JPH04128528A - Air-fuel ratio controller of alcohol engine - Google Patents
Air-fuel ratio controller of alcohol engineInfo
- Publication number
- JPH04128528A JPH04128528A JP2248649A JP24864990A JPH04128528A JP H04128528 A JPH04128528 A JP H04128528A JP 2248649 A JP2248649 A JP 2248649A JP 24864990 A JP24864990 A JP 24864990A JP H04128528 A JPH04128528 A JP H04128528A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- engine
- fuel
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 70
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000001301 oxygen Substances 0.000 claims abstract description 12
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 45
- 238000011144 upstream manufacturing Methods 0.000 abstract description 4
- 230000003197 catalytic effect Effects 0.000 abstract description 2
- 229910052703 rhodium Inorganic materials 0.000 abstract 1
- 239000010948 rhodium Substances 0.000 abstract 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 abstract 1
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 238000010586 diagram Methods 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- 239000003502 gasoline Substances 0.000 description 4
- 239000000567 combustion gas Substances 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1473—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
- F02D41/1475—Regulating the air fuel ratio at a value other than stoichiometry
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/082—Premixed fuels, i.e. emulsions or blends
- F02D19/084—Blends of gasoline and alcohols, e.g. E85
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/06—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
- F02D19/08—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
- F02D19/082—Premixed fuels, i.e. emulsions or blends
- F02D19/085—Control based on the fuel type or composition
- F02D19/087—Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0611—Fuel type, fuel composition or fuel quality
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、アルコール含有燃料を使用するアルコールエ
ンジンの空燃費制御装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air/fuel efficiency control device for an alcohol engine that uses alcohol-containing fuel.
(従来の技術〉
通常のガソリンエンジン、アルコールエンジンにかかわ
らず、一般に、エンジンにおける空燃比制御は、単位エ
ンジン回転数当たりの吸入空気量や吸気管内圧に代表さ
れるエンジンの運転状態に応じて決定される基本燃料噴
射t(時間)に、エンジン温度補正係数やフィードバッ
ク補正係数等の種々の空燃補正係数を積算して目標燃料
噴射量(時間)を演算し、これにより空燃比が常に理論
空燃比となるようにフィードバック制御されている。そ
して、上記フィードバック補正係数は、酸素センサ(以
下、○、セセンと呼ぶ)で検出された排ガス中の酸素濃
度【二基づき判定された空燃比が理論空燃比(14,7
)より小さい(リッチ側)ときには減少され、大きい(
リーン側)ときには、増大されるようになっている。(Prior art) Regardless of whether it is a regular gasoline engine or an alcohol engine, the air-fuel ratio control in the engine is generally determined according to the engine operating state represented by the intake air amount per unit engine speed and the intake pipe internal pressure. The target fuel injection amount (time) is calculated by integrating various air-fuel correction coefficients such as the engine temperature correction coefficient and feedback correction coefficient on the basic fuel injection t (time), which ensures that the air-fuel ratio is always at the stoichiometric level. The feedback correction coefficient is determined based on the oxygen concentration in the exhaust gas detected by the oxygen sensor (hereinafter referred to as ○). Fuel ratio (14,7
) is reduced when smaller (rich side) and larger (
Lean side) is sometimes increased.
ところで、エンジンにふいで使用する燃料にアルコール
が混合されている場合、このアルコール含有燃料の燃焼
ガス中に含まれる水素(H2)量は、通常のガソリンの
燃焼ガスに含まれるH2量よりも多くなるたぬ、H2と
02の拡散速度の差によって、02センプの反応界面の
ガス濃度が変化し、その結果、第6図に1点鎖線で示し
たように、02センサ出力特性がリーン側にソフトする
、というリーンソフト現象が発生する。このようにリー
ンソフトが発生した場合、フィードバック制御するこき
によって、排ガス浄化装置である3元触媒装置の要求空
燃比よりもリーン側に制御してしまうことになり、NO
,浄化率が低下するという問題が発生ずる。By the way, when alcohol is mixed in the fuel used to wipe the engine, the amount of hydrogen (H2) contained in the combustion gas of this alcohol-containing fuel is greater than the amount of H2 contained in the combustion gas of ordinary gasoline. Due to the difference in diffusion rate between H2 and 02, the gas concentration at the reaction interface of the 02 senpu changes, and as a result, the 02 sensor output characteristics shift to the lean side, as shown by the dashed line in Figure 6. The lean-soft phenomenon occurs. If lean soft occurs in this way, the feedback control will result in the control being leaner than the required air-fuel ratio of the three-way catalytic converter, which is an exhaust gas purification device, and the NO
, the problem arises that the purification rate decreases.
そこで、特開平1−244133号公報においては、燃
焼ガス中のH2の量が増大する燃料中のアルコール濃度
が高い程、空燃比をリッチ側に補正して、上記02セン
力のリーンソフト分を補償する燃料噴射制御装置を提案
している。この特開平1−244 ]、 33号公報に
開示された燃料噴射制御装置によれば、燃料自体のアル
コール濃度の大小による02センサのリーンソフト分は
有効に補正できる。Therefore, in JP-A-1-244133, as the alcohol concentration in the fuel increases and the amount of H2 in the combustion gas increases, the air-fuel ratio is corrected to the rich side to reduce the lean soft portion of the 02 senforce. We are proposing a fuel injection control device that compensates. According to the fuel injection control device disclosed in Japanese Unexamined Patent Application Publication No. 1-244 and No. 33, it is possible to effectively correct the lean softness of the 02 sensor due to the alcohol concentration of the fuel itself.
(発明が解決しようとする課題)
しかしながら、燃料のアルコール濃度に応じて02セン
サのリーンノット分を補償しても、空燃比がリーン側に
制御されてしまい、触媒装置が有効に働かない場合があ
った。(Problem to be Solved by the Invention) However, even if the lean knot of the 02 sensor is compensated according to the alcohol concentration of the fuel, the air-fuel ratio will be controlled to the lean side, and the catalyst device may not work effectively. there were.
cg!!題を解決するたぬの手段等)
上記原因を発明者らが、誠意研究した止ころ、エンジン
の負荷が小さい場合には、充填効率が低く、空気吸入量
が少ないため、燃焼ガス中のH7濃度が大きくなり、こ
れが原因で、上記と同様に、02センサのリーンソフト
が生じていることが知見された。cg! ! The inventors have sincerely researched the cause of the above problem. It was found that the concentration increased, and this caused lean softness in the 02 sensor, similar to the above.
本発明は、この知見に基づくもので、アルコール含有燃
料を使用するエンジンが排出する排ガス中の酸素濃度を
酸素検出手段により検出し、この検出した酸素濃度に基
づいて、空燃比を理論空燃比に近づくよう制御するアル
コールエンジンの空燃費制御装置において、エンジン負
荷を検圧する負荷検出手段、およびこの負荷検出手段が
検出するエンジン負荷に応じて空燃比をリッチ側へ補正
するとともに、エンジン負荷が小さい時は大きい時に対
して、上記リッチ側への補正の度合を大きくする補正手
段を備えていることを特徴とするものである。The present invention is based on this knowledge, and uses an oxygen detection means to detect the oxygen concentration in exhaust gas emitted by an engine that uses alcohol-containing fuel, and adjusts the air-fuel ratio to the stoichiometric air-fuel ratio based on the detected oxygen concentration. In an air/fuel efficiency control device for an alcohol engine, the air/fuel ratio is corrected to the rich side according to the load detection means for detecting the engine load and the engine load detected by the load detection means, and when the engine load is small. The present invention is characterized by comprising a correction means for increasing the degree of correction toward the rich side when the amount is large.
(作 用)
以上説明した本発明のアルコールエンジンの空燃費制御
装置によれば、エンジン負荷に応じて、空燃比のリッチ
側への補正を行うようにしたので、02センサのリーン
ソフトに町る空燃比のリーン側への制御を予め防止する
ことができ、その結果、空燃比を常に理論空燃比に近い
値とすることができる。(Function) According to the air/fuel efficiency control device for an alcohol engine of the present invention described above, the air/fuel ratio is corrected to the rich side according to the engine load, so that the lean softness of the 02 sensor is reduced. Control of the air-fuel ratio toward the lean side can be prevented in advance, and as a result, the air-fuel ratio can always be kept at a value close to the stoichiometric air-fuel ratio.
(実施例)
以下、添付図面を参照しつつ、本発明の好ましい実施例
によるアルコールエンジンの空燃費制御装置について説
明する。なお、当該エンジンには、アルコール濃度が0
%から100%の燃料が用いられるようになっている。(Embodiment) Hereinafter, an air/fuel efficiency control device for an alcohol engine according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings. Note that the engine has an alcohol concentration of 0.
% to 100% fuel is used.
第1図は、本発明の実施例による空燃費制御装置を組み
込んだアルコールエンジンの概略図である。FIG. 1 is a schematic diagram of an alcohol engine incorporating an air/fuel efficiency control device according to an embodiment of the present invention.
この図において、符号1はエンジン本体を示し、このエ
ンジン本体1には、通常のガソリンエンジンと同様、吸
気通路2および排気通路3が接続されている。上記吸気
通路2には、燃料を噴射するたぬのインジェクタ4が設
けられている。このインジェクタ4には、燃料タンク5
がら該インジェクタ4に燃料を供給するための燃料バイ
ブロが接続されている。この燃料バイブロの先端には、
燃料ポンプ7が設けられ、この燃料ポンプ7によって燃
料タンク6中の燃料を圧送するようになっている。In this figure, reference numeral 1 indicates an engine body, and an intake passage 2 and an exhaust passage 3 are connected to the engine body 1, as in a normal gasoline engine. The intake passage 2 is provided with an injector 4 that injects fuel. This injector 4 has a fuel tank 5
A fuel vibro for supplying fuel to the injector 4 is also connected. At the tip of this fuel vibro,
A fuel pump 7 is provided, and the fuel in the fuel tank 6 is pumped by this fuel pump 7.
上記燃料バイブロには、上流側から順に、燃料フィルタ
8、メタノールセンサ9および燃料圧力調整器10が設
けられている。上記メタノールセンサ9は、燃料タンク
5から供給されてくる燃料中のアルコール濃度を測定す
るためのものであり、例えば光学式のものが用いられる
。また、上記燃料圧力調整器10は、燃料圧力を常に一
定のものとして、−上記インジェクタ4の開弁時間の制
御により、燃料噴射量の制御を精度良く行えるようにす
るだめのものである。The fuel vibro is provided with a fuel filter 8, a methanol sensor 9, and a fuel pressure regulator 10 in this order from the upstream side. The methanol sensor 9 is for measuring the alcohol concentration in the fuel supplied from the fuel tank 5, and is of an optical type, for example. Further, the fuel pressure regulator 10 is used to keep the fuel pressure constant at all times and to control the fuel injection amount with high accuracy by controlling the valve opening time of the injector 4.
l、記吸気IIi路2のインジェクタ4の上流側に;ま
、更にスロットルバルブ11および熱線式エアフロメー
タ12が設けらtでおり、一方、排気通路1うには、N
O,浄化のだ?l〕の3元触媒装ff113が配置され
ており、この3元触媒装置13の上流側二は、排ガス中
の酸素濃度を検出するための○。A throttle valve 11 and a hot wire air flow meter 12 are further provided on the upstream side of the injector 4 in the intake passage IIi 2;
O, purification? A three-way catalyst device ff113 is arranged, and the upstream side 2 of this three-way catalyst device 13 is a circle for detecting the oxygen concentration in the exhaust gas.
センサ14が設けられている。また、上記エンジン本体
lには、点火ブらグ15が設けられている。A sensor 14 is provided. Further, the engine main body l is provided with an ignition plug 15.
上記インジェクタ4には、このインジェクタによる燃料
噴射量および噴射タイミング等を制飢するためのマイク
ロコンピュータ等からなるコントロールユニット16が
接続されでいる。このコントロールコ7ニソト161こ
は、また、Fε己メタツルセン4j9、エアフローメー
タ12.02センシ14の他、エンジンの運転状態を示
す冷却水温センサ、エンジン回転数センサ等のその他の
センサ17に接続され、これらのセンサからの出力信号
を受け、これら出力信号に応じてインジェクタ4を制御
する。A control unit 16 comprising a microcomputer or the like is connected to the injector 4 to control the fuel injection amount and injection timing by the injector. This control unit 161 is also connected to the Fε self-metasursen 4j9, air flow meter 12.02 sensor 14, and other sensors 17 such as a cooling water temperature sensor and an engine rotation speed sensor that indicate the operating status of the engine. Output signals from these sensors are received and the injector 4 is controlled according to these output signals.
次に、第2図のフロー千ヤ−[・を参照しつつ、このコ
ントロールユニット161=よるインジェクタ4の制御
についで詳細に説明する。Next, the control of the injector 4 by the control unit 161 will be explained in detail with reference to the flowchart shown in FIG.
この制御にあたっては先ず、ステップS1で、エンジン
回転数N1吸入空気量Qa、エンジン冷却水温TW、メ
タノール濃度MR,酸素濃度V等を読み込む。次参で、
ステップS2で、基本噴射パルス幅Tpを、次式に基づ
いて演算する。In this control, first, in step S1, engine speed N1 intake air amount Qa, engine cooling water temperature TW, methanol concentration MR, oxygen concentration V, etc. are read. Next time,
In step S2, the basic injection pulse width Tp is calculated based on the following equation.
Tp=に−Qa/N ここで、Kは上比例定数である。Tp=to-Qa/N Here, K is an upper proportionality constant.
続いて、ステップS3で、このように演算された基本噴
射パルス幅Tpとエンジン回転数Nが所定値以下のフィ
ードバック制御ゾーンにあるか、および水温TWが所定
温度以上かを判断することによ、って、フィードバック
制御条イ1−が整っているかを判定する。この判定がY
ESのときには、ステップS4て、酸素濃度Vに基づく
実際の空燃比と理論空燃比との間の偏差に応じてフィー
ドバック制御のための積分制御の積分定数くフィードバ
ックゲイン)および比例制御の比例定数すなわち制御定
数を演算する。Next, in step S3, it is determined whether the basic injection pulse width Tp and engine speed N calculated in this way are in the feedback control zone below a predetermined value, and whether the water temperature TW is above a predetermined temperature. Then, it is determined whether the feedback control line 1- is in place. This judgment is Y
At the time of ES, in step S4, an integral constant (feedback gain) of integral control and a proportional constant (feedback gain) of integral control for feedback control and a proportional constant (i.e. Calculate control constants.
この制御定数の演算の後は、ステップS5で、リーンデ
イレ−時間くリッチからリーンに移行する際のデイレ−
時間)TII+1を演算する。この演算は、エンジン負
荷に比例する吸入空気IQaを、第3図に示したような
負荷特性定数に、−吸入空% 量Q a特性線A、(コ
ントロールユニット16内にマツプとして予め記憶され
ている)に照らして負荷特性定数に、を決定し、また、
メタノール濃度MRを、第4図に示したようなメタノー
ル濃度特性定数に2−メタノール濃度MR特性線l。After calculating this control constant, in step S5, the lean delay time and the delay when transitioning from rich to lean are determined.
Time) Calculate TII+1. This calculation converts the intake air IQa, which is proportional to the engine load, into a load characteristic constant as shown in FIG. Determine the load characteristic constants in the light of
The methanol concentration MR is expressed as a 2-methanol concentration MR characteristic line l using a methanol concentration characteristic constant as shown in FIG.
(コントロールユニット16内にマツプとして予め記憶
されている)に照らしてメタノール濃度特性定数に2を
決定する。なお、ここで、負荷特性定数に、は、吸入空
気il Q aすなわちエンジン負荷が大きくなる程小
さくされており、負荷の小ささに比例するHlの発生量
の増大に応じている。(previously stored as a map in the control unit 16), the methanol concentration characteristic constant is determined to be 2. Here, the load characteristic constant is made smaller as the intake air ilQa, that is, the engine load becomes larger, and corresponds to the increase in the amount of Hl generated which is proportional to the smaller load.
また、メタノール濃度特性定数に2は、メタノール濃度
MRすなわち燃料中のアルコール濃度が大きくなる程大
きくされでま)す、メタノール濃度MRが大きくなる程
多くなるH3の発生fit:応じている。次いで、実際
のデイレ−時間T LRIを次式・
T LRI = T I−ao X K + X K
2ここで、T LROはガソリンにおけるデイレ−時間
で演算する。従って、実際のデイレ−時間TLRは、吸
入空気量Q、 aが小さし)程、またメタノール濃度M
Rが大きい程、大きくなるように設定される。なお、デ
イレ−時間”rta+を長くする程、実際の空燃比はリ
ッチ側1こ制御される。Further, the methanol concentration characteristic constant 2 increases as the methanol concentration MR, that is, the alcohol concentration in the fuel increases, and the generation of H3 increases as the methanol concentration MR increases. Next, calculate the actual delay time T LRI using the following formula: T LRI = T I - ao X K + X K
2 Here, T LRO is calculated using the delay time for gasoline. Therefore, the actual delay time TLR will change as the intake air amount Q,a becomes smaller and as the methanol concentration M
The larger R is, the larger the value is set. Note that the longer the delay time "rta+", the more the actual air-fuel ratio is controlled to the rich side.
この後、ステップS6で、上記デイレ−時間TLRIを
勘案して、フィードバック補正係数CF、を演算し、次
いで、ステップs7で、最終噴射バルス幅T1を次式に
基づ参で演算する。Thereafter, in step S6, a feedback correction coefficient CF is calculated taking into account the delay time TLRI, and then, in step s7, the final injection pulse width T1 is calculated based on the following equation.
T i =T p・(1+CFB=、 CIIT+ C
EN) + TVここで、CWTは冷却水温補正係数、
Cいはメタノール濃度補正係数、TVはバッテリによる
無効噴射時間である。T i =T p・(1+CFB=, CIIT+C
EN) + TV Here, CWT is the cooling water temperature correction coefficient,
C is the methanol concentration correction coefficient, and TV is the invalid injection time by the battery.
最後に、ステップS8で噴射時期かを判定して噴射時期
が来たとき、ステップS9で、上記最終噴射パルス輻T
1で実際の噴射制御を行って、lルーチンの制御を終了
する。なお、ステップS3での判定がNOのとき、すな
わちフィードバック制御条件が整っていないときには、
ステップs10で、CFIIを1として、その後、ステ
ップ571=移行して、ステップS8、ステップS9を
行って、1ルーチンの制御を終了する。Finally, in step S8, it is determined that it is the injection timing, and when the injection timing has arrived, in step S9, the final injection pulse intensity T
In step 1, actual injection control is performed, and the control of the l routine is completed. Note that when the determination in step S3 is NO, that is, when the feedback control conditions are not set,
In step s10, the CFII is set to 1, and then the process moves to step 571, and steps S8 and S9 are performed to complete the control of one routine.
以上の制御をタイムチャートで示す出、第5図のように
なる。すなわち、02センサ14の出力がリーンからリ
ッチに反転したとしても、判定の欄に示したように、リ
ッチ反転をデイレ−時間TLll+遅らせ、この時間T
ta+ !J ンチ側への制御を続け、これによって、
02センサ14のリーンシフト分を補償し、空燃比制御
を正確に行う1、(発明の効果)
以上説明したように、本発明によれば、エンジン負荷の
大きさに応じて、空燃比をリッチ側に補正することによ
り、同一アルコール濃度であっても、エンジン負荷1−
よって水素の発生量が異なり、02センヅの出力特性の
ずれ度合が異なり、実際の空燃比が理論空燃比からずれ
ることを防止することができる。The above control is shown in a time chart as shown in FIG. That is, even if the output of the 02 sensor 14 is reversed from lean to rich, as shown in the judgment column, the rich reversal is delayed by delay time TLll+, and this time T
Ta+! J continues to control the side, thereby
1. (Effects of the Invention) As explained above, according to the present invention, the air-fuel ratio is richly adjusted according to the magnitude of the engine load. By correcting to the side, even if the alcohol concentration is the same, the engine load 1-
Therefore, the amount of hydrogen generated is different, the degree of deviation in the output characteristics of the 2nd generation is different, and it is possible to prevent the actual air-fuel ratio from deviation from the stoichiometric air-fuel ratio.
第1図は、本発明の実施例に誹る空燃比側81+装置を
組み込んだアルコールエンジンの概略図、第2図は、上
記空燃費制御装置における空燃比制御を説明するたぬの
フローチャート図、第3図は、負荷特性定数−吸入空気
量特性線を示すマツプ図、
第4図は、メタノール濃度特性定数−メタノール濃度特
性線を示すマツプ図、
第5図は、上記空燃比制御を説明するためのタイムチャ
ート図、
第6図は、水素による酸素センサの出力への影響を示す
グラフ図である。
1 エンジン本体
2 吸気通路
3 排気通路
4 インジェクタ
5 燃料タンク
9 メタノールセンサ
12 エアフローメータ
13 触媒装置
14 0、センサ
16 コントロールユニットFIG. 1 is a schematic diagram of an alcohol engine incorporating an air-fuel ratio side 81+ device according to an embodiment of the present invention, and FIG. 2 is a flowchart diagram illustrating air-fuel ratio control in the air-fuel ratio control device. Fig. 3 is a map diagram showing the load characteristic constant - intake air amount characteristic line, Fig. 4 is a map diagram showing the methanol concentration characteristic constant - methanol concentration characteristic line, and Fig. 5 explains the above air-fuel ratio control. Figure 6 is a graph showing the influence of hydrogen on the output of the oxygen sensor. 1 Engine body 2 Intake passage 3 Exhaust passage 4 Injector 5 Fuel tank 9 Methanol sensor 12 Air flow meter 13 Catalyst device 14 0, sensor 16 Control unit
Claims (1)
ガス中の酸素濃度を酸素検出手段により検出し、この検
出した酸素濃度に基づいて、空燃比を理論空燃比に近づ
くよう制御するアルコールエンジンの空燃費制御装置に
おいて、エンジン負荷を検出する負荷検出手段、および
この負荷検出手段が検出するエンジン負荷に応じて空燃
比をリッチ側へ補正するとともに、エンジン負荷が小さ
い時は大きい時に対して、前記リッチ側への補正の度合
を大きくする補正手段を備えていることを特徴とするア
ルコールエンジンの空燃比制御装置。An air/fuel efficiency control device for an alcohol engine that detects the oxygen concentration in exhaust gas emitted by an engine that uses alcohol-containing fuel using an oxygen detection means, and controls the air-fuel ratio to approach the stoichiometric air-fuel ratio based on the detected oxygen concentration. load detection means for detecting the engine load, and correcting the air-fuel ratio to the rich side according to the engine load detected by the load detection means, and correcting the air-fuel ratio to the rich side when the engine load is small compared to when it is large. An air-fuel ratio control device for an alcohol engine, comprising a correction means for increasing the degree of correction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248649A JPH04128528A (en) | 1990-09-20 | 1990-08-06 | Air-fuel ratio controller of alcohol engine |
US07/763,241 US5249130A (en) | 1990-09-20 | 1991-09-20 | Air-fuel ratio control apparatus for an alcohol engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248649A JPH04128528A (en) | 1990-09-20 | 1990-08-06 | Air-fuel ratio controller of alcohol engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04128528A true JPH04128528A (en) | 1992-04-30 |
Family
ID=17181267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2248649A Pending JPH04128528A (en) | 1990-09-20 | 1990-08-06 | Air-fuel ratio controller of alcohol engine |
Country Status (2)
Country | Link |
---|---|
US (1) | US5249130A (en) |
JP (1) | JPH04128528A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177637A (en) * | 2005-12-27 | 2007-07-12 | Toyota Motor Corp | Fuel supply device for internal combustion engine |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5297064A (en) * | 1991-04-01 | 1994-03-22 | General Motors Corporation | Sensor lag compensation |
US5492106A (en) * | 1994-12-27 | 1996-02-20 | Ford Motor Company | Jump-hold fuel control system |
US5988140A (en) * | 1998-06-30 | 1999-11-23 | Robert Bosch Corporation | Engine management system |
JP4270534B2 (en) | 2000-10-12 | 2009-06-03 | ヤマハモーターエレクトロニクス株式会社 | Internal combustion engine load detection method, control method, ignition timing control method, and ignition timing control device |
US6892702B2 (en) * | 2000-10-12 | 2005-05-17 | Kabushiki Kaisha Moric | Ignition controller |
US6832598B2 (en) | 2000-10-12 | 2004-12-21 | Kabushiki Kaisha Moric | Anti-knocking device an method |
US6640777B2 (en) | 2000-10-12 | 2003-11-04 | Kabushiki Kaisha Moric | Method and device for controlling fuel injection in internal combustion engine |
US6895908B2 (en) * | 2000-10-12 | 2005-05-24 | Kabushiki Kaisha Moric | Exhaust timing controller for two-stroke engine |
US20030168028A1 (en) * | 2000-10-12 | 2003-09-11 | Kaibushiki Kaisha Moric | Oil control device for two-stroke engine |
US6931839B2 (en) * | 2002-11-25 | 2005-08-23 | Delphi Technologies, Inc. | Apparatus and method for reduced cold start emissions |
JP2008144723A (en) * | 2006-12-13 | 2008-06-26 | Toyota Motor Corp | Control device for internal combustion engine |
JP4775336B2 (en) * | 2007-06-27 | 2011-09-21 | トヨタ自動車株式会社 | Exhaust gas sensor heater control device |
JP4889669B2 (en) * | 2008-03-06 | 2012-03-07 | 本田技研工業株式会社 | Fuel supply device |
JP5951388B2 (en) * | 2012-07-24 | 2016-07-13 | 日立オートモティブシステムズ株式会社 | Control device for internal combustion engine |
JP6507824B2 (en) * | 2015-04-27 | 2019-05-08 | 三菱自動車工業株式会社 | Engine control device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62111143A (en) * | 1985-11-09 | 1987-05-22 | Toyota Motor Corp | Air-fuel ratio controller |
JPH0689690B2 (en) * | 1987-03-18 | 1994-11-09 | 株式会社ユニシアジェックス | Air-fuel ratio learning controller for internal combustion engine |
JP2591045B2 (en) * | 1988-03-26 | 1997-03-19 | トヨタ自動車株式会社 | Fuel injection control device for alcohol-containing fuel internal combustion engine |
JP2545438B2 (en) * | 1988-04-26 | 1996-10-16 | 株式会社日立製作所 | Fuel supply amount control device |
JP2742431B2 (en) * | 1988-10-07 | 1998-04-22 | 富士重工業株式会社 | Engine air-fuel ratio control device |
JPH02104930A (en) * | 1988-10-13 | 1990-04-17 | Fuji Heavy Ind Ltd | Device for controlling fuel injection of internal combustion engine |
JPH06100124B2 (en) * | 1989-01-09 | 1994-12-12 | 日産自動車株式会社 | Air-fuel ratio controller for alcohol internal combustion engine |
JPH0715272B2 (en) * | 1989-04-28 | 1995-02-22 | 日産自動車株式会社 | Air-fuel ratio controller for internal combustion engine |
JPH0331547A (en) * | 1989-06-27 | 1991-02-12 | Mitsubishi Motors Corp | Air-fuel ratio controller for internal combustion engine |
US5090389A (en) * | 1989-10-09 | 1992-02-25 | Ota Tadaki | Fuel delivery control apparatus for engine operable on gasoline/alcohol fuel blend |
JPH03206331A (en) * | 1989-10-24 | 1991-09-09 | Fuji Heavy Ind Ltd | Fuel injection quantity control device of engine for flexible fuel vehicle |
US5050561A (en) * | 1990-03-12 | 1991-09-24 | Japan Electronic Control Systems Company | Air/fuel ratio control system for internal combustion engine with a high degree of precision in derivation of engine driving condition dependent correction coefficient for air/fuel ratio control |
-
1990
- 1990-08-06 JP JP2248649A patent/JPH04128528A/en active Pending
-
1991
- 1991-09-20 US US07/763,241 patent/US5249130A/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007177637A (en) * | 2005-12-27 | 2007-07-12 | Toyota Motor Corp | Fuel supply device for internal combustion engine |
JP4696904B2 (en) * | 2005-12-27 | 2011-06-08 | トヨタ自動車株式会社 | Fuel supply device for internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
US5249130A (en) | 1993-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04128528A (en) | Air-fuel ratio controller of alcohol engine | |
JPS647217B2 (en) | ||
JPH07229439A (en) | Air-fuel ratio control device of internal combustion engine | |
JPH07269394A (en) | Fuel injection controller | |
KR940008273B1 (en) | Fuel controller | |
JP3006304B2 (en) | Air-fuel ratio controller for multi-fuel engines | |
JPH03275954A (en) | Control device for air-fuel ratio of internal combustion engine using fuel of different kind | |
JPH041439A (en) | Air-fuel ratio controller of internal combustion engine | |
JP2596054Y2 (en) | Air-fuel ratio feedback control device for internal combustion engine | |
JP2961971B2 (en) | Fuel injection amount control device for internal combustion engine | |
JP3612785B2 (en) | Control device for internal combustion engine | |
JPH0337344A (en) | Electronical fuel injection controller for internal combustion engine | |
JP2958595B2 (en) | Air-fuel ratio feedback control device for internal combustion engine | |
JPH04128529A (en) | Air-fuel ratio controller of alcohol engine | |
JPS63205443A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3593388B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPS5949346A (en) | Air-fuel ratio control device of internal-combustion engine of electronically controlled fuel injection type | |
JPH0443833A (en) | Fuel supply device for internal combustion engine | |
JPS6050246A (en) | Device for controlling learning upon idling in internal- combustion engine | |
JPS60164636A (en) | Air-fuel ratio control valve in engine | |
JPS62103435A (en) | Suction device for engine | |
JPH08338292A (en) | Method for controlling fuel injection quantity of internal combustion engine | |
JPH0328576B2 (en) | ||
JPH04255543A (en) | Air-fuel ratio control device for alcohol-contained fuel engine | |
JPH0291439A (en) | Air-fuel ratio controller of engine |