[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0412322Y2 - - Google Patents

Info

Publication number
JPH0412322Y2
JPH0412322Y2 JP1985044693U JP4469385U JPH0412322Y2 JP H0412322 Y2 JPH0412322 Y2 JP H0412322Y2 JP 1985044693 U JP1985044693 U JP 1985044693U JP 4469385 U JP4469385 U JP 4469385U JP H0412322 Y2 JPH0412322 Y2 JP H0412322Y2
Authority
JP
Japan
Prior art keywords
boiler
gas
combustion
heat exchanger
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985044693U
Other languages
Japanese (ja)
Other versions
JPS61161503U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985044693U priority Critical patent/JPH0412322Y2/ja
Publication of JPS61161503U publication Critical patent/JPS61161503U/ja
Application granted granted Critical
Publication of JPH0412322Y2 publication Critical patent/JPH0412322Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

(産業上の利用分野) 本考案は、ガスを燃料とすると共に、起動時以
外は送風機による給気を必要とせず、高負荷燃焼
及び高熱効率等の利点を有するパルス燃焼装置を
組み込んだガス焚きパルス燃焼式ボイラに関す
る。 (従来の技術) 近年、省エネ及び高熱効率に結びつくガス焚き
パルス燃焼装置を組み込んだボイラが開発されて
いる。 第5図は従前のガス焚きパルス燃焼式ボイラの
概略縦断面図であつて、当該ボイラは、缶水が貯
留されたボイラ本体17と、ボイラ本体17内の
蒸気室18に配設された熱交換器19と、燃焼室
Cがボイラ本体17内の缶水に浸漬されたガス焚
きパルス燃焼装置20と、缶水に浸漬されて一端
が燃焼室Cに連通する伝熱管21等から構成され
ている。 又、前期パルス燃焼装置20は、燃焼室Cを備
えた燃焼室体22と、燃焼室Cに連通する混合室
Dを備えて燃焼室体22の前壁に接続された混合
室体23と、混合室Dに配設された点火電極24
と、混合室Dに断続的に空気を供給する空気用フ
ラツプ弁25と、混合室Dに断続的にガスを供給
するガス用フラツプ弁26と、空気用フラツプ弁
25に接続された着火用送風機27等から成り、
燃料となるガスには都市ガス、プロパンガス及び
メタンガス等が使用されている。 而して、混合室Dに供給されたガスと送風機2
7により強制的に送気されて来た空気とを混合室
Dで混合し、点火電極24により着火すると、最
初の燃焼が行われる。このときの燃焼ガスは、燃
焼によつて生じた圧力により伝熱管21から排出
されると共に、缶水に熱を与える。その間、ガス
と空気は各フラツプ弁25,26が閉じている
為、混合室Dへは流入しない。 そして、燃焼ガスの排気慣性によつて燃焼室C
が負圧になると、各フラツプ弁25,26が開い
てガスと空気は混合室Dに自然に吸引され、残留
火焔により再着火されて燃焼する。以後は前記と
同様のサイクルが毎秒10〜100回繰り返えされる。 然し乍ら、前記ボイラにあつては、燃焼室Cの
形状がパルス燃焼に適した球体や円筒になつてい
るうえ、伝熱管21もその断面が円形で排気時の
慣性が大きくなるように直管や曲率の大きいコイ
ル状のものが使用されている為、缶水容量が多く
なると云う問題があつた。その結果、始動時間が
長くなると共に、急激な負荷変動に対する追従が
困難になる等の問題を生じた。 (考案が解決しようとする問題点) 本考案は、上記の問題点を解消する為に創案さ
れたものであり、その目的は缶水容量の低減を図
れるガス焚きパルス燃焼式ボイラを提供するにあ
る。 (問題点を解決する為の手段) 本考案は、ガスを燃料とするパルス燃焼装置1
とこれの燃焼室Aに連通された伝熱管2との組み
合せからなる複数のユニツトを並列状に備え、前
記各ユニツトの燃焼室A及び伝熱管2をボイラ本
体3内の缶水に浸漬させたガス焚きパルス燃焼式
ボイラに於いて、前記燃焼室A及び伝熱管2の断
面形状を矩形に形成すると共に前記伝熱管2を缶
水内で複数回折り畳み状に屈曲させ、各伝熱管2
の末端をボイラ本体3の前部下方に於いて、ボイ
ラ本体3の後部上方へ開口せしめた排気減音器1
6内へ連通させ、更に各パルス燃焼装置1の全体
をカバー14により囲繞し、前記ボイラ本体3の
下方の排気減音器16の下部に設けた吸気減音器
15内へ連通せしめたことを考案の基本構成とす
るものである。 (作用) 混合室に供給されたガスと送気されて来た空気
とを混合室で混合し、点火電極により着火する
と、最初の燃焼が行われる。このときの燃焼ガス
は、燃焼によつて生じた圧力により伝熱管から排
出されると共に、缶水に熱を与える。その間、ガ
スと空気は混合室へ流入しないようになつてい
る。 そして、燃焼ガスの排気慣性によつて燃焼室が
負圧になると、ガスと空気は混合室に自然に吸引
され、残留火焔により再着火されて燃焼する。以
後は前記と同様のサイクルが繰り返えされる。 (実施例) 以下、本考案の実施例を図面に基づいて詳細に
説明する。 第1図は本考案の実施例を示すガス焚きパルス
燃焼式ボイラの概略縦断面図であつて、当該ボイ
ラはガス焚きパルス燃焼装置1、伝熱管2、ボイ
ラ本体3及び熱交換器4等から構成されて居り、
パルス燃焼装置1と伝熱管2が複数個組み込まれ
ている。 前記ガス焚きパルス燃焼装置1は、断面形状が
矩形の燃焼室Aを備えた箱状の燃焼室体5と、燃
焼室体5の前壁に接続されて燃焼室Aに連通する
混合室Bを備えた混合室体6と、混合室Bに配設
された点火電極7と、混合室Bに空気を断続的に
供給する空気用フラツプ弁8と、空気用フラツプ
弁8に接続された着火用送風機9と、空気用フラ
ツプ弁8と送風機9との間に介設されて各空気用
フラツプ弁8に空気を分配する吸気分配ダクト1
0と、混合室Bにガスを断続的に供給するガス用
フラツプ弁11と、ガス用フラツプ弁11とガス
供給源との間に介設された燃料弁12等から構成
されている。 伝熱管2は、断面形状が矩形の角パイプを屈曲
して作製されて居り、その一端は燃焼室Aに連通
すべく燃焼室体5の後壁に接続されている。 前記各燃焼室体5と各伝熱管2とは、ボイラ本
体3内の缶水に浸漬されて居り、各伝熱管2の他
端はボイラ本体3の下壁を貫通して外方へ突き出
ている。又、ボイラ本体3内の上方に形成された
蒸気室13には熱交換器4が配設されている。 尚、前記ボイラには減音対策が施されている。
即ち、送風機9の吸気口を含めて各パルス燃焼装
置1全体をカバー14で囲んで音がでないように
し、その開口部をボイラ本体3の下方に設置した
吸気減音器15と連通させている。又、各パルス
燃焼装置1の排気音が相互に打ち消されるように
伝熱管2の長さを変え、各伝熱管2の出口側をボ
イラ本体3の後方に設置した排気減音器16と連
通させている。 而して、パルス燃焼式ボイラは、ガス用フラツ
プ弁11を通つて混合室Bに供給されたガスと送
風機9により強制的に送気されて来た空気とを混
合室Bで混合し、点火電極7により着火すると、
最初の燃焼が行われる。このときの燃焼ガスは、
燃焼によつて生じた圧力により伝熱管2から排出
されると共に、缶水に熱を与える。その間、ガス
と空気は各フラツプ弁8,11が閉弁状態になつ
ている為、混合室Bへは流入しないようになつて
いる。 そして、排気慣性によつて燃焼ガスが排気さ
れ、燃焼室Aが負圧になると、各フラツプ弁8,
11が開弁状態になり、ガスと空気は混合室Bに
自然に吸引され、残留火焔により再着火されて燃
焼する。以後は前記と同様のサイクルが毎秒10〜
100回繰り返えされる。 尚、燃焼室Aと伝熱管2の断面形状が矩形で且
つ伝熱管2が屈曲していても、燃焼室Aの体積と
伝熱管2の断面積及び長さが適正な比率であれ
ば、安定したパルス燃焼を行える。下記の表はそ
の一例を示す。
(Field of industrial application) This invention uses gas as fuel, does not require air supply from a blower except during startup, and incorporates a pulse combustion device that has advantages such as high-load combustion and high thermal efficiency. Regarding pulse combustion boilers. (Prior Art) In recent years, boilers incorporating gas-fired pulse combustion devices, which lead to energy savings and high thermal efficiency, have been developed. FIG. 5 is a schematic vertical cross-sectional view of a conventional gas-fired pulse combustion boiler, which consists of a boiler body 17 in which canned water is stored, and a steam chamber 18 in the boiler body 17. It is composed of an exchanger 19, a gas-fired pulse combustion device 20 whose combustion chamber C is immersed in canned water in the boiler body 17, and a heat transfer tube 21 whose one end is immersed in canned water and communicates with the combustion chamber C. There is. Further, the first-stage pulse combustion device 20 includes a combustion chamber body 22 including a combustion chamber C, a mixing chamber body 23 connected to the front wall of the combustion chamber body 22, and a mixing chamber D communicating with the combustion chamber C. Ignition electrode 24 arranged in mixing chamber D
, an air flap valve 25 that intermittently supplies air to the mixing chamber D, a gas flap valve 26 that intermittently supplies gas to the mixing chamber D, and an ignition blower connected to the air flap valve 25. It consists of 27 mag.
City gas, propane gas, methane gas, etc. are used as fuel gas. Thus, the gas supplied to the mixing chamber D and the blower 2
7 is mixed with the air forcibly blown in in the mixing chamber D, and when the mixture is ignited by the ignition electrode 24, the first combustion occurs. The combustion gas at this time is discharged from the heat exchanger tube 21 due to the pressure generated by combustion, and gives heat to the canned water. During this time, gas and air do not flow into the mixing chamber D because the flap valves 25 and 26 are closed. Then, due to the exhaust inertia of the combustion gas, the combustion chamber C
When the pressure becomes negative, the flap valves 25 and 26 open, and the gas and air are naturally drawn into the mixing chamber D, where they are re-ignited by the residual flame and combust. Thereafter, the same cycle as above is repeated 10 to 100 times per second. However, in the boiler, the shape of the combustion chamber C is spherical or cylindrical, which is suitable for pulse combustion, and the heat transfer tube 21 is also a straight tube or a straight tube with a circular cross section to increase the inertia during exhaust. Since a coiled type with a large curvature was used, there was a problem that the canned water capacity increased. As a result, problems such as a longer startup time and difficulty in following sudden load fluctuations occurred. (Problems to be solved by the invention) The present invention was devised to solve the above problems, and its purpose is to provide a gas-fired pulse combustion boiler that can reduce the capacity of canned water. be. (Means for solving the problem) The present invention consists of a pulse combustion device 1 that uses gas as fuel.
A plurality of units consisting of a combination of a heat exchanger tube 2 and a heat exchanger tube 2 communicated with the combustion chamber A are arranged in parallel, and the combustion chamber A and the heat exchanger tube 2 of each unit are immersed in canned water in the boiler body 3. In a gas-fired pulse combustion boiler, the cross-sectional shapes of the combustion chamber A and the heat transfer tubes 2 are formed into a rectangular shape, and the heat transfer tubes 2 are bent multiple times in a canned water to form each heat transfer tube 2.
Exhaust sound attenuator 1 whose end is located below the front of the boiler body 3 and opens upward to the rear of the boiler body 3.
6, and furthermore, each pulse combustion device 1 is entirely surrounded by a cover 14, and communicated with an intake noise attenuator 15 provided at the lower part of the exhaust noise attenuator 16 below the boiler main body 3. This is the basic structure of the idea. (Operation) When the gas supplied to the mixing chamber and the air supplied are mixed in the mixing chamber and ignited by the ignition electrode, initial combustion occurs. The combustion gas at this time is discharged from the heat exchanger tube due to the pressure generated by combustion, and gives heat to the canned water. During this time, gas and air are prevented from entering the mixing chamber. Then, when the combustion chamber becomes negative pressure due to the exhaust inertia of the combustion gas, the gas and air are naturally drawn into the mixing chamber, and are re-ignited by the residual flame and combust. Thereafter, the same cycle as above is repeated. (Example) Hereinafter, an example of the present invention will be described in detail based on the drawings. FIG. 1 is a schematic longitudinal cross-sectional view of a gas-fired pulse combustion boiler showing an embodiment of the present invention, and the boiler consists of a gas-fired pulse combustion device 1, a heat exchanger tube 2, a boiler main body 3, a heat exchanger 4, etc. It is composed of
A plurality of pulse combustion devices 1 and heat exchanger tubes 2 are incorporated. The gas-fired pulse combustion device 1 includes a box-shaped combustion chamber body 5 having a combustion chamber A having a rectangular cross-sectional shape, and a mixing chamber B connected to the front wall of the combustion chamber body 5 and communicating with the combustion chamber A. an ignition electrode 7 disposed in the mixing chamber B, an air flap valve 8 that intermittently supplies air to the mixing chamber B, and an ignition electrode connected to the air flap valve 8. An air blower 9, an air intake distribution duct 1 which is interposed between the air flap valve 8 and the air blower 9 and distributes air to each air flap valve 8.
0, a gas flap valve 11 that intermittently supplies gas to the mixing chamber B, and a fuel valve 12 interposed between the gas flap valve 11 and the gas supply source. The heat exchanger tube 2 is made by bending a square pipe having a rectangular cross section, and one end thereof is connected to the rear wall of the combustion chamber body 5 so as to communicate with the combustion chamber A. Each combustion chamber body 5 and each heat transfer tube 2 are immersed in canned water in the boiler main body 3, and the other end of each heat transfer tube 2 penetrates the lower wall of the boiler main body 3 and protrudes outward. There is. Further, a heat exchanger 4 is disposed in a steam chamber 13 formed above within the boiler body 3. Note that the boiler is equipped with sound reduction measures.
That is, each pulse combustion device 1, including the intake port of the blower 9, is entirely surrounded by a cover 14 to prevent noise, and the opening thereof is communicated with an intake noise attenuator 15 installed below the boiler main body 3. . In addition, the length of the heat exchanger tubes 2 is changed so that the exhaust noise of each pulse combustion device 1 cancels each other out, and the outlet side of each heat exchanger tube 2 is communicated with an exhaust noise attenuator 16 installed at the rear of the boiler main body 3. ing. Thus, the pulse combustion boiler mixes the gas supplied to the mixing chamber B through the gas flap valve 11 and the air forcibly blown by the blower 9 in the mixing chamber B, and ignites the mixture. When ignited by electrode 7,
The first combustion takes place. The combustion gas at this time is
The pressure generated by the combustion causes the heat to be discharged from the heat transfer tube 2 and gives heat to the canned water. During this time, gas and air do not flow into the mixing chamber B because the flap valves 8 and 11 are closed. Then, when the combustion gas is exhausted due to exhaust inertia and the combustion chamber A becomes negative pressure, each flap valve 8,
11 is opened, gas and air are naturally drawn into the mixing chamber B, and are re-ignited and combusted by the residual flame. After that, the same cycle as above is repeated 10 to 10 times per second.
Repeated 100 times. Furthermore, even if the cross-sectional shapes of the combustion chamber A and the heat exchanger tubes 2 are rectangular and the heat exchanger tubes 2 are bent, if the volume of the combustion chamber A and the cross-sectional area and length of the heat exchanger tubes 2 are in an appropriate ratio, the stability will be maintained. Pulse combustion can be performed. The table below shows an example.

【表】【table】

【表】 又、一つのパルス燃焼装置1の燃焼量は、燃焼
室Aの大きさと伝熱管2の長さ等を一定の比率に
しているのと、消音の関係から3〜4万kcal/h
となつている。従つて、熱出力の大きい温水ボイ
ラは、パルス燃焼装置1と伝熱管2が複数個配設
されている。 (考案の効果) 上述の通り、本考案のガス焚きパルス燃焼式ボ
イラは、燃焼室と伝熱管の断面形状を矩形にする
と共に、伝熱管を屈曲させ、これらをボイラ本体
内の缶水に浸漬する構成とした為、缶水容量の低
減を図れる。その結果、本考案のボイラは、始動
時間を短縮できると共に、急激な負荷変動に対す
る追従も良く、放熱損失の低減を図れる等、省エ
ネボイラとして極めて優れたものとなる。
[Table] Also, the combustion amount of one pulse combustion device 1 is 30,000 to 40,000 kcal/h due to the relationship between the size of the combustion chamber A and the length of the heat transfer tube 2, etc., and noise reduction.
It is becoming. Therefore, a hot water boiler with a large thermal output is provided with a plurality of pulse combustion devices 1 and heat exchanger tubes 2. (Effects of the invention) As mentioned above, the gas-fired pulse combustion boiler of the invention has rectangular cross-sectional shapes of the combustion chamber and heat exchanger tubes, bends the heat exchanger tubes, and immerses them in canned water inside the boiler body. Because of this structure, the capacity of canned water can be reduced. As a result, the boiler of the present invention is extremely excellent as an energy-saving boiler, as it can shorten the starting time, follow sudden load changes well, and reduce heat radiation loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の実施例を示すガス焚きパルス
燃焼式ボイラの概略縦断面図、第2図は第1図の
−線断面図、第3図は燃焼室体と伝熱管をボ
イラ本体内の缶水に浸漬させた縦断面図、第4図
は第3図の−線断面図、第5図は従前のガス
焚きパルス燃焼式ボイラの概略縦断面図である。 1はパルス燃焼装置、2は伝熱管、3はボイラ
本体、Aは燃焼室。
Fig. 1 is a schematic vertical sectional view of a gas-fired pulse combustion boiler showing an embodiment of the present invention, Fig. 2 is a sectional view taken along the - line in Fig. 1, and Fig. 3 shows the combustion chamber body and heat transfer tubes inside the boiler body. FIG. 4 is a cross-sectional view taken along the line -- in FIG. 3, and FIG. 5 is a schematic vertical cross-sectional view of a conventional gas-fired pulse combustion boiler. 1 is a pulse combustion device, 2 is a heat exchanger tube, 3 is a boiler body, and A is a combustion chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガスを燃料とするパルス燃焼装置1とこれの燃
焼室Aに連通された伝熱管2との組み合わせから
なる複数のユニツトを並列状に備え、前記各ユニ
ツトの燃焼室A及び伝熱管2をボイラ本体3内の
缶水に浸漬させたガス焚きパルス燃焼式ボイラに
於いて、前記燃焼室A及び伝熱管2の断面形状を
矩形に形成すると共に前記伝熱管2を缶水内で複
数回折り畳み状に屈曲させ、各伝熱管2の末端を
ボイラ本体3の前部下方に於いて、ボイラ本体3
の後部上方へ開口せしめた排気減音器16内へ連
通させ、更に前記各パルス燃焼装置1の全体をカ
バー14により囲繞し、前記ボイラ本体3下方の
排気減音器16の下部に設けた吸気減音器15内
へ連通させるようにしたことを特徴とするガス焚
きパルス燃焼式ボイラ。
A plurality of units consisting of a combination of a pulse combustion device 1 using gas as fuel and heat exchanger tubes 2 communicated with the combustion chamber A thereof are arranged in parallel, and the combustion chamber A and the heat exchanger tubes 2 of each unit are connected to the boiler main body. In the gas-fired pulse combustion boiler immersed in canned water in the boiler, the cross-sectional shapes of the combustion chamber A and the heat exchanger tubes 2 are formed into a rectangular shape, and the heat exchanger tubes 2 are folded multiple times in the canned water. Bend the end of each heat exchanger tube 2 at the front lower part of the boiler body 3.
A cover 14 surrounds each of the pulse combustion devices 1, and an air intake provided at the bottom of the exhaust silencer 16 below the boiler main body 3 communicates with the exhaust silencer 16 opened upward at the rear of the boiler body 3. A gas-fired pulse combustion boiler characterized in that the boiler communicates with the inside of a sound attenuator 15.
JP1985044693U 1985-03-27 1985-03-27 Expired JPH0412322Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985044693U JPH0412322Y2 (en) 1985-03-27 1985-03-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985044693U JPH0412322Y2 (en) 1985-03-27 1985-03-27

Publications (2)

Publication Number Publication Date
JPS61161503U JPS61161503U (en) 1986-10-06
JPH0412322Y2 true JPH0412322Y2 (en) 1992-03-25

Family

ID=30557499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985044693U Expired JPH0412322Y2 (en) 1985-03-27 1985-03-27

Country Status (1)

Country Link
JP (1) JPH0412322Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551779Y2 (en) * 1991-01-21 1997-10-27 大阪瓦斯株式会社 Furnace smoke tube boiler

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479302A (en) * 1977-11-22 1979-06-25 Interliz Anstalt Heating boiler
JPS593135B2 (en) * 1978-02-13 1984-01-23 松下電器産業株式会社 Manufacturing method of molding mold
JPS5974410A (en) * 1982-10-19 1984-04-26 Osaka Gas Co Ltd Heating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145101U (en) * 1981-03-03 1982-09-11
JPS593135U (en) * 1982-06-25 1984-01-10 大阪瓦斯株式会社 Fluid heating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479302A (en) * 1977-11-22 1979-06-25 Interliz Anstalt Heating boiler
JPS593135B2 (en) * 1978-02-13 1984-01-23 松下電器産業株式会社 Manufacturing method of molding mold
JPS5974410A (en) * 1982-10-19 1984-04-26 Osaka Gas Co Ltd Heating device

Also Published As

Publication number Publication date
JPS61161503U (en) 1986-10-06

Similar Documents

Publication Publication Date Title
JPS5895143A (en) Hot water supply machine of pulse combustion system
US4568264A (en) Combustion chamber construction
GB1586216A (en) Boiler with a hot-gas generator for liquid or gaseous fuels
JPS57131957A (en) Water heater by catalytic combustion burning
JPH0412322Y2 (en)
CN2328940Y (en) Vertical steam water boiler
CN218583150U (en) Low-nitrogen gas boiler
CN218443451U (en) Water pipe type steam boiler
CN217816702U (en) Novel steam generator
CN2387456Y (en) Boiler
CN214249537U (en) Novel low-nitrogen steam boiler
CN214536854U (en) Full-wet back type ultralow-nitrogen vacuum boiler with built-in combustor
CN214536855U (en) Full wet back type ultralow nitrogen condensation vacuum boiler
JPH02213646A (en) Liquid heater device
RU2137049C1 (en) Hot-water boiler
CN2303241Y (en) Direct combustion lithium bromide absorption refrigerator's high pressure generator structure
JPS6026244Y2 (en) oil fired boiler
JPS6143181Y2 (en)
JPS621653Y2 (en)
WO2021031435A1 (en) Ultra-low nitrogen gas steam boiler
GB2220052A (en) Water heater for caravans
JPS61217608A (en) Kerosine burning pulse combustion device
JPS591162Y2 (en) combustion device
JP2574831Y2 (en) Combustion machine
JPS6347702Y2 (en)