[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0412465A - Cell structure for solid polymer electrolyte type fuel cell - Google Patents

Cell structure for solid polymer electrolyte type fuel cell

Info

Publication number
JPH0412465A
JPH0412465A JP2113573A JP11357390A JPH0412465A JP H0412465 A JPH0412465 A JP H0412465A JP 2113573 A JP2113573 A JP 2113573A JP 11357390 A JP11357390 A JP 11357390A JP H0412465 A JPH0412465 A JP H0412465A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
water
cell
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113573A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishihara
啓徳 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2113573A priority Critical patent/JPH0412465A/en
Publication of JPH0412465A publication Critical patent/JPH0412465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To simplify a device by feeding the cooling water to conduits provided with recessed grooves on the separate plates side and a packing sheet at expansion portions of an ion exchange film and the separate plates, hydrating the ion exchange film, and cooling a fuel cell. CONSTITUTION:An ion exchange film 2 and separate plates 6 have expansion portions IA with the width W on both sides of electrodes 3, 4, and recessed grooves 8 are provided in parallel with reaction gas passages 5. A packing sheet 7 with notch sections 9 is inserted between the plates 6 of the expansion portions 1A and the film 2, and the grooves 8 are brought into contact with the film 2 via the notch sections 9 to form conduits 10. A manifold is fitted on the side face of the entrance side of the passages 5 and conduits 10 in a cell stack having the conduit 10 for each unit cell 1, and the reaction gas such as the anode gas and cathode gas and water are fed and circulated. The water is brought into contact with the film 2 and removes the heat generated by power generation, the cell stack is sealed by the sheet 7 to prevent the leakage of the reaction gas to the conduits 10 side, and the device can be simplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、固体高分子電解質型燃料電池において用い
られるイオン交換膜への水の供給構造、および電池の冷
却構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure for supplying water to an ion exchange membrane used in a solid polymer electrolyte fuel cell and a cooling structure for the cell.

〔従来の技術〕[Conventional technology]

固体高分子電解質としてプロトン導電体であるカチオン
交換膜を用い、燃料として水素を、酸化剤として酸素を
用いた場合には、アノード電極及びカソード電極におい
て次の反応が起こる事が知られている。
It is known that when a cation exchange membrane, which is a proton conductor, is used as a solid polymer electrolyte, hydrogen is used as a fuel, and oxygen is used as an oxidizing agent, the following reaction occurs at the anode electrode and the cathode electrode.

アノード電極 H2−+   2 H゛  +   20    ・ 
 ・  ・  (1)カソード電極 1/20! +2H” +26−+1110すなわち、
アノード電極では水素がプロトンと電子に解離し、発生
したプロトンはイオン交換膜中をカソードに向かって移
動、電子は外部の回路を通ってカソード電極に到達する
。(この時に発電が行われる)、一方力ソード電極では
、アノード電極よりイオン交換膜中を移動してきたプロ
トン及び外部回路より移動してきた電子と、系の外部か
ら供給された酸素とが反応して水を生成する、また、こ
の反応は発熱を伴うので、全体として水素と酸素から水
と電気と熱が発生する。
Anode electrode H2-+ 2 H゛ + 20 ・
・ ・ (1) Cathode electrode 1/20! +2H" +26-+1110, that is,
At the anode electrode, hydrogen dissociates into protons and electrons, the generated protons move toward the cathode in the ion exchange membrane, and the electrons reach the cathode electrode through an external circuit. (Power generation occurs at this time.) On the other hand, at the power sword electrode, protons that have moved through the ion exchange membrane from the anode electrode and electrons that have moved from the external circuit react with oxygen supplied from outside the system. Water is produced, and since this reaction is exothermic, water, electricity, and heat are generated from hydrogen and oxygen as a whole.

固体高分子電解質型燃料電池が他のタイプの燃料電池と
大きく異なる点としては、電解質部分(イオンの導電体
)が固体高分子であるイオン交換膜で構成されている点
である。この種の燃料電池のイオン交換膜としてはパー
フルオロカーボンスルホン酸膜(米国、デュポン社製、
商品名ナフィオン)等が用いられるが、この膜がイオン
導電性を示すためには膜が充分吸湿して水和している必
要がある。もし、膜の水和が不十分であると、膜内部の
イオン導電性が低下し、その結果セルの内部抵抗が増加
して出力が低下することになる。
A solid polymer electrolyte fuel cell differs greatly from other types of fuel cells in that the electrolyte portion (ion conductor) is composed of an ion exchange membrane, which is a solid polymer. The ion exchange membrane for this type of fuel cell is a perfluorocarbon sulfonic acid membrane (manufactured by DuPont, USA;
Nafion (trade name) is used, but in order for this membrane to exhibit ionic conductivity, it must absorb sufficient moisture and be hydrated. If the membrane is insufficiently hydrated, the ionic conductivity inside the membrane will decrease, resulting in an increase in the internal resistance of the cell and a decrease in output.

燃料電池の運転中におけるイオン交換膜の乾燥を防ぐ方
法としては、たとえば米国特許第3,061.658号
に開示されているように、燃料ガスや酸化剤(空気)な
どの反応ガスに水を添加する方法が知られている。また
、別な方法としてはJ  、  Electroche
m、  Soc、1 3 5   2 2 0 9  
(1988)に見られるように、反応ガスを加湿器に通
すことによって所定の吸湿状態に加湿、この加湿ガスを
セルに供給することによりイオン交換膜の乾燥を防ぐ方
法が知られている。
As a method for preventing drying of the ion exchange membrane during operation of a fuel cell, for example, as disclosed in U.S. Pat. There are known methods of adding In addition, as another method, J, Electroche
m, Soc, 1 3 5 2 2 0 9
(1988), a method is known in which a reaction gas is passed through a humidifier to humidify it to a predetermined hygroscopic state, and this humidified gas is supplied to a cell to prevent drying of the ion exchange membrane.

さらに別な方法としては、特開平1−309263号公
報に開示されているように、多孔質の電極基材−に水を
供給して、その凸部と接する電極触媒層を介してイオン
交換膜に水を供給し、かつセルを冷却する方法が知られ
ている。
Yet another method, as disclosed in JP-A-1-309263, is to supply water to a porous electrode base material and pass the ion exchange membrane through the electrode catalyst layer in contact with the convex portions of the porous electrode base material. A method of supplying water to a cell and cooling the cell is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

イオン交換膜としてカチオン交換膜を用いた燃料電池の
場合、カソード電極側に反応生成物である水が生成する
とともに、プロトンの移動にともない電気浸透によりア
ノード側からカソード側に運ばれる水が存在する。従っ
て、米国特許第3゜061.658号に開示されている
方法では、カソード側に過剰な水が供給されることにな
り、カソード電極に水膜が生成して反応ガスの透過を阻
害するために発電特性が低下するという問題が発生する
In the case of a fuel cell that uses a cation exchange membrane as the ion exchange membrane, water is produced as a reaction product on the cathode side, and water is also transported from the anode side to the cathode side by electroosmosis as protons move. . Therefore, in the method disclosed in U.S. Pat. No. 3,061,658, excessive water is supplied to the cathode side, and a water film is formed on the cathode electrode, inhibiting the permeation of the reaction gas. The problem arises that the power generation characteristics deteriorate.

さらに、J 、  Electrochem、 Soc
、 135 2209 (198B)に開示されている
方法では、上述の問題のほか、加湿器を必要とするとと
もに、ガス配管内で水分が凝縮しないように配管を保温
しておく必要があり、設備の構成が複雑化するとともに
、設備コストが嵩むという欠点がある。
Additionally, J. Electrochem, Soc.
, 135 2209 (198B), in addition to the above-mentioned problems, it requires a humidifier and the piping must be kept warm to prevent moisture from condensing in the gas piping, making it difficult to install equipment. This has the disadvantage that the configuration becomes complicated and the equipment cost increases.

さらに、特開平1−309263号公報に開示されてい
る方法の場合、多孔質の電極基材に水を供給して、その
凸部と接する電極触媒層を介してイオン交換膜に水を供
給するために、前記凸部間に形成された凹溝に高圧で供
給される反応ガスの圧力よりも高い圧力で水を多孔質な
電極基材に供給する必要があり、水の加圧装置を必要と
する等の問題がある。
Furthermore, in the case of the method disclosed in JP-A-1-309263, water is supplied to a porous electrode base material, and water is supplied to the ion exchange membrane through the electrode catalyst layer that is in contact with the convex portions of the porous electrode base material. Therefore, it is necessary to supply water to the porous electrode base material at a pressure higher than the pressure of the reaction gas supplied at high pressure to the grooves formed between the convex parts, and a water pressurizing device is required. There are problems such as.

この発明の目的は、カソード電極を過剰に濡らすことな
く、イオン交換膜に十分水を供給し、かつ加湿器や水の
加圧装置等の付帯設備を必要としない、冷却装置を兼ね
た加湿装置を備えた固体高分子電解質型燃料電池を得る
ことにある。
An object of the present invention is to provide a humidifying device that also serves as a cooling device, which supplies sufficient water to an ion exchange membrane without excessively wetting the cathode electrode, and which does not require incidental equipment such as a humidifier or water pressurizing device. The object of the present invention is to obtain a solid polymer electrolyte fuel cell equipped with the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、固体高
分子からなるイオン交換膜と、このイオン交換膜に接す
る面倒に電極触媒層を有するアノード電極及びカソード
電極との層状体からなる単位セル複数層が、前記一対の
電極との接触面に反応ガス通路となる複数の凹溝を有す
るセパレート板を介、して積層されたものにおいて、前
記イオン交換膜及びセパレート板の面積が前記一対の電
極より大きく形成されてなる拡張部分と、この拡張部分
に介装されたパッキングシートと、このパッキングシー
トを貫通して前記イオン交換膜に接するよう前記セパレ
ート板側に形成された凹溝を含む導水路とを備え、この
導水路に冷却水を供給するとともに、この冷却水により
前記イオン交換膜を水和させるよう形成してなるものと
する。
In order to solve the above problems, according to the present invention, a unit cell is formed of a layered body of an ion exchange membrane made of a solid polymer, and an anode electrode and a cathode electrode having an electrode catalyst layer in contact with the ion exchange membrane. In a structure in which a plurality of layers are laminated via a separator plate having a plurality of grooves serving as reaction gas passages on the contact surface with the pair of electrodes, the area of the ion exchange membrane and the separator plate is the same as that of the pair of electrodes. A conductor including an expanded portion formed to be larger than the electrode, a packing sheet interposed in the expanded portion, and a groove formed on the separate plate side so as to penetrate the packing sheet and come into contact with the ion exchange membrane. A water channel is provided, and cooling water is supplied to the water conduit, and the ion exchange membrane is hydrated by the cooling water.

〔作用〕[Effect]

この発明の構成において、セパレート板の拡張部分に形
成した凹溝を含む導水路をイオン交換膜に接触させて冷
却水を供給するよう構成したことにより、各単位セルに
発電によって生成した熱を伝導によって冷却水に伝え、
燃料電池の冷却を行えるとともに、この水をイオン交換
膜に吸収させてイオン交換膜を水和させることが出来る
。また、拡張部分に介装したパッキングシートが加圧ガ
スが供給される電極と導水路とを気密にシールするよう
機能するので、導水路に供給する水に加える圧力を低く
抑えることが可能になる。
In the configuration of this invention, the conduit containing the groove formed in the expanded part of the separate plate is configured to contact the ion exchange membrane and supply cooling water, thereby conducting heat generated by power generation to each unit cell. convey to the cooling water by
In addition to cooling the fuel cell, this water can be absorbed into the ion exchange membrane to hydrate the ion exchange membrane. In addition, the packing sheet inserted in the expanded portion functions to airtightly seal the electrode to which pressurized gas is supplied and the water conduit, making it possible to keep the pressure applied to the water supplied to the water conduit low. .

〔実施例〕〔Example〕

以下、この発明を実施例に基づいて説明する。 Hereinafter, this invention will be explained based on examples.

第1図はこの発明の実施例になる固体高分子電解質型燃
料電池のセル構造を模式化して示す断面図であり、単位
セル1は例えばナフィオンなどの固体高分子膜からなる
イオン交換膜2を挟んでアノード電極3およびカソード
電極4を設けた構造となっており、電極3.4に接する
側に反応ガスの通路となる溝5を有するセパレート板6
を配して単位セル1が複数層積層されることによりセル
スタックが形成される。セパレート板6はガス不透過性
の導電材からなり、この実施例の場合セパレート板6の
両面には反応ガス通路6となる複数の凹溝が同じ方向に
並んで形成される。また、イオン交換膜2およびセパレ
ート板6は一対の電極3.4の両側に輻Wだけ延長した
拡張部分IAをもち、セパレート板6の拡張部分には反
応ガス通路5に平行に凹溝8が設けられる。さらに、拡
張部分IAのセパレート板とイオン交換膜との間には溝
の部分に切りかき部9を有するバンキングシート7が介
装され凹溝8が切り欠き部9を介してイオン交換膜2に
接した導水路10が形成される。なお、導水路10を単
位セル1毎に有するセルスタックには、反応ガス通路5
および導水路10の出入口側の側面に図示しないマニホ
ールドが取りつけられ、反応ガス通路にはアノードガス
およびカソードガスなどの反応ガスが供給され、導水路
には水が供給される。
FIG. 1 is a cross-sectional view schematically showing the cell structure of a solid polymer electrolyte fuel cell according to an embodiment of the present invention, in which a unit cell 1 has an ion exchange membrane 2 made of a solid polymer membrane such as Nafion. It has a structure in which an anode electrode 3 and a cathode electrode 4 are sandwiched between them, and a separate plate 6 has a groove 5 that serves as a passage for the reaction gas on the side in contact with the electrode 3.4.
A cell stack is formed by stacking a plurality of unit cells 1 by arranging them. The separate plate 6 is made of a gas-impermeable electrically conductive material, and in this embodiment, a plurality of grooves forming the reaction gas passages 6 are formed in the same direction on both sides of the separate plate 6. Further, the ion exchange membrane 2 and the separate plate 6 have extended portions IA extending by a radius W on both sides of the pair of electrodes 3.4, and the extended portion of the separate plate 6 has a groove 8 parallel to the reaction gas passage 5. provided. Further, a banking sheet 7 having a notch 9 in the groove portion is interposed between the separate plate of the expanded portion IA and the ion exchange membrane, and the groove 8 is connected to the ion exchange membrane 2 through the notch 9. A contiguous water conduit 10 is formed. Note that in a cell stack having a water conduit 10 for each unit cell 1, a reaction gas passage 5 is provided.
A manifold (not shown) is attached to the side of the inlet/outlet side of the headrace 10, and reactive gases such as anode gas and cathode gas are supplied to the reaction gas passage, and water is supplied to the headrace.

このように構成した導水路に純度の高い水を循環させる
ことにより、この水は導水路内でイオン交換膜と接触し
てこの部分でイオン交換膜への水の補給が行われるとと
もに、発電によって生成した熱を除去する事が出来る。
By circulating highly purified water through the water conduit constructed in this way, this water comes into contact with the ion exchange membrane within the conduit, and this part replenishes the ion exchange membrane with water, and also generates electricity. The generated heat can be removed.

また、電極3,4と導水路10との間はパッキングシー
ト7によってシールされるので、反応ガス通路5に加圧
したガスを供給しても導水路側に反応ガスが漏れること
はなく、したがって導水路に供給する水の圧力を反応ガ
スの圧力と関係なく低く抑えることが出来る。なお、実
施例の場合には一対の電極を挟む反応ガス通路の方向を
同じ方向とした場合を例に示したが、互いに直交させる
よう構成してもよい。
Furthermore, since the space between the electrodes 3, 4 and the water conduit 10 is sealed by the packing sheet 7, even if pressurized gas is supplied to the reaction gas passage 5, the reaction gas will not leak to the water conduit side. The pressure of water supplied to the water channel can be kept low regardless of the pressure of the reactant gas. In addition, in the case of the embodiment, a case where the directions of the reaction gas passages sandwiching the pair of electrodes are the same is shown as an example, but the configuration may be such that they are orthogonal to each other.

また、導水路をイオン交換膜2の両側に設けた例を示し
たが、いずれか−吉例に設けるよう構成してもよい。
Furthermore, although an example has been shown in which the water channels are provided on both sides of the ion exchange membrane 2, the structure may be such that they are provided on either side.

第2図はこの発明の異なる実施例を示す断面図第3図は
セパレート板の要部を示す平面図であり、イオン交換膜
2およびセパレート板6の拡張部分11を電極を包囲す
る額縁状に形成し、この部分に口字状の凹溝18を含む
導水路20を形成した点が前述の実施例と異なっている
。なおパッキングシート17も口字状の2枚のシート1
7A17Bで構成され、導水路20には水19の出入口
2OAが設けられるとともに、反応ガス通路50両端に
はセパレート板を沿層方向に貫通する出入口5Aおよび
5Bが設けられる。
FIG. 2 is a cross-sectional view showing a different embodiment of the present invention. FIG. 3 is a plan view showing the main parts of the separate plate. This differs from the previous embodiment in that a conduit 20 including a mouth-shaped groove 18 is formed in this portion. In addition, the packing sheet 17 also has two sheets 1 in the shape of a mouth.
7A17B, the water conduit 20 is provided with an inlet/outlet 2OA for the water 19, and the reactant gas passage 50 is provided with inlet/outlets 5A and 5B at both ends that penetrate the separate plate in the longitudinal direction.

このように導水路20を口字状に構成したことにより、
水19とイオン交換膜2との接触面積が広がるので、イ
オン交換膜への水の供給およびセルの冷却をより効率よ
く行うことが出来る。
By configuring the headrace 20 in this way,
Since the contact area between the water 19 and the ion exchange membrane 2 is expanded, water can be supplied to the ion exchange membrane and the cell can be cooled more efficiently.

第4図はこの発明の他の実施例を示すセパレート板の平
面図であり、電極面積が広い大容量の燃料電池を対象に
構成されたものである。図において、アノード電極およ
びカソード電極は四つの部分34A、34B、34C,
34D、に分割されており、それぞれの電極を包囲する
口字状のバンキングシート27.A相互間、またはこれ
と全体を包囲する口字状のパッキングシート27Bとの
あいだに格子状の導水路30を形成した点が前述の実施
例と異なっている。このように、燃料電池の大型イζに
対応して格子の数を増すことにより、イオン交換膜と水
の接触面積が増加するので、イオン交換膜への水の供給
および冷却を効率よく行うことが出来る。
FIG. 4 is a plan view of a separate plate showing another embodiment of the present invention, which is constructed for a large capacity fuel cell with a large electrode area. In the figure, the anode electrode and the cathode electrode are divided into four parts 34A, 34B, 34C,
34D, and a mouth-shaped banking sheet 27. that surrounds each electrode. This embodiment differs from the previous embodiment in that a lattice-shaped water conduit 30 is formed between each A or between this and the opening-shaped packing sheet 27B that surrounds the entire structure. In this way, by increasing the number of grids to accommodate the large size of the fuel cell, the contact area between the ion exchange membrane and water increases, making it possible to efficiently supply and cool water to the ion exchange membrane. I can do it.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、イオン交換膜とセパレート板
の拡張部分にセパレート板側の凹溝とパッキングシート
とにより画成された導水路を設けるよう構成した。その
結果、導水路に純度の高い水を通流する事によってイオ
ン交換膜に水を供給し、イオン交換膜のイオン導電性を
保持出来るとともに、燃料電池の冷却を行うことが出来
る。
As described above, the present invention is configured such that the expanded portion of the ion exchange membrane and the separate plate is provided with a water conduit defined by the groove on the separate plate side and the packing sheet. As a result, by passing highly purified water through the water conduit, water can be supplied to the ion exchange membrane, the ionic conductivity of the ion exchange membrane can be maintained, and the fuel cell can be cooled.

また、反応ガスを加湿する方式の従来技術で必要とした
加湿器や配管の保温設備などを必要とせず、かつ導水路
と電極との間がバンキングシートによってシールされて
いるので、高圧下での燃料電池の運転においても水を加
圧する必要はなく水の加圧装置を必要としないか、ある
いは簡素化することができる。
In addition, there is no need for humidifiers or piping insulation equipment, which were required in conventional techniques that humidify reaction gases, and since the space between the conduit and the electrode is sealed with a banking sheet, it can be used under high pressure. There is no need to pressurize water in the operation of the fuel cell, and a water pressurizing device is not required or can be simplified.

さらに、導水路を流れる水がイオン交換膜に直接接触し
て水を補給するので、電極の基材を介して水を供給する
従来の技術に比べてイオン交換膜への水の浸透が確実に
なるとともに、電極基材が水に濡れすぎることによる反
応ガスの供給障害をも防止することが出来る。したがっ
てこの発明によれば、反応ガスの供給障害を伴うこと無
くイオン交換膜への水の補給と燃料電池の冷却を、開票
化した装置によって行えるセル構造を有する固体高分子
電解質型燃料電池を経済的にも有利に提供することがで
きる。
Furthermore, since the water flowing through the conduit directly contacts the ion exchange membrane to replenish the water, water permeation into the ion exchange membrane is more reliable than with conventional techniques that supply water through the electrode base material. At the same time, it is also possible to prevent problems in supplying the reactive gas due to the electrode base material becoming too wet with water. Therefore, according to the present invention, it is possible to economically provide a solid polymer electrolyte fuel cell having a cell structure that allows replenishment of water to the ion exchange membrane and cooling of the fuel cell using a gated device without causing any disturbance in the supply of reactant gas. It can also be advantageously provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例になる固体高分子電解質型燃
料電池のセル構造を模式化して示す断面図、第2図はこ
の発明の異なる実施例を示す断面図、第3図は第2図に
おけるセパレート板の要部を示す平面図、第4図はこの
発明の他の実施例を示すセパレート板の平面図である。 1:単位セル、2:イオン交換膜、3ニアノード電極、
4:カソード電極、5:反応ガス通路、6.26:セパ
レート板、7.27=バツキングシート、8.18:凹
溝、9:切り欠き部、lAl1:拡張部分、10,20
,30:導水路、18:反応ガス、19:水、34A、
34B。 乙セハ5−ト木( 第1靭 第2図
FIG. 1 is a cross-sectional view schematically showing the cell structure of a solid polymer electrolyte fuel cell according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a different embodiment of the present invention, and FIG. FIG. 4 is a plan view of a separate plate showing another embodiment of the present invention. 1: unit cell, 2: ion exchange membrane, 3 near anode electrode,
4: Cathode electrode, 5: Reaction gas passage, 6.26: Separate plate, 7.27 = Bucking sheet, 8.18: Concave groove, 9: Notch, lAl1: Expanded portion, 10, 20
, 30: headrace, 18: reaction gas, 19: water, 34A,
34B. Otsuseha 5-to tree (1st part 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 1)固体高分子からなるイオン交換膜と、このイオン交
換膜に接する面側に電極触媒層を有するアノード電極及
びカソード電極との層状体からなる単位セル複数層が、
前記一対の電極との接触面に反応ガス通路となる複数の
凹溝を有するセパレート板を介して積層されたものにお
いて、前記イオン交換膜及びセパレート板の面積が前記
一対の電極より大きく形成されてなる拡張部分と、この
拡張部分に介装されたパッキングシートと、このパッキ
ングシートを貫通して前記イオン交換膜に接するよう前
記セパレート板側に形成された凹溝を含む導水路とを備
え、この導水路に冷却水を供給するとともに、この冷却
水により前記イオン交換膜を水和させるよう形成してな
ることを特徴とする固体高分子電解質型燃料電池のセル
構造。
1) A unit cell with multiple layers consisting of a layered body of an ion exchange membrane made of a solid polymer, an anode electrode and a cathode electrode having an electrode catalyst layer on the side in contact with the ion exchange membrane,
The ion exchange membrane and the separator plate are laminated through a separate plate having a plurality of grooves serving as reaction gas passages on the contact surface with the pair of electrodes, and the area of the ion exchange membrane and the separate plate is larger than that of the pair of electrodes. a packing sheet interposed in the expanded portion; and a conduit including a concave groove formed on the separate plate side so as to penetrate the packing sheet and come into contact with the ion exchange membrane. 1. A cell structure for a solid polymer electrolyte fuel cell, characterized in that cooling water is supplied to a water conduit and the ion exchange membrane is hydrated by the cooling water.
JP2113573A 1990-04-27 1990-04-27 Cell structure for solid polymer electrolyte type fuel cell Pending JPH0412465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113573A JPH0412465A (en) 1990-04-27 1990-04-27 Cell structure for solid polymer electrolyte type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113573A JPH0412465A (en) 1990-04-27 1990-04-27 Cell structure for solid polymer electrolyte type fuel cell

Publications (1)

Publication Number Publication Date
JPH0412465A true JPH0412465A (en) 1992-01-17

Family

ID=14615667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113573A Pending JPH0412465A (en) 1990-04-27 1990-04-27 Cell structure for solid polymer electrolyte type fuel cell

Country Status (1)

Country Link
JP (1) JPH0412465A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774794A1 (en) * 1995-11-15 1997-05-21 Daimler-Benz Aktiengesellschaft Integrated seal for fuel cell with polymeric electrolyte
WO2000010215A1 (en) * 1998-08-10 2000-02-24 Axiva Gmbh Fuel cell with improved long-term performance, method for operating a pme fuel cell and pme fuel cell battery
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6869719B2 (en) 1998-06-02 2005-03-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
WO2006070892A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and fuel cell stack provided with this
JP2009281982A (en) * 2008-05-26 2009-12-03 Riken Keiki Co Ltd Portable gas alarm unit
JP2013045699A (en) * 2011-08-25 2013-03-04 Sharp Corp Alkaline fuel cell
US9190678B2 (en) 2011-08-25 2015-11-17 Sharp Kabushiki Kaisha Alkaline fuel cell and alkaline fuel cell system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928807A (en) * 1995-11-15 1999-07-27 Ballard Power Systems Inc. Integrated seal for a PEM fuel cell
EP0774794A1 (en) * 1995-11-15 1997-05-21 Daimler-Benz Aktiengesellschaft Integrated seal for fuel cell with polymeric electrolyte
US6630258B1 (en) 1998-04-30 2003-10-07 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Process for wetting at least one of the surfaces of an electrolyte in a fuel cell
WO1999057778A3 (en) * 1998-04-30 2000-03-02 Emitec Emissionstechnologie Method for wetting at least one of the surfaces of an electrolyte in a fuel cell
US6869719B2 (en) 1998-06-02 2005-03-22 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell stack
US6852440B1 (en) 1998-08-10 2005-02-08 Axiva Gmbh Fuel cell with improved long term performance, method for operating a PME fuel cell and PME fuel cell battery
JP2002533869A (en) * 1998-08-10 2002-10-08 セラニーズ・ヴェンチャーズ・ゲーエムベーハー PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
WO2000010215A1 (en) * 1998-08-10 2000-02-24 Axiva Gmbh Fuel cell with improved long-term performance, method for operating a pme fuel cell and pme fuel cell battery
WO2006070892A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. Fuel cell and fuel cell stack provided with this
US8278007B2 (en) 2004-12-28 2012-10-02 Panasonic Corporation Fuel cell and fuel cell stack comprising the same
JP2009281982A (en) * 2008-05-26 2009-12-03 Riken Keiki Co Ltd Portable gas alarm unit
JP4691579B2 (en) * 2008-05-26 2011-06-01 理研計器株式会社 Portable gas alarm
JP2013045699A (en) * 2011-08-25 2013-03-04 Sharp Corp Alkaline fuel cell
US9190678B2 (en) 2011-08-25 2015-11-17 Sharp Kabushiki Kaisha Alkaline fuel cell and alkaline fuel cell system

Similar Documents

Publication Publication Date Title
US5382478A (en) Electrochemical fuel cell stack with humidification section located upstream from the electrochemically active section
JP4037698B2 (en) Solid polymer cell assembly
US5922485A (en) Solid polymer electrolyte fuel cell
US6207312B1 (en) Self-humidifying fuel cell
US6303245B1 (en) Fuel cell channeled distribution of hydration water
US5252410A (en) Lightweight fuel cell membrane electrode assembly with integral reactant flow passages
US6406807B1 (en) Distribution of hydration fluid in a fuel cell
JP2007227377A (en) Fuel cell integrated humidification
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP2002025584A (en) Solid high polymer molecule electrolyte fuel cell and its humidifying method
JP3510285B2 (en) Solid polymer electrolyte fuel cell system
JP3141619B2 (en) Solid polymer electrolyte fuel cell power generator
JPH09283162A (en) Solid high molecular fuel cell
US7727660B2 (en) Modified fuel cells with internal humidification and/or temperature control systems
JP3839978B2 (en) Polymer electrolyte fuel cell system
JPH0412465A (en) Cell structure for solid polymer electrolyte type fuel cell
JP3111682B2 (en) Solid polymer electrolyte fuel cell system
US6803137B2 (en) Fuel cell
JP4621370B2 (en) Fuel cell stack structure
JP3276175B2 (en) Solid polymer electrolyte fuel cell
JPH0668896A (en) Cell structure of solid polymer electrolytic fuel cell
JP3736475B2 (en) Fuel cell
JP3963716B2 (en) Fuel cell stack
JPH06338332A (en) Gas separator for solid high molecular electrolytic fuel cell
KR20220069707A (en) Humidifier for fuel cell