JPH0412484B2 - - Google Patents
Info
- Publication number
- JPH0412484B2 JPH0412484B2 JP57077941A JP7794182A JPH0412484B2 JP H0412484 B2 JPH0412484 B2 JP H0412484B2 JP 57077941 A JP57077941 A JP 57077941A JP 7794182 A JP7794182 A JP 7794182A JP H0412484 B2 JPH0412484 B2 JP H0412484B2
- Authority
- JP
- Japan
- Prior art keywords
- main circuit
- power
- capacitor
- circuit
- reactive power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims description 38
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/30—Reactive power compensation
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
Description
【発明の詳細な説明】
この発明は、変電所等に設置される無効電力補
償装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reactive power compensator installed in a substation or the like.
第1図にこの種の無効電力補償装置の従来例を
示す。1,1は発電所の発電機、2,2は電力系
統の2回線送電線、3,3は事故回線を切離す為
のしや断器、4は上記発電所問即ち系統の中間点
(変電所位置)、5は無効電力補償装置である。6
は電力用コンデンサ、7はリアクトル及び8は電
流制御器であつてこの3者により無効電力補償装
置5の主回路が構成される。電流制御器8は位相
制御される逆並列のサイリスタ8aと8bからな
り、リアクトル7に直列接続されている。9は電
圧変成器、10は電圧検出器である。電圧検出器
10は中間点4の電圧(実効値)に対応する大き
さの電圧信号(直流)Vを出力する。11は加算
器であつて電圧信号Vと電圧基準信号Vrefを図
示極性に加算し、電圧偏差信号△V=Vref−V
を位相制御器12に供給する。位相制御器12は
K/1+TSなる伝達関数で表わされる特性を有
し、電圧偏差信号△VをK倍して出力する。ここ
でKはゲイン、Tは時定数である。13はゲート
信号発生器であつて、位相制御器12が出力する
位相制御信号K,△Vに対応する系統電圧の位相
でサイリスタ8a,8bのゲート信号を発生す
る。 FIG. 1 shows a conventional example of this type of reactive power compensator. 1, 1 is the generator of the power plant, 2, 2 is the two-circuit transmission line of the power system, 3, 3 is the disconnector for disconnecting the faulty line, and 4 is the middle point of the power plant, that is, the middle point of the system ( 5 is a reactive power compensator. 6
1 is a power capacitor, 7 is a reactor, and 8 is a current controller, and these three components constitute the main circuit of the reactive power compensator 5. The current controller 8 consists of phase-controlled antiparallel thyristors 8a and 8b, and is connected in series to the reactor 7. 9 is a voltage transformer, and 10 is a voltage detector. The voltage detector 10 outputs a voltage signal (DC) V having a magnitude corresponding to the voltage (effective value) at the intermediate point 4. 11 is an adder which adds the voltage signal V and the voltage reference signal Vref to the indicated polarity, and generates a voltage deviation signal ΔV=Vref−V
is supplied to the phase controller 12. The phase controller 12 has a characteristic expressed by a transfer function of K/1+TS, and outputs the voltage deviation signal ΔV multiplied by K. Here, K is a gain and T is a time constant. A gate signal generator 13 generates gate signals for the thyristors 8a and 8b at the phase of the system voltage corresponding to the phase control signals K and ΔV output from the phase controller 12.
即ち、サイリスタ8aと8bの点弧位相は、第
2図に示す如く、中間点4の電圧が電圧基準信号
Vrefのレベルに対応する大きさを持ちV=Vref
である場合には、電力用コンデンサ6がとる進相
無効電力QCとリアリクトル7がとる遅相無効電
力QRとが等しく無効電力補償装置5の主回路に
流れる無効電力QS=QC+QRが零になるように制
御され、またV>Vrefである場合にはQR>QCと
なつて無効電力QSが遅相無効電力になるように
制御され、逆にV<Vrefである場合にはQC>QR
となつて無効電力QSが進相無効電力になるよう
に制御される。 That is, the firing phase of the thyristors 8a and 8b is such that the voltage at the midpoint 4 is equal to the voltage reference signal, as shown in FIG.
V=Vref with a size corresponding to the level of Vref
In this case, the leading reactive power Q C taken by the power capacitor 6 and the lagging reactive power Q R taken by the reactor 7 are equal, and the reactive power flowing into the main circuit of the reactive power compensator 5 Q S =Q C +Q R is controlled to be zero, and when V > Vref, Q R > Q C and reactive power Q S is controlled to become lagging reactive power, and conversely, when V < Vref If Q C > Q R
Thus, the reactive power Q S is controlled to become the phase-advanced reactive power.
今、第3図a,bに示す時刻t1で2回線送電線
2のF点で3相短絡事故が発生したものと仮定す
ると、中間点4の電圧が低下しようとするので、
位相制御信号K・△Vが大きくなつてリアクトル
7に流れる遅れ無効電力が減小し、電力用コンデ
ンサ6に流れる進み無効電力が対向して増大する
ので、主回路の取る無効電力QSが第2図の進相
領域となり、中間点4の電圧の電圧降下が抑制さ
れ、系統は安定に運転される。他方、上記短絡事
故は図示しない保護継電器によつて直ちに検出さ
れ、系統周波数の数サイクル後の時刻t2において
しや断器3,3が働いて事故回線が除去されるこ
とにより、中間点4の電圧が回復し始める。この
為、主回路に流れていた大きな進相無効電力QS
=QCが電力系統の要求する無効電力QOに追ずい
して振動しながら減すいし、比較的低レベルの定
常値に達する。 Now, assuming that a three-phase short circuit accident occurs at point F of the two-line power transmission line 2 at time t1 shown in Figure 3 a and b, the voltage at the intermediate point 4 is about to drop, so
As the phase control signal K・△V increases, the delayed reactive power flowing to the reactor 7 decreases, and the leading reactive power flowing to the power capacitor 6 increases, so that the reactive power Q S taken by the main circuit becomes The phase advance region shown in FIG. 2 is reached, the voltage drop at the intermediate point 4 is suppressed, and the system is operated stably. On the other hand, the above-mentioned short circuit fault is immediately detected by a protective relay (not shown), and at time t 2 after several cycles of the grid frequency, the short circuit breakers 3, 3 operate and the faulty line is removed, and the fault line is removed from the intermediate point 4. voltage begins to recover. For this reason, the large phase-advanced reactive power Q S flowing in the main circuit
= Q C follows the reactive power Q O required by the power system, oscillates and decreases, and reaches a relatively low steady-state value.
しかしながら、この従来装置では、電力系統に
起るであろう最大の系統じよう乱に対して対処し
うる大きさの容量の電力用コンデンサ6を用意し
てこれを、常時、電力系統に接続しておく必要が
あり、リアクトル7も電流制御器8も電力用コン
デンサ6の容量と等しい大容量を持たせなくては
ならない上に第2図の遅相領域でも運転されるか
らその分だけより容量を大きくする必要がある
為、主回路に要する費用が高く、しかも上記の如
く主回路は、常時電力系統に接続して定常時でも
コンデンサ6には進相無効電力を取らせ、リアク
トル7にはこの進相無効電力に見合う遅相無効電
力を取られる必要がある為、電気的損失が大きい
という欠点があつた。 However, in this conventional device, a power capacitor 6 with a capacity large enough to cope with the maximum power system disturbance that may occur in the power system is prepared, and this is always connected to the power system. Both the reactor 7 and the current controller 8 must have a large capacity equal to the capacity of the power capacitor 6, and since they are also operated in the slow phase region shown in Figure 2, the capacitance is increased accordingly. Since it is necessary to increase the size of Since it is necessary to take lagging phase reactive power corresponding to this leading phase reactive power, there is a drawback that electrical loss is large.
この発明は、上記した従来の欠点を除去する為
になされたもので、無効電力を連続的に制御可能
で電力系統に常時接続される第1の主回路と、無
効電力を段階的に制御可能で電力系統が要求する
無効電力量が第1の主回路の補償能力を超えた場
合に該電力系統の投入される第2の主回路に分
け、過補償時には第2の主回路をある時間の経過
毎に段階的に解放せしめる構成とすることによ
り、従来に比し、主回路にかかる費用と定常時の
電気的損失を大巾に低下することができる無効電
力補償装置を提供することを目的とする。 This invention was made to eliminate the above-mentioned conventional drawbacks, and includes a first main circuit that can continuously control reactive power and is always connected to the power grid, and a first main circuit that can control reactive power in stages. When the amount of reactive power required by the power system exceeds the compensation capacity of the first main circuit, the power system is divided into a second main circuit that is turned on, and in the case of overcompensation, the second main circuit is switched on for a certain period of time. The purpose of the present invention is to provide a reactive power compensator that can greatly reduce the cost of the main circuit and the electrical loss during steady state compared to the conventional system by having a configuration in which the power is released in stages as the time passes. shall be.
以下、この発明の一実施例を図について説明す
る。 An embodiment of the present invention will be described below with reference to the drawings.
第4図において、20は第1の主回路、30は
第2の主回路であつて両者は第1図で説明した電
力系統の中間点4に対して並列に挿入される。第
1の主回路20はリアクトル21とこれに流れる
電流を制御する為の電流制御器22を具える回路
に電力用コンデンサ23が並列接続された構成と
なつており、この実施例では、無効電力補償装置
に課せられた全補償容量±Qsmaxの1/4を分担す
る(但し、+及び−符号は無効電力の進相分及び
遅相分を夫々表わす)。この為、電力用コンデン
サ23の最大容量は+0.25Qsmaxに選定されて
いる。電流制御器22はリアクトル21の遅相容
量の−0.25Qsmax(連続定格)に相当する電流範
囲を連続定格時の制御範囲(定常時制御範囲)と
し、短時間定格でリアクトル21の遅相容量−
Qsmax(短時間定格)に相当する電流範囲まで制
御可能な特性を持たせてある。 In FIG. 4, 20 is a first main circuit, and 30 is a second main circuit, both of which are inserted in parallel to the intermediate point 4 of the power system explained in FIG. The first main circuit 20 has a configuration in which a power capacitor 23 is connected in parallel to a circuit including a reactor 21 and a current controller 22 for controlling the current flowing therein. It shares 1/4 of the total compensation capacity ±Qsmax imposed on the compensation device (however, the + and - signs represent the leading and lagging components of the reactive power, respectively). For this reason, the maximum capacity of the power capacitor 23 is selected to be +0.25Qsmax. The current controller 22 sets the current range corresponding to -0.25Qsmax (continuous rating) of the slow phase capacity of the reactor 21 as the control range (steady state control range) during continuous rating, and sets the current range corresponding to -0.25Qsmax (continuous rating) of the slow phase capacity of the reactor 21 as the control range (steady state control range) for short time ratings.
It has the characteristic that it can be controlled up to the current range corresponding to Qsmax (short-time rating).
第2の主回路30はコンデンサバンクであつ
て、最大容量が電力用コンデンサ23のそれと等
しい電力用コンデンサ31,32及び33を具
え、各コンデンサ31,32及び33は夫々開閉
器34,35及び36を介して中間点4に接続可
能となつている。 The second main circuit 30 is a capacitor bank comprising power capacitors 31, 32 and 33 whose maximum capacity is equal to that of the power capacitor 23, each capacitor 31, 32 and 33 connected to a switch 34, 35 and 33, respectively. It is possible to connect to the intermediate point 4 via.
41は不感帯回路装置であつて、電流制御器2
2の定常時制御範囲の上限値を与える位相制御信
号K・△Vの値VDを不感帯巾として設定されて
おり、位相制御器12の出力を受けて、K・△V
>VDである場合に超過分信号ε=K・△V−VD
を出力する。42は積分器であつて超過分信号ε
を積分して比較器43へ送出する。比較器43は
入力される積分値∫εdtが所定値Eに達すると出力
し、該出力は制御器44に入力されると同時に積
分器42にリセツト信号として供給される。この
実施例の制御器44はシフトレジスタで構成され
ており、そのUP端子に比較器43の出力が入力
され、該入力を受けるたびに1段づゝシフトアツ
プされて出力端子A1,A10及びA100から順次、コ
ンデンサ投入信号S31,S32及びS33を出力する。
コンテンサ投入信号S31,S32及びS33による開閉
器34,35及び36が夫々閉路される。41〜
44は第2の主回路の制御回路を構成する。51
は電流変成器であつて、リアクトル21を流れる
電流を検出して過負荷検出器52に入力する。過
負荷検出器52は電流変成器51の出力を受け、
該出力がサイリスタ22a,22bの連続定格電
流値以外である場合に所定時間毎にコンデンサ投
入解除信号Soffを出力する。この信号Soffはシフ
トレジスタである制御器44のdown端子に入力
される。制御器44はコンデンサ投入解除信号
Soffによつて、1段づゝシフトダウンされ出力端
子A1,A10及びA100の出力が順次消減する。51
〜52は制御量監視回路を構成する。なお、第1
の主回路は9〜13により構成される。 41 is a dead band circuit device, and the current controller 2
The dead band width is set to the value V D of the phase control signal K・△V which gives the upper limit value of the steady state control range of No. 2.
>V D , the excess signal ε=K・△V−V D
Output. 42 is an integrator and the excess signal ε
is integrated and sent to the comparator 43. The comparator 43 outputs an output when the input integral value ∫εdt reaches a predetermined value E, and the output is input to the controller 44 and simultaneously supplied to the integrator 42 as a reset signal. The controller 44 of this embodiment is composed of a shift register, and the output of the comparator 43 is inputted to the UP terminal of the controller 44. Each time the input is received, the output is shifted up by one step and the output terminals A 1 , A 10 and Capacitor input signals S 31 , S 32 and S 33 are sequentially output from A 100 .
The switches 34, 35 and 36 are closed by the capacitor input signals S 31 , S 32 and S 33 , respectively. 41~
44 constitutes a control circuit of the second main circuit. 51
is a current transformer that detects the current flowing through the reactor 21 and inputs it to the overload detector 52. Overload detector 52 receives the output of current transformer 51,
When the output is other than the continuous rated current value of the thyristors 22a and 22b, a capacitor closing release signal Soff is outputted at predetermined intervals. This signal Soff is input to the down terminal of the controller 44, which is a shift register. The controller 44 is a capacitor closing signal.
Soff causes the shift down one step at a time, and the outputs of the output terminals A 1 , A 10 and A 100 are sequentially reduced. 51
52 constitute a control amount monitoring circuit. In addition, the first
The main circuit is composed of 9 to 13.
制御回路によつて第1図について説明したのと
同様に連続的に制御される。 It is continuously controlled by a control circuit in the same manner as described with respect to FIG.
次に、この装置の動作を第5図a及びbを参照
して説明する。 Next, the operation of this device will be explained with reference to FIGS. 5a and 5b.
中間点4の電圧が電圧基準値Vrefに対応する
電圧Vである間(時刻t1以前の状態)はリアクト
ル21とコンデンサ23には夫々QR=
0.25Qsmaxの遅相無効電力とQC=0.25Qsmaxの
進相無効電力が流れ、全体として無効電力QSは
零である。またVD>△V(但し、Vref<V)の範
囲にあるような中間点4の電圧変動に対しては超
過分信号εの大きさが零であるので、第1の主回
路の無効電力だけが、第1の制御回路9〜13に
より、位相制御信号K・△Vの大きさに対応して
0〜+0.25Qsmaxの範囲で制御され、中間点4
の電圧を一定に維持する。即ち、電力系統の微小
じよう乱による電圧変動に対しては、第2の主回
路のコンデンサバンクは電力系統に投入されず、
第1の主回路だけで対処する。 While the voltage at the intermediate point 4 is the voltage V corresponding to the voltage reference value Vref (state before time t 1 ), the reactor 21 and capacitor 23 each have Q R =
A lagging reactive power of 0.25Qsmax and a leading reactive power of Q C =0.25Qsmax flow, and the overall reactive power Q S is zero. Furthermore, for voltage fluctuations at the intermediate point 4 in the range of V D > △V (however, Vref < V), the magnitude of the excess signal ε is zero, so the reactive power of the first main circuit is controlled by the first control circuits 9 to 13 in the range of 0 to +0.25Qsmax in accordance with the magnitude of the phase control signal K·ΔV, and the intermediate point 4
maintain the voltage constant. In other words, in response to voltage fluctuations caused by minute disturbances in the power grid, the capacitor bank of the second main circuit is not input to the power grid;
The problem is dealt with using only the first main circuit.
時刻t1において前記した3相短絡が発生し、こ
の電力系統の大じよう乱による電圧変動を抑制す
る為に該電力系統が第5図aに点線で示す進相無
効電力QOを必要とするものと仮定する。この系
統じよう乱により位相制御信号K・△Vの大きさ
が時刻t2において、不感帯巾VDを超え、超過分
信号εが出力される。 At time t1 , the three-phase short circuit described above occurs, and in order to suppress voltage fluctuations caused by this large-scale disturbance in the power system, the power system requires phase-advanced reactive power Q O shown by the dotted line in Figure 5a. Assume that Due to this systematic disturbance, the magnitude of the phase control signal K·ΔV exceeds the dead band width VD at time t2 , and an excess signal ε is output.
積分器28の出力∫εdtが時刻t2で設定値Eに達
すると、即ち、第1の主回路に流れる無効電力が
+0.25Qsmaxに達すると、制御器44がコンデ
ンサ投入信号S31を出力し、開閉器34が閉路さ
れてコンデンサ31が中間点4に接続される。コ
ンデンサ31が中間点4に接続されても、超過分
信号εが存在する為、続いてコンデンサ投入信号
S32が出力されてコンデンサ32が時刻t3で電力
系統に投入され、更に同様の理由でコンデンサ投
入信号S33が出力されてコンデンサ33が時刻t4
で中間点4に接続される。かくして、中間点4の
電圧を維持する為に電力系統側が要求する無効電
力QO(進相)が第1の主回路及び第2の主回路の
コンデンサ23,31〜33により補償される。
他方、上記3相短絡は図示しない保護継電器によ
り直ちに検出される。時刻t5において前記した如
くしや断器3,3が開いて事故回線が除去される
とすると、中間点4の電圧は時刻t5から回復し始
める。この為、無効電力QO(進相)は第5図aに
示す如く振動的に減すいし比較的低レベルの低常
値に落ちつく。 When the output ∫εdt of the integrator 28 reaches the set value E at time t2 , that is, when the reactive power flowing to the first main circuit reaches +0.25Qsmax, the controller 44 outputs the capacitor closing signal S31 . , the switch 34 is closed and the capacitor 31 is connected to the intermediate point 4. Even if the capacitor 31 is connected to the intermediate point 4, since the excess signal ε exists, the capacitor input signal is subsequently
S32 is output and the capacitor 32 is connected to the power system at time t3 , and for the same reason, the capacitor input signal S33 is output and the capacitor 33 is connected to the power system at time t4.
is connected to intermediate point 4. In this way, the reactive power Q O (phase advance) required by the power system to maintain the voltage at the intermediate point 4 is compensated by the capacitors 23, 31 to 33 of the first main circuit and the second main circuit.
On the other hand, the three-phase short circuit described above is immediately detected by a protective relay (not shown). Assuming that the disconnectors 3, 3 open as described above at time t5 and the faulty line is removed, the voltage at the intermediate point 4 begins to recover from time t5 . For this reason, the reactive power Q O (phase advance) decreases oscillatingly and settles down to a relatively low normal value as shown in FIG. 5a.
無効電力QOが減すいし始めても、第2の主回
路30が中間点4に接続されたままであることに
より、Qsmax−QOの進相無効電力が余剰となる
ので、この余剰分を打消す為に、第5図bに示す
如く、リアクトル21及び電流制御器22の回路
は定格値を超える遅相無効電力をとり過負荷状態
となるが、該過負荷状態は過負荷検出器52で検
出され、時刻t5より一定時間TO後の時刻t6でコン
デンサ投入解除信号Soffが制御器44に入力され
る。 Even if the reactive power Q O starts to decrease, the second main circuit 30 remains connected to the intermediate point 4, so that the phase-advanced reactive power of Qsmax−Q O becomes surplus, so this surplus is canceled out. Therefore, as shown in FIG. 5b, the circuit of the reactor 21 and the current controller 22 receives a delayed phase reactive power exceeding the rated value, resulting in an overload state, but the overload state is detected by the overload detector 52. The capacitor closing signal Soff is input to the controller 44 at time t6 , which is a predetermined time T0 after time t5 .
この結果、コンデンサ投入信号S33が消減して
開閉器36が開路してコンデンサ33が中間点4
から切離される。以後も同様にして過負荷状態が
生じない範囲まで一定時間TOの経過毎に第2の
主回路30の余分なコンデンサが切離され、リア
クトル21と電流制御器22が過負荷状態から解
放される。 As a result, the capacitor input signal S 33 disappears, the switch 36 opens, and the capacitor 33 connects to the intermediate point 4.
be separated from Thereafter, in the same manner, the excess capacitor of the second main circuit 30 is disconnected every predetermined period of time TO until an overload condition does not occur, and the reactor 21 and current controller 22 are released from the overload condition. Ru.
電流制御器22が、遅相無効電力0〜−
Qsmaxの範囲に相当する範囲の電流を制御する
必要のある上記過負荷状態の期間は、第2の主回
路30が電力系統に投入されている期間だけであ
つて、この期間は一般には短く、第2の主回路3
0が投入されていない定常時には、電流制御器2
2の制御範囲は0〜0.25Qsmaxの遅相無効電力
の範囲に相当する電流範囲であるから、電流制御
器22及びリアクトル21は連続定格として
0.25Qsmaxの遅相無効電力に相当する電流容量
を有し、短時間定格としてQsmaxの遅相無効電
力に相当する電流容量を有していればよい。ま
た、上記のように第2の主回路が中間点4に接続
されている時間が短いから、リアクトル21が
Qsmaxの遅相無効電力をとる期間は短く、定常
時にとる無効電力は0.25Qsmaxであるから、電
気的損失は小さい。 The current controller 22 controls the delay phase reactive power from 0 to -
The period of the overload state during which it is necessary to control the current in the range corresponding to the range of Qsmax is only the period when the second main circuit 30 is connected to the power system, and this period is generally short. Second main circuit 3
During steady state when 0 is not turned on, current controller 2
Since the control range of No. 2 is a current range corresponding to the range of slow phase reactive power from 0 to 0.25Qsmax, the current controller 22 and reactor 21 are set as continuous ratings.
It is sufficient to have a current capacity corresponding to a slow phase reactive power of 0.25Qsmax, and a current capacity corresponding to a slow phase reactive power of Qsmax as a short-time rating. In addition, since the second main circuit is connected to the intermediate point 4 for a short time as described above, the reactor 21
The period during which the delayed phase reactive power of Qsmax is taken is short, and the reactive power taken during steady state is 0.25Qsmax, so the electrical loss is small.
この実施例では、第2の主回路30が電力系統
に投入され該電力系統が要求する無効電力QOが
減すいし始めても、以後の無効電力QOの減衰に
応じて開閉器34〜36を開閉するようなことを
避け、該減衰変動に対しては電流制御器22の過
負荷運転制御で対処し、第2の主回路30の解放
はリアクトル21と電流制御器22の回路の過負
荷状態を監視しながら行われるので、電力系統の
じよう乱抑制効果は高く、全補償範囲を電流制御
器22により連続的に制御する従来の場合と同様
に無効電力QOの振動的な減すいに対し滑らかに
速応する補償作用が得られる。このように、第2
の主回路30は、無効電力QOの変動に追ずいし
て解放されるのではなく、無効電力QOがほヾ定
常値に落ちつき始めるのを持つて解放されるか
ら、開閉器34〜36は高速閉路するものであれ
ばよく、開路速度が遅くてもよいから、応答時間
に対する制約が厳しくなり、それだけ安価なもの
を用いることができる。 In this embodiment, even if the second main circuit 30 is connected to the power grid and the reactive power Q O required by the power grid starts to decrease, the switches 34 to 36 are switched on according to the subsequent attenuation of the reactive power Q O. Avoid opening and closing, and deal with the attenuation fluctuation by overload operation control of the current controller 22, and release of the second main circuit 30 is caused by the overload state of the circuit between the reactor 21 and the current controller 22. Since this is carried out while monitoring the power system, the effect of suppressing disturbances in the power system is high, and as in the conventional case where the entire compensation range is continuously controlled by the current controller 22, it is possible to reduce the oscillation of the reactive power QO . On the other hand, a compensation effect that responds smoothly and quickly can be obtained. In this way, the second
The main circuit 30 is not released following fluctuations in the reactive power QO , but is released when the reactive power QO begins to settle down to a steady value, so the switches 34 to 36 Since it is sufficient that the circuit closes at a high speed and the circuit opening speed may be low, the response time is severely restricted, and a lower cost can be used.
なお、上記実施例では、第1の主回路20の無
効電力補償量をリアクトル21側に挿入したサイ
リスタ22a,22bで制御する構成としてある
が、第6図に示す如く、電力用コンデンサ23側
にも、サイリスタ24a,24bからなる電流制
御器24を挿入して、両電流制御器22,24で
上記補償量を制御するようにしてもよい。 In the above embodiment, the reactive power compensation amount of the first main circuit 20 is controlled by the thyristors 22a and 22b inserted on the reactor 21 side, but as shown in FIG. Alternatively, a current controller 24 consisting of thyristors 24a and 24b may be inserted so that both current controllers 22 and 24 control the compensation amount.
また、制御量監視回路は、電流制御器22の制
御量の蓄積状態を検出する機能を有するものであ
ればよい。 Further, the control amount monitoring circuit may be any circuit as long as it has a function of detecting the accumulation state of the control amount of the current controller 22.
以上の如く、この発明によれば、リアクトルと
電力用コンデンサを有し遅相領域から進相領域ま
で連続的に無効電力を制御可能で常時電力系統に
接続される第1の主回路の他に、複数の電力用コ
ンデンサからなり、これらを電力系統に対して段
階的に投入、解放可能な第2の主回路を設け、該
第2の主回路の投入が、電力系統の要求する無効
電力が上記第1の主回路の補償範囲を超えた場合
に行われる構成としたことにより、電力系統に常
時接続される上記第1の主回路該電力系統を安定
化する為に必要な最大補償容量と分数容量を分担
すればよく、リアクトルと電流制御器には上記最
大補償容量に見合う容量を短時間過負荷定格とし
て持たせておけばよいので、従来に比してリアク
トルと電流制御器にかゝる費用を大巾に下げるこ
とができる上、定常時の電気的損失を大巾に低減
することができ、無効電力の減衰変動に対して
は、電流制御器の過負荷運転で対処するので、す
ぐれたじよう乱制御作用を得ることができる。 As described above, according to the present invention, in addition to the first main circuit that includes a reactor and a power capacitor, is capable of continuously controlling reactive power from a slow phase region to a fast phase region, and is always connected to the power system. , a second main circuit is provided which is composed of a plurality of power capacitors and can be turned on and released from the power system in stages, and when the second main circuit is turned on, the reactive power required by the power system is met. By configuring this to be carried out when the compensation range of the first main circuit is exceeded, the first main circuit that is always connected to the power system has the maximum compensation capacity necessary to stabilize the power system. It is only necessary to share the fractional capacity, and the reactor and current controller only need to have a short-time overload rating that corresponds to the maximum compensation capacity above, so the reactor and current controller have a smaller capacity than before. In addition to significantly reducing the electrical loss during steady state, the attenuation fluctuations in reactive power are dealt with by overload operation of the current controller. Excellent turbulence control effect can be obtained.
第1図は従来の無効電力補償装置のブロツク構
成図、第2図は無効電力補償装置が具える補償特
性図、第3図イ,ロは電力系統じよう乱時におけ
る上記従来の装置の動作を説明する為の図、第4
図はこの発明による無効電力補償装置実施例のブ
ロツク構成図、第5図a〜bは上記実施例の動作
を説明する為の図、第6図は上記実施例における
第1の主回路の他の例を示す回路図である。
図において、9……電圧変成器、10……電圧
検出器、11……加算器、12……位相制御器、
13……ゲート信号発生器、20……第1の主回
路、21……リアクトル、22,24……電流制
御器、22a,22b,24a,24b……サイ
リスタ、23……電力用コンデンサ、30……第
2の主回路、31〜32……電力用コンデンサ、
34〜36……開閉器、41……不感帯回路装
置、42……積分値、43……比較器、44……
制御器、51……電流変成器、52……過負荷検
出器。なお、図中、同一符号は同一又は相当部分
を示す。
Figure 1 is a block diagram of a conventional reactive power compensator, Figure 2 is a compensation characteristic diagram of the reactive power compensator, and Figures 3A and 3B illustrate the operation of the conventional device during power system disturbances. Diagram 4 to explain
The figure is a block configuration diagram of an embodiment of the reactive power compensator according to the present invention, FIGS. 5a to 5b are diagrams for explaining the operation of the above embodiment, and FIG. FIG. In the figure, 9... voltage transformer, 10... voltage detector, 11... adder, 12... phase controller,
13... Gate signal generator, 20... First main circuit, 21... Reactor, 22, 24... Current controller, 22a, 22b, 24a, 24b... Thyristor, 23... Power capacitor, 30 ...Second main circuit, 31-32...Power capacitor,
34-36... Switch, 41... Dead band circuit device, 42... Integral value, 43... Comparator, 44...
Controller, 51...Current transformer, 52...Overload detector. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
及び電流制御器を具え常時電力系統に接続される
第1の主回路、1もしくは複数の電力用コンデン
サを具え夫々が開閉器を介して上記電力系統に段
階的に投入可能な第2の主回路、系統電圧の変動
量に対応して上記電流制御器を制御する第1の制
御回路、上記系統電圧の変動量が設定レベルを超
えた場合にその超過分の積分値を設定値に達する
毎に上記第2の主回路の電力コンデンサを投入す
る為のコンデンサ投入信号を上記開閉器の対応す
る夫々に送出する第2の制御回路、及び過補償時
に上記リアクトルを流れる電流が上記電流制御器
の定常時制御範囲内に低下するまで上記第2の主
回路を段階的に解放する為のコンデンサ投入解除
信号を上記第2の制御回路に送出する制御量監視
回路を有し、上記設定レベルが上記第1の主回路
の定常時補償容量に対応することを特徴とする無
効電力補償装置。1. A first main circuit that includes a power capacitor, an overload rated reactor, and a current controller and is always connected to the power grid, and a first main circuit that includes one or more power capacitors and that is connected to the power grid via a switch. a second main circuit that can be turned on automatically, a first control circuit that controls the current controller according to the amount of fluctuation in the grid voltage, and a second main circuit that can be turned on when the amount of fluctuation in the grid voltage exceeds a set level; a second control circuit that sends a capacitor closing signal to each corresponding switch of the switch for closing the power capacitor of the second main circuit each time the integral value of the circuit reaches a set value; a controlled variable monitoring circuit that sends a capacitor closing release signal to the second control circuit to gradually release the second main circuit until the current flowing through the current controller falls within the steady state control range of the current controller; A reactive power compensator, wherein the set level corresponds to a steady-state compensation capacity of the first main circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57077941A JPS58195433A (en) | 1982-05-07 | 1982-05-07 | Reactive power compensating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57077941A JPS58195433A (en) | 1982-05-07 | 1982-05-07 | Reactive power compensating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58195433A JPS58195433A (en) | 1983-11-14 |
JPH0412484B2 true JPH0412484B2 (en) | 1992-03-04 |
Family
ID=13648080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57077941A Granted JPS58195433A (en) | 1982-05-07 | 1982-05-07 | Reactive power compensating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58195433A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515734A (en) * | 1978-07-19 | 1980-02-04 | Kyowa Hakko Kogyo Co Ltd | Large-volume multiplication of lily seedling |
JPS5556426A (en) * | 1978-09-15 | 1980-04-25 | Westinghouse Electric Corp | Reactive power generator |
JPS56107740A (en) * | 1980-01-25 | 1981-08-26 | Hitachi Ltd | Reactive power compensating device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56156112U (en) * | 1980-04-22 | 1981-11-21 |
-
1982
- 1982-05-07 JP JP57077941A patent/JPS58195433A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5515734A (en) * | 1978-07-19 | 1980-02-04 | Kyowa Hakko Kogyo Co Ltd | Large-volume multiplication of lily seedling |
JPS5556426A (en) * | 1978-09-15 | 1980-04-25 | Westinghouse Electric Corp | Reactive power generator |
JPS56107740A (en) * | 1980-01-25 | 1981-08-26 | Hitachi Ltd | Reactive power compensating device |
Also Published As
Publication number | Publication date |
---|---|
JPS58195433A (en) | 1983-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Taylor et al. | HVDC controls for system dynamic performance | |
US5450309A (en) | Method and device for switching inverters in parallel | |
US4999565A (en) | Apparatus for controlling the reactive impedance of a transmission line | |
GB2418079A (en) | Convertible high voltage direct current installation | |
JPH0145297B2 (en) | ||
US5625277A (en) | Dynamic mechanically switched damping system and method for damping power oscillations using the same | |
JPH09182294A (en) | Power factor regulator | |
US5907234A (en) | Thyristor-switched capacitor bank | |
JPH0412484B2 (en) | ||
JP3570913B2 (en) | Control device for semiconductor switch | |
US5701241A (en) | Recovery of transmitted power in an installation for transmission of high-voltage direct current | |
JPH035615B2 (en) | ||
KR100774023B1 (en) | Uninterruptible Power Supplies using four-leg inverter and method thereof | |
JP2001005541A (en) | Automatic voltage adjusting device | |
SU1372458A1 (en) | Protection arrangement for capacitor bank | |
JPS5833929A (en) | Method of controlling dc transmission system using voltage type self-excited inverter | |
JPS6114734B2 (en) | ||
JPH02114307A (en) | Control circuit for static type reactive power compensating device | |
SU1742938A1 (en) | Compensator of reactive power | |
Thakur et al. | Analysis of Various Topologies for Voltage Sag Compensation of Dynamic Voltage Restorer | |
JPS6315822B2 (en) | ||
JPH0746763A (en) | Reactive power regulator | |
Rowe et al. | Control system design at chandrapur back-to-back hvdc station | |
Peterson et al. | Pulse Width Modulated Inverters for Uninterruptible AC Power Systems Applications | |
JPH06105484A (en) | Uninterruptible power source |