetic head carriage assembly and magnetic disk drive |
US6351354B1 (en) | 1999-05-07 | 2002-02-26 | Seagate Technology Llc | Head to flexure interconnection for disc drive microactuator |
US6414823B1 (en) | 1999-06-09 | 2002-07-02 | Seagate Technology Llc | Coil-structures for magnetic microactuator |
US6507463B1 (en) | 1999-06-11 | 2003-01-14 | Seagate Technology, Inc. | Micro disc drive employing arm level microactuator |
US6798609B1 (en) | 1999-07-28 | 2004-09-28 | Seagate Technology, Inc. | Magnetic microactuator with capacitive position sensor |
US6574077B1 (en) | 1999-12-02 | 2003-06-03 | Seagate Technology Llc | Microactuator assembly having improved standoff configuration |
US6697232B1 (en) | 2000-03-24 | 2004-02-24 | Seagate Technology Llc | Bonded transducer-level electrostatic microactuator for disc drive system |
US6683757B1 (en) | 2000-04-05 | 2004-01-27 | Seagate Technology Llc | Slider-level microactuator for precise head positioning |
US6785086B1 (en) | 2000-04-05 | 2004-08-31 | Seagate Technology Llc | Transducer-level microactuator with dual-axis control |
US6683758B2 (en) | 2000-06-01 | 2004-01-27 | Seagate Technology Llc | Fabrication method for integrated microactuator coils |
US6765766B2 (en) | 2000-07-11 | 2004-07-20 | Seagate Technology Llc | Bonding tub improved electromagnetic microactuator in disc drives |
US6851120B2 (en) | 2000-07-13 | 2005-02-01 | Seagate Technology Llc | Micro-actuator structure for improved stability |
US6778350B2 (en) | 2000-10-06 | 2004-08-17 | Seagate Technology Llc | Feed forward control of voice coil motor induced microactuator disturbance |
US6614628B2 (en) | 2001-01-19 | 2003-09-02 | Seagate Technology Llc | Moving coil micro actuator with reduced rotor mass |
US6831539B1 (en) | 2003-08-28 | 2004-12-14 | Seagate Technology Llc | Magnetic microactuator for disc with integrated head connections and limiters drives |
JP2005322395A (en) * | 2004-04-30 | 2005-11-17 | Headway Technologies Inc | Recording head, reproducing head, reproducing and recording head and displacement method of reproducing and recording head |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04134681A (en) | Head positioning mechanism | |
US7508634B2 (en) | Micro-actuator, vibration canceller, head gimbal assembly, and disk drive unit with the same | |
US5189578A (en) | Disk system with sub-actuators for fine head displacement | |
US7719798B2 (en) | Rotational micro-actuator integrated with suspension of head gimbal assembly, and disk drive unit with the same | |
US6201668B1 (en) | Gimbal-level piezoelectric microactuator | |
US5764444A (en) | Mechanism for minute movement of a head | |
US20080024933A1 (en) | Method and system of integrating micro-actuator to suspension for HGA of disk drive device | |
US7471490B2 (en) | Micro-actuator including U-shaped frame and metal support frame, and manufacturing method thereof | |
US7379274B2 (en) | Rotational PZT micro-actuator, head gimbal assembly, and disk drive unit with the same | |
US7614136B2 (en) | Method of producing a framing assembly | |
US7468869B2 (en) | Micro-actuator, micro-actuator suspension, and head gimbal assembly with the same | |
US7768746B2 (en) | Rotational micro-actuator with a rotatable plate, head gimbal assembly and disk drive device with the same | |
US7701675B2 (en) | Micro-actuator mounting structure capable of maintaining a substantially constant gap between a top support of a micro-actuator and a suspension during use | |
US20080266713A1 (en) | Suspension, head gimbal assembly and manufacturing method thereof, and disk drive unit with the same | |
US7538984B2 (en) | Rotational PZT micro-actuator with a rotatable plate | |
JP2712599B2 (en) | Head positioning mechanism | |
US6754047B2 (en) | Slide microactuator using S-shaped piezoelectric element | |
US6301080B1 (en) | Dither method to unload negative suction air bearings | |
US7554772B2 (en) | Head gimbal assembly having an independent spacer therein and disk drive unit with the same | |
US20070115591A1 (en) | Suspension, head gimbal assembly and disk drive unit with the same | |
JP2000260140A (en) | Magnetic head positioning mechanism and its driving system | |
JPS6275988A (en) | Magnetic head | |
JP2987940B2 (en) | Head positioning mechanism | |
US20070274008A1 (en) | PZT element and manufacturing method thereof, head gimbal assembly, and disk drive unit with same | |
JPH11260011A (en) | Head supporting mechanism |