[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04124419A - Particulate trap medium for diesel engine exhaust - Google Patents

Particulate trap medium for diesel engine exhaust

Info

Publication number
JPH04124419A
JPH04124419A JP2244966A JP24496690A JPH04124419A JP H04124419 A JPH04124419 A JP H04124419A JP 2244966 A JP2244966 A JP 2244966A JP 24496690 A JP24496690 A JP 24496690A JP H04124419 A JPH04124419 A JP H04124419A
Authority
JP
Japan
Prior art keywords
diesel engine
dimensional network
trap
network structure
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2244966A
Other languages
Japanese (ja)
Other versions
JP2841803B2 (en
Inventor
Masayuki Ishii
石井 正之
Masaaki Honda
正明 本多
Kazuhisa Yamauchi
山内 一寿
Keishichi Komatsu
啓七 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24496690A priority Critical patent/JP2841803B2/en
Publication of JPH04124419A publication Critical patent/JPH04124419A/en
Application granted granted Critical
Publication of JP2841803B2 publication Critical patent/JP2841803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To sufficiently seize particulates exhausted from a diesel engine vehicle and also to obtain heat resistance by using a three-dimensional network structure porous body having communication pores and comprising a skeleton in which a nickel-chrome alloy or a nickel-chrome-iron alloy is covered with heat resistant ceramics. CONSTITUTION:In a block shape three dimensional network structure porous body 1 housed in a trap holder 2, hole portions 6 for gas passage are formed from a gas flow-in port 3 side toward a gas flow-out port 4 side. As a trap medium for a trap device a three dimensional network structure of: (1) a nickel- chrome-aluminum alloy having an average pore diameter of 0.2 mm or (2) a nickel-chrome-iron-aluminum alloy is used, which is formed into a cylindrical shape. A device, wherein a flow passage is formed so that an exhaust gas is introduced in from the gas flow-in port 3 side and discharged from the gas flow-out port 4 side after passing through the three dimensional network structure porous body 1, is used. With this constitution, a particulate trap medium for a diesel engine exhaust with low pressure loss and high seizing efficiency and durable against thermal stress at the time of regeneration can be provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はディーゼルエンジンから排気される微粒子を捕
捉除去するために用いられるトラップメディアに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a trap medium used for capturing and removing particulates exhausted from a diesel engine.

〔従来の技術〕[Conventional technology]

自動車の排気ガスは大気汚染の大きな原因の一つで、排
気ガスに含まれる有害成分を除去する技術は極めて重要
である。
Automobile exhaust gas is one of the major causes of air pollution, and technology to remove harmful components contained in exhaust gas is extremely important.

特に、ディーゼルエンジン車においては、主にNoえと
、カーボンを主体とするすす状微粒子(パティキュレー
ト)の除去が重要な課題である。
In particular, in diesel engine vehicles, the removal of soot-like particulates (particulates) mainly composed of carbon is an important issue.

これらの有害成分を除去するために、過給を行ったり燃
料噴射系の改善や燃焼室形状の改善を行ったり、エンジ
ン側の努力も行われているが、抜本的な決め手がなく、
後処理による除去が不可欠である。
In order to remove these harmful components, efforts are being made on the engine side, such as supercharging, improving the fuel injection system, and improving the shape of the combustion chamber, but there is no drastic solution.
Removal by post-treatment is essential.

排気ガス有害成分中、微粒子は固体カーボンと、有機溶
媒に溶解する可溶性有機物からなり、フィルタートラン
プによって捕捉除去する方法が最も実用的であると考え
られている。
Among the harmful components of exhaust gas, fine particles consist of solid carbon and soluble organic matter that dissolves in organic solvents, and it is considered that the most practical method is to capture and remove them using a filter lamp.

ところで、ディーゼルエンジン排気に含まれる微粒子を
捕捉するためのフィルタートラップメディアとしては、
使用される条件から次のような性能を満足する必要があ
る。第1には、必要とされる排気ガスの清浄度を満足さ
せうるだけの、微粒子に対する、捕集効率を持っている
ことが必要である。第2にはエンジン排気は、このトラ
ップを通して排出されるわけだから、エンジンに過度な
背圧をかけないためには、排気ガス流動時の通気圧力損
失が小さい必要がある。初期圧力損失が小さいことはも
ちろん、微粒子がトランプされても圧力損失が上がりに
くいことが要求される。すなわち、第1および第2の要
求を満足させるようフィルタートランプの形状や構造が
設計されなければならない。
By the way, filter trap media for capturing particulates contained in diesel engine exhaust include:
It is necessary to satisfy the following performance based on the usage conditions. First, it is necessary to have sufficient particle collection efficiency to satisfy the required cleanliness of exhaust gas. Secondly, since engine exhaust gas is exhausted through this trap, the ventilation pressure loss during exhaust gas flow must be small in order to avoid applying excessive back pressure to the engine. In addition to having a small initial pressure loss, it is also required that the pressure loss does not easily increase even when fine particles are tramped. That is, the shape and structure of the filter Trump must be designed to satisfy the first and second requirements.

また、トラップメディアにある程度以上微粒子がトラッ
プされると、トラップされた微粒子を除去再生して捕集
能を回復してやる必要がある。再生方法としては、電熱
またはバーナー加熱によって微粒子を燃焼除去する方法
が最も有力な方法だと考えられている。したがって、第
3の要求性能として、繰り返し行われるこの再生処理に
対する耐久性が必要である。
Furthermore, when more than a certain amount of particles are trapped in the trap medium, it is necessary to remove and regenerate the trapped particles to recover the trapping ability. The most effective method of regeneration is considered to be to burn off the particulates using electric heat or burner heating. Therefore, the third required performance is durability against this repeated regeneration process.

現時点で、トラップメディアとしては、排気ガスに対す
る耐触性、耐熱性、捕集性能および再生に対する耐久性
の面からコーディエライトセラミックスのハニカム状多
孔体が、最も実用化に近い材料と言われている。しかし
ながら、コーディエライトセラミックスをフィルタート
ラップとして用いた場合、再生時には微粒子の燃焼によ
ってトラップメディアに局所的な温度分布が生しやすく
、熱応力によって亀裂を生じるのを防ぐためには、再生
条件のコントロールが極めて難しく未だ実用になってい
ないのが現状である。
At present, cordierite ceramic honeycomb porous bodies are said to be the material closest to practical use as trap media in terms of exhaust gas contact resistance, heat resistance, collection performance, and durability for regeneration. There is. However, when cordierite ceramics are used as a filter trap, local temperature distribution tends to occur in the trap media due to the combustion of fine particles during regeneration, and in order to prevent cracks from occurring due to thermal stress, it is necessary to control the regeneration conditions. The current situation is that it is extremely difficult and has not yet been put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで、この発明は、低圧力損失で、捕集効率も高く、
再生時の熱応力にも耐え得るディーゼルエンジン排気用
微粒子トラップメディアを提供しようとするものである
Therefore, this invention has low pressure loss and high collection efficiency.
The present invention aims to provide particulate trapping media for diesel engine exhaust that can withstand thermal stress during regeneration.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するために、この発明は、ニッケル−
クロム合金、ニッケル−クロム−鉄合金あるいはこれら
の合金にアルミニウム、イツトリウムあるいはセリウム
のような希土類元素を微量添加した合金、あるいはこれ
らの合金にゾル−ゲル法により耐熱性セラミックス層を
被覆した骨格からなる連通気孔を持つ三次元網状構造多
孔体を、ディーゼルエンジン排気用微粒子トラップメデ
ィアとしたものである。
In order to solve the above problems, this invention
Chromium alloys, nickel-chromium-iron alloys, alloys with trace amounts of rare earth elements such as aluminum, yttrium, or cerium added to these alloys, or skeletons made of these alloys coated with a heat-resistant ceramic layer using the sol-gel method. A three-dimensional network porous body with communicating holes is used as particulate trapping media for diesel engine exhaust.

〔作用〕[Effect]

上記の三次元網状構造多孔体は、第1図に示すように、
連結する骨格とボケント状の空間からなる多孔体であり
、多孔率が高いために、ガス流動抵抗がきわめて小さい
割に、−旦ボヶソト状の空間に捕捉された粒子は空間か
ら脱離しにくいため固形物の捕集性能が優れている。ま
た、耐熱性にも優れている。
As shown in FIG. 1, the above-mentioned three-dimensional network structure porous body has
It is a porous body consisting of connected skeletons and hollow-shaped spaces, and due to its high porosity, the gas flow resistance is extremely small.However, particles trapped in the hollow-shaped spaces are difficult to detach from the spaces, so they become solid. Excellent object collection performance. It also has excellent heat resistance.

〔実施例〕〔Example〕

三次元網状構造多孔体を使ったフィルタートラップのフ
ィルターとしての性能は、主に次の二つの要因で決まる
The performance of a filter trap using a porous three-dimensional network structure as a filter is mainly determined by the following two factors.

一つは用いる三次元網状構造多孔体の空孔径であり、捕
集特性を高くするということと、フィルタートラップに
おける圧力損失を小さくするということのバランスから
用いる三次元網状構造多孔体の空孔径が決まる。三次元
網状構造多孔体の孔径は、捕集効率の面から、米国およ
び日本で提唱されている排気ガス規制値を満足させるた
めには、平均孔径0.1〜0.5+m++である必要が
ある。平均孔径が0.1am以下の場合には、捕集効率
としては優れているが、通気抵抗が過大となる。平均孔
径0.5m11以上では、初期もしくは、再生処理直後
の捕集効率が不十分で上述の規制値を満足することが難
しい。
One is the pore diameter of the three-dimensional network structure porous material used, and the pore diameter of the three-dimensional network structure porous material used is determined from the balance between increasing collection characteristics and reducing pressure loss in the filter trap. It is decided. The average pore diameter of the three-dimensional network porous material needs to be 0.1 to 0.5+m++ in order to satisfy the exhaust gas regulation values proposed in the United States and Japan from the perspective of collection efficiency. . When the average pore diameter is 0.1 am or less, the collection efficiency is excellent, but the ventilation resistance becomes excessive. If the average pore diameter is 0.5 m11 or more, the collection efficiency at the initial stage or immediately after the regeneration treatment is insufficient and it is difficult to satisfy the above-mentioned regulation value.

トランプに排気ガスを流した時の通気抵抗は、三次元網
状構造多孔体の平均孔径だけでなく、その厚さも影響す
る。一般に、ディーゼルエンジンに対しては、トラップ
部で0.04kg/crA以上の圧力損失が生じると、
エンジンに過大な背圧がかかり、エンジンの作動に悪影
響を与えるため、トラップメディアは、孔径に応して厚
さを調整し、通気抵抗が0.04kg/cii以下とな
るようにする必要がある。
The ventilation resistance when exhaust gas flows through playing cards is affected not only by the average pore diameter of the three-dimensional network porous material but also by its thickness. Generally, for diesel engines, if a pressure loss of 0.04 kg/crA or more occurs at the trap part,
Because excessive back pressure is applied to the engine and has a negative effect on engine operation, the thickness of the trap media must be adjusted according to the pore diameter so that the airflow resistance is 0.04 kg/cii or less. .

二つめはフィルタートラップの構造的要因である。すな
わちコンパクトで、より大きなフィルター面積を取るこ
とがより良いフィルター特性を発揮させるだけでなく、
再生のインターバルを長くさせる意味からも重要である
。同時に、構造設計は、三次元網状構造多孔体に適した
もので、且つエンジン排気管への取り付けに適したもの
でなければならない、このような観点から、三次元網状
構造多孔体の構造としては、第2図乃至第7図に示すよ
うな例がある。
The second factor is the structural factor of the filter trap. In other words, being compact and taking up a larger filter area not only provides better filter characteristics, but also
This is also important from the point of view of lengthening the playback interval. At the same time, the structural design must be suitable for the three-dimensional network porous body and suitable for installation in the engine exhaust pipe.From this perspective, the structure of the three-dimensional network porous body is , there are examples as shown in FIGS. 2 to 7.

第2図及び第3図に示す例は、トランプホルダー2内に
収容されるブロック状の三次元網状構造多孔体1に、ガ
ス流入口3側からガス流出口4側に向かってガス通路用
の孔部6を形成したものである。上記孔部6は、ガス流
出口4側からガス流入口3側に向かって形成するように
してもよく、また、第4回及び第5図に示す例のように
、ガス流入口3側からガス流出口4側に向かって形成さ
れた孔部6と、反対にガス流出口4側からガス流入口3
側に向かって形成された孔部6′とが各々隣合うように
してもよい。
In the example shown in FIGS. 2 and 3, a block-shaped three-dimensional network structure porous body 1 housed in a playing card holder 2 is provided with a gas passage from a gas inlet 3 side to a gas outlet 4 side. A hole 6 is formed therein. The hole 6 may be formed from the gas outlet 4 side toward the gas inlet 3 side, or, as in the example shown in the fourth and FIG. 5, from the gas inlet 3 side. A hole 6 formed toward the gas outlet 4 side and a gas inlet 3 formed from the gas outlet 4 side oppositely.
The holes 6' formed toward the sides may be adjacent to each other.

このような構造にすると、三次元網状構造多孔体1を単
純なブロック形状にした場合に比し、大きなフィルター
面積を取れ、且つ実質フィルター厚みを薄く取れるため
排気ガス通過時の圧力損失を小さくすることができる。
With such a structure, compared to the case where the three-dimensional network structure porous body 1 is made into a simple block shape, a larger filter area can be obtained and the actual filter thickness can be reduced, thereby reducing pressure loss when exhaust gas passes through. be able to.

また、第4図及び第5図に示す例のように、流入側から
の孔部6と流出側からの孔部6′を可能な限り各々隣合
うように配置することによって上記効果を最大限に生か
すことができる。
Furthermore, as shown in the examples shown in FIGS. 4 and 5, the above effects can be maximized by arranging the holes 6 from the inflow side and the holes 6' from the outflow side as close to each other as possible. It can be put to good use.

第6図及び第7図に示す例は、三次元網状構造多孔体1
によって形成した径の異なる複数本の筒体7を、各筒体
7間に所定の隙間をあけて同心上に重ね合わせてトラッ
プホルダー2内に収容し、最も外側に位置する筒体7の
一端の外周面とトラップホルダ2の内周面との間ムこ形
成される空間と、各筒体7間に形成される一端の隙間と
、最も内側に位置する筒体7の端面開口がそれぞれ、ガ
ス流入口3側とガス流入口4側において互い違いになる
ようにシール部材8によって閉塞したものであり、排気
ガスは第7図に示すように各筒体7を通過する。
The example shown in FIGS. 6 and 7 is a three-dimensional network structure porous body 1
A plurality of cylinders 7 having different diameters are stacked concentrically with a predetermined gap between each cylinder 7 and accommodated in the trap holder 2, and one end of the outermost cylinder 7 is placed in the trap holder 2. A space formed between the outer circumferential surface of the trap holder 2 and the inner circumferential surface of the trap holder 2, a gap at one end formed between each cylinder 7, and an end face opening of the innermost cylinder 7, respectively, The gas inlet 3 side and the gas inlet 4 side are alternately closed by seal members 8, and the exhaust gas passes through each cylinder 7 as shown in FIG.

また、上記の各々の例において、ガス流出口4例の三次
元網状構造多孔体1の孔径を、他の部分の孔径よりも小
さくすることによって、捕集効率を向上させることがで
きると共に、−旦捕捉された微粒子が排出されるいわゆ
るブローオフ現象を防ぐことができる。三次元網状構造
多孔体の孔径を、ガス流出口4側部分のみ小さくするこ
とは、例えば−旦小さな孔をあけておいてから塑性変形
によって孔径を広げることによって実現できる。
Furthermore, in each of the above examples, by making the pore diameter of the three-dimensional network structure porous body 1 of the four gas outlet ports smaller than the pore diameter of other parts, the collection efficiency can be improved, and - It is possible to prevent the so-called blow-off phenomenon in which fine particles once captured are discharged. The pore diameter of the three-dimensional network porous body can be reduced only on the gas outlet 4 side by, for example, first making small pores and then enlarging the pore diameter by plastic deformation.

また、ディーゼルエンジン排気用微粒子トランプメディ
アとしては、従来、コーディエライトセラミックスが検
討されてきたが、微粒子フィルタートラップとして使用
される際の排気ガス入口の温度は、走行時の負荷条件に
もよるが、通常の40〜60 km/時走行時にはせい
ぜい200〜300℃の温度である。坂道の多いところ
の連続走行や急発進する場合には、400°C〜500
 ”Cまで温度上昇する。規定量の微粒子の捕集を完了
すると、背圧が大きくなりすぎないうちに微粒子を何等
かの燃焼手段により除去する処理をおこなう。
In addition, cordierite ceramics have been considered as particulate Trump media for diesel engine exhaust, but the temperature at the exhaust gas inlet when used as a particulate filter trap depends on the load conditions during driving. , the temperature is at most 200 to 300°C during normal driving at 40 to 60 km/hour. 400°C to 500°C when driving continuously on slopes or when starting suddenly.
The temperature rises to "C". When the collection of a specified amount of fine particles is completed, the fine particles are removed by some combustion means before the back pressure becomes too large.

この際、700〜900°Cまでの再生用ガスを導入す
る。−時期に1,000°Cまで温度上昇する。
At this time, a regeneration gas at a temperature of 700 to 900°C is introduced. -Temperature rises up to 1,000°C during the period.

燃焼は5〜15分で終了する。実際にディーゼルエンジ
ン車にこのような微粒子フィルタートラップを搭載して
走行させる場合、少なくとも5年以上のトラップ材の寿
命が要求される。
Combustion ends in 5 to 15 minutes. When a diesel engine vehicle is actually driven with such a particulate filter trap installed, the trap material is required to have a lifespan of at least five years.

耐熱材料として種々の材料が開発されているが本発明で
は、3次元網状構造多孔体としてNi基合金(住友電工
製:商品名 セルメント)を用いる。3次元網状構造多
孔体はウレタンフオームに導電処理を施した後Niメツ
キにより、骨格を形成し、基材のウレタンフオームを燃
焼除去した3次元に連通した構造として得られる。こう
したことから、基材の基本組成はNiである。純Niで
は、700 ’C以上耐熱性は期待できず、また、排気
ガス中に含まれるSO□ガスによる腐食に長期耐えるこ
とができない。
Although various materials have been developed as heat-resistant materials, in the present invention, a Ni-based alloy (manufactured by Sumitomo Electric Industries, Ltd., trade name: CELMENT) is used as the three-dimensional network structure porous body. The three-dimensional network structure porous material is obtained as a three-dimensionally connected structure in which a urethane foam is subjected to conductive treatment and then Ni-plated to form a skeleton, and the urethane foam as a base material is burned off. For these reasons, the basic composition of the base material is Ni. Pure Ni cannot be expected to have heat resistance above 700'C, and cannot withstand long-term corrosion by SO□ gas contained in exhaust gas.

しかしながら、Ni製の3次元網状構造多孔体基材は拡
散浸透処理によってNiを合金化することが可能であり
、クロム、鉄、アルミニウム、希土類元素(イツトリウ
ム、セリウム等)の各元素をNi中に拡散浸透処理した
合金を作製することができる。これらの元素はそれぞれ
適当量の合金化あるいは、微量の添加で耐熱性、耐食性
の向上をはかることができる。ニッケル−クロム合金、
ニッケルークロ五−鉄合金を主体とした組合せがある。
However, it is possible to alloy Ni with a three-dimensional network structure porous base material made of Ni by diffusion infiltration treatment, and each element such as chromium, iron, aluminum, and rare earth elements (yttrium, cerium, etc.) can be added to Ni. Diffusion-infiltrated alloys can be produced. Heat resistance and corrosion resistance can be improved by alloying or adding trace amounts of these elements in appropriate amounts. nickel-chromium alloy,
There are combinations based on nickel-chromate penta-iron alloys.

これらの合金に0.1%以下の微量のイツトリウム金属
元素あるいはセリウム金属元素等の希土類元素を電子ビ
ーム蒸着法あるいはスパンタリング法やイオンプランテ
ィジオン等のPVD (物理蒸着)法により表面層に含
有させ、さらに、これらの元素を不活性雰囲気中あるい
はH2還元雰囲気中で表面層から内部に拡散させ本発明
の合金を得ることもできる。また、0.1%以下のイツ
トリウム元素あるいはセリウム元素などの希土類光。
These alloys contain trace amounts of rare earth elements such as yttrium metal element or cerium metal element in the surface layer of 0.1% or less by electron beam evaporation method, sputtering method, PVD (physical vapor deposition) method such as ion plantidion. Furthermore, the alloy of the present invention can be obtained by diffusing these elements from the surface layer into the interior in an inert atmosphere or an H2 reducing atmosphere. Also, rare earth light such as 0.1% or less of yttrium element or cerium element.

素はそれぞれの金属を全体重量の0.2%以上となるよ
うに拡散浸透剤中の原料粉末中に混合して1000℃以
上の温度で拡散浸透処理することにより容易に得られる
The element can be easily obtained by mixing each metal in a raw material powder in a diffusion infiltration agent in an amount of 0.2% or more of the total weight and performing a diffusion infiltration treatment at a temperature of 1000° C. or more.

また、金属アルコキシドを利用したゾル−ゲル法により
2,0.セラミックス層を3次元網状構造多孔体の被覆
に応用した結果、1,000’Cでの耐熱性では回答問
題はな(、信転性の高い構造体を得た。
In addition, 2.0. As a result of applying the ceramic layer to the coating of a three-dimensional network structure porous body, a structure with high reliability was obtained with no problem in terms of heat resistance at 1,000'C.

以上の合金および耐熱セラミックス層を被覆した構造体
は、700℃以上において構造体としての強度を有して
いるとともに、高温酸化雰囲気での酸化が進行すること
は少なく、特に高温での耐熱性・耐食性が要求される排
気ガス中の微粒子トラップメディア材として十分価れた
材料であることがランニングテストにより異常なきこと
を確認した。
The structure coated with the above alloy and heat-resistant ceramic layer has strength as a structure at temperatures above 700°C, and oxidation hardly progresses in a high-temperature oxidizing atmosphere. A running test confirmed that the material is suitable for use as a media material for trapping particulates in exhaust gas, which requires corrosion resistance.

〔実験例1〕 6.41.6気筒の直噴式ディーゼルエンジンの排気系
に第8図に示すようにトラップ装置及び再生ガス供給装
置をとりつけた。トラップ装置は第6図及び第7図に示
すようにトラップメディアとして平均孔径0.2閣の■
ニッケル−クロムーアルミニウム合金あるいは■ニッケ
ル−クロムー鉄アルミニウム合金の3次元綱状構造多孔
体(住友電工製、商品名セルメット、組成:■ニッケル
55%、クロム40%、アルミニウム5%、■ニッケル
68%、クロム15%、鉄13%、アルミニウム4%)
を用い、円筒状に成形し、第6図に示すように排気ガス
がガス流入口3側から導入され、3次元網状構造多孔体
1を通った後、ガス流出口4から排出されるように流路
を形成したものを用いた。
[Experimental Example 1] A trap device and a regeneration gas supply device were installed in the exhaust system of a 6.41.6-cylinder direct injection diesel engine as shown in FIG. As shown in Figures 6 and 7, the trap device uses a medium with an average pore diameter of 0.2 mm as the trap media.
Nickel-chromium-aluminum alloy or nickel-chromium-iron-aluminum alloy three-dimensional porous body (manufactured by Sumitomo Electric, product name Celmet, composition: 55% nickel, 40% chromium, 5% aluminum, 68% nickel) , chromium 15%, iron 13%, aluminum 4%)
is formed into a cylindrical shape, and as shown in FIG. A type with a flow path formed therein was used.

再生用ホントガス供給装置は軽油バーナーにより、60
0〜900°COガスが発生でき、排気ガスがトラップ
装置からバイパスされると再生用ホットガスがトラップ
に供給できるようになっている。
The regeneration real gas supply equipment uses a light oil burner to produce 60
0-900° CO gas can be generated, and when the exhaust gas is bypassed from the trap device, regeneration hot gas can be supplied to the trap.

第8図において、符号10はエンジン、5はトラップ装
置、11は再生ガス供給装置、12は排気管、13ば排
気バイパスをそれぞれ示している。
In FIG. 8, reference numeral 10 indicates an engine, 5 a trap device, 11 a regeneration gas supply device, 12 an exhaust pipe, and 13 an exhaust bypass.

この装置を用いて米国のヘビーデユーティ−ディーゼル
エンジン用トランジェントモードにて繰り返し排気テス
トを行い、微粒子低減効果を測定した結果、トラップ無
しで0.54 g/HP−Hrだったのに対し、20サ
イクル後、0.02g/HP−Hrであった。補集効率
は83%以上と十分米国EPAの1994年規制値(0
,1g/HP・Hr)を満足することがわかった。また
、圧損値も繰り返しサイクル数20回まで0.04 k
g/cdを保っていることがわかった。繰り返しサイク
ル数20回終了後、エンジン排気をトラップ装置からバ
イパスさせ、トラップ装置には、再生用ホットガス供給
装置から平均温度700 ’C以上の加熱空気を2rr
!/mir+の流量で約15分送り込み、トラ7ブされ
た微粒子を燃焼させることによって再生した。再生後の
トラ、プメディアは熔解、亀裂や極端な酸化や腐食は観
察されなかった。この後、再度排気回路を切り替えて、
排気テストをおこなった。繰り返しサイクル数20回行
った後、再度排気回路を再生ホ・7トガス供給回路に切
り替え、上述の再生を実施した。
Using this device, we conducted repeated exhaust tests in transient mode for American heavy-duty diesel engines and measured the particulate reduction effect, which was 0.54 g/HP-Hr without a trap, compared to 20 g/HP-Hr. After cycling, it was 0.02 g/HP-Hr. The collection efficiency is over 83%, which is sufficient to meet the US EPA's 1994 regulation value (0
, 1g/HP・Hr). In addition, the pressure loss value is 0.04 k up to 20 cycles.
It was found that g/cd was maintained. After 20 repeated cycles, the engine exhaust is bypassed from the trap device, and the trap device is supplied with 2 rr of heated air with an average temperature of 700'C or more from the regeneration hot gas supply device.
! /mir+ for about 15 minutes, and regenerated by burning the traversed particulates. After regeneration, no melting, cracking, extreme oxidation, or corrosion was observed in the regenerated Tora and Pmedia. After this, switch the exhaust circuit again,
I did an exhaust test. After repeating the cycle 20 times, the exhaust circuit was again switched to the regeneration photogas supply circuit, and the above-mentioned regeneration was carried out.

以上のテストを繰り返し、100回の再生を行った。1
00回の排気トランプ、再生の繰り返しに対して、本発
明のトラップメディアは捕集効率の低下もなく、溶解、
亀裂など外的損傷はみられず、機械的特性劣化はみられ
なかった。
The above test was repeated and played back 100 times. 1
The trap media of the present invention does not reduce the collection efficiency after 00 exhaust tramps and repeated regenerations, and has no effect on dissolution,
No external damage such as cracks was observed, and no deterioration of mechanical properties was observed.

実施例では、2種の合金組成を持つセルメットについて
示したが、必ずしもこの組成に限定されるものではなく
、次の範囲の合金でも同等の効果がみられた。
In the example, Celmet having two types of alloy compositions was shown, but it is not necessarily limited to these compositions, and similar effects were observed with alloys in the following ranges.

材料       組成(重量%) Ni   Cr    Fe    AlNi −Cr
−Al    bal、  30〜55     1〜
6Ni −Cr−Fe−Al  bat、  15〜3
0 10〜30 1〜6100回位の再生では外観上、
AIの添加はしなくても耐熱性に大きな差はみられない
が、数%の添加で安定なAl2O3酸化膜が形成される
ため、添加しないものに比べて酸化量が数分の1になり
、寿命がながくなるので、望ましくは添加した方がよい
。AIの添加はCr、Feと同様に拡散浸透処理により
容易に得られる。過剰の添加は硬い金属間化合物を形成
し、また、加工性が悪くなるため望ましくない。
Material Composition (wt%) Ni Cr Fe AlNi -Cr
-Al bal, 30~55 1~
6Ni-Cr-Fe-Al bat, 15-3
0 10~30 1~6100 times, the appearance is
Although there is no significant difference in heat resistance even without the addition of AI, a stable Al2O3 oxide film is formed with the addition of a few percent, so the amount of oxidation is reduced to a fraction of that without addition. , it is preferable to add it because it will prolong the service life. Like Cr and Fe, AI can be easily added by diffusion infiltration treatment. Excessive addition is undesirable because it forms a hard intermetallic compound and deteriorates workability.

〔実験例2〕 拡散浸透処理によるCr、Fe、AIの合金化処理をす
る際に、イツトリウム、セリウムのような希土類元素を
拡散浸透処理材とあわせて微量混合しておくことにより
、被覆拡散処理が可能である。最終的に作製した3次元
網状構造多孔体中の希土類元素の量は骨格表面から10
0−内でわずか0.005〜0.1重量%の拡散浸透量
になるようにしただけで処理しない多孔体にくらべて十
分な耐熱性をもつことが別の大気中酸化テスト(800
”C1500時間)によりわかった。これ以上の添加効
果は認められなかった。希土類元素のうち金属セリウム
元素を拡散浸透処理した3次元網状構造多孔体を用いて
実験例1と同じ条件で排気サイクル20回、再生100
回までのテストを実施した。ただし、再生ガス温度は7
00 ’Cで再生時間15分の他、800℃で10分の
2種類で実施した。700°Cでの再生ガス温度でも8
00°Cでの再生温度でも十分に燃焼は完了しており、
また100回の再生後でも、セルメントは外観上なんら
劣化している状況は認められなかった。拡散浸透の条件
は、通常のCr、Fe、AIの合金化をする際の条件と
ほぼ同じ条件であり、水素ガス雰囲気中でも、Arガス
のような不活性雰囲気ガス中でも十分に拡散浸透処理で
きる。
[Experiment Example 2] When performing alloying treatment of Cr, Fe, and AI by diffusion treatment, by mixing a small amount of rare earth elements such as yttrium and cerium together with the diffusion treatment material, coating diffusion treatment can be performed. is possible. The amount of rare earth elements in the final three-dimensional network structure porous material was 10% from the skeleton surface.
Another atmospheric oxidation test (800
No further addition effect was observed. Using a three-dimensional network structure porous material in which metal cerium among rare earth elements was diffused and permeated, an exhaust cycle of 20 was carried out under the same conditions as in Experimental Example 1. times, 100 plays
Tests were conducted up to once. However, the regeneration gas temperature is 7
Two types of regeneration were carried out: one at 00'C for 15 minutes and the other at 800C for 10 minutes. 8 even at regeneration gas temperature of 700°C.
Combustion is fully completed even at the regeneration temperature of 00°C.
Further, even after regeneration 100 times, no deterioration in appearance was observed in the cellment. The conditions for diffusion and infiltration are almost the same as those for normal alloying of Cr, Fe, and AI, and the diffusion and infiltration process can be performed satisfactorily in a hydrogen gas atmosphere or in an inert atmospheric gas such as Ar gas.

ここでは、希土類元素のうち金属セリウム元素の拡散浸
透処理品について記したが、イツトリウムを添加した場
合でもあてはまり、十分に排気ガスや、再生ガス雰囲気
に耐え再生を繰り返しおこなってもなんら外観的に劣化
がみうけられることはなかった。他の希土類元素の添加
でも同様な効果があったのは言うまでもない。
Here, we have described products treated by diffusion and penetration of metallic cerium, one of the rare earth elements, but this also applies to cases where yttrium is added, and there is no appearance deterioration even after repeated regeneration with sufficient resistance to exhaust gas and regeneration gas atmospheres. It was never seen. Needless to say, the addition of other rare earth elements had similar effects.

〔実験例3〕 ゾル−ゲル法をもちいてニッケル−クロム合金からなる
3次元網状構造多孔体の骨格表面に3〜20tnmの耐
熱セラミックスを被覆した構造体を作製した。メチルア
ルコールやブチルアルコールに金属ジルコニウムを混合
し、ゾル化した金属アルコキシド液を用い、3次元網状
構造多孔体を超音波洗浄による脱脂後、調整した液に浸
漬処理後−定の引き上げ速度(3m/5hin)で引き
あげし、被覆処理を行った。この処理を最終被覆、ゲル
化後の厚みが3〜20irmになるように浸漬回数を調
整した。浸漬乾燥後、さらに、安定皮膜を形成するため
に、室温から徐々に昇温し、最終温度400℃、30分
間で加熱硬化させた。皮膜形成させた3次元網状構造多
孔体を用いて、実験例1と同し条件で排気サイクル20
回、再生100回までのテストを実施した。ただし、再
生ガス温度は850°Cで10分の再生時間とした。1
00回の再生後でも、構造体は外観上なんら劣化してい
る状況は認められなかった。
[Experimental Example 3] A structure in which the skeleton surface of a three-dimensional network porous body made of a nickel-chromium alloy was coated with a heat-resistant ceramic having a thickness of 3 to 20 tnm was produced using a sol-gel method. Using a metal alkoxide solution made by mixing metal zirconium with methyl alcohol or butyl alcohol and turning it into a sol, the three-dimensional network structure porous material was degreased by ultrasonic cleaning, and then immersed in the prepared solution. It was pulled up after 5 h) and subjected to coating treatment. This treatment was the final coating, and the number of immersions was adjusted so that the thickness after gelation was 3 to 20 irm. After immersion drying, the temperature was gradually increased from room temperature to a final temperature of 400° C. for 30 minutes to form a stable film. Using the three-dimensional network structure porous material on which the film was formed, the exhaust cycle was carried out for 20 times under the same conditions as in Experimental Example 1.
Tests were conducted for up to 100 playbacks. However, the regeneration gas temperature was 850°C and the regeneration time was 10 minutes. 1
Even after 00 cycles of playback, no deterioration in the appearance of the structure was observed.

比較のために、皮膜厚さが3−以下、あるいは20n以
上になるようにした構造体を作製した。
For comparison, structures were produced in which the film thickness was 3 nm or less or 20 nm or more.

3R以下の厚さの皮膜では、850°Cでの再生では酸
化の割合が増え、十分な耐熱性向上を付与することがで
きないことがわかった。十分な被覆ができにくい3次元
構造をしているためと思われ、不均一皮膜しか得られな
い。このため、均一な厚みの皮膜を得るためには3n以
上あればよいが、20μ以上だとかえって、乾燥、硬化
時に皮膜の収縮により皮膜に亀裂が入りやすくなり、基
材表面まで亀裂が達しているものがあり、好ましくない
。再生時に、亀裂が拡がり、基材の耐熱温度で再往温度
条件を決める必要があり20n以上の厚膜では耐熱性向
上に寄与できないことになる。ここで得られた皮膜は酸
化ジルコニウム(ZrOz)であり、線膨張係数がlχ
10−’/’Cと、ニッケル−クロム合金の膨張係数と
同しであるため、再生の繰り返しでも、膜ハガレがおこ
る等のことはなく、安定した皮膜性状を保持していた。
It was found that in a film having a thickness of 3R or less, the rate of oxidation increases when regenerated at 850°C, and a sufficient improvement in heat resistance cannot be imparted. This is probably because it has a three-dimensional structure that makes it difficult to coat it sufficiently, and only uneven coatings can be obtained. For this reason, in order to obtain a film with a uniform thickness, it is sufficient to use 3n or more, but if it is 20μ or more, the film is more likely to crack due to shrinkage during drying and curing, and the cracks may reach the surface of the base material. There are some that are undesirable. At the time of regeneration, the cracks spread, and it is necessary to determine the re-exit temperature conditions based on the heat resistance temperature of the base material, and a thick film of 20 nm or more cannot contribute to improving heat resistance. The film obtained here is zirconium oxide (ZrOz) and has a linear expansion coefficient of lχ
Since the coefficient of expansion was 10-'/'C, which was the same as that of the nickel-chromium alloy, no peeling of the film occurred even after repeated regeneration, and stable film properties were maintained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の3次元網状構造多孔体は
、ディーゼルエンジン車から排気される微粒子を捕捉す
るのに十分な能力があり、また、捕捉した微粒子を燃焼
除去するのに必要な600〜900 ’Cでの耐熱性が
得られるためにディーゼルエンジン排気用微粒子トラッ
プメディアとして利用すると効果的である。
As explained above, the three-dimensional network structure porous body of the present invention has sufficient ability to capture particulates exhausted from diesel engine vehicles, and also has the ability to capture 600% of particulates necessary to burn and remove the captured particulates. Since it has heat resistance up to 900'C, it is effective when used as particulate trap media for diesel engine exhaust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は三次元網状構造多孔体の拡大図、第2図及び第
3図、第4図及び第5図、第6図及び第7図はそれぞれ
トラップ装置の一例を示す縦断正面図及び縦断側面図、
第8図はディーゼルエンジンの排気系にトラップ装置と
再生ガス供給装置を設けた一例を示す概略図である。 1・・・・・・三次元網状構造多孔体、2・・・・・・
トランプホルダ− 3・・・・・・ガス流入口、 5・・・・・・トランプ装置、 7・・・・・・筒体、 6・・・・・・孔部、 4・・・・・・ガス流出口、 8・・・・・・シール部材。
Figure 1 is an enlarged view of a three-dimensional network structure porous material, Figures 2 and 3, Figures 4 and 5, Figures 6 and 7 are a vertical front view and a vertical cross-section showing an example of a trap device, respectively. Side view,
FIG. 8 is a schematic diagram showing an example in which a trap device and a regeneration gas supply device are provided in the exhaust system of a diesel engine. 1...Three-dimensional network structure porous body, 2...
Playing card holder 3... Gas inlet, 5... Playing card device, 7... Cylindrical body, 6... Hole, 4...・Gas outlet, 8... Seal member.

Claims (6)

【特許請求の範囲】[Claims] (1)ニッケル−クロム合金又はニッケル−クロム−鉄
合金の骨格からなる連通気孔を持つ三次元網状構造多孔
体からなるディーゼルエンジン排気用微粒子トラップメ
ディア。
(1) Particulate trap media for diesel engine exhaust consisting of a three-dimensional network structure porous body with communicating holes made of a skeleton of nickel-chromium alloy or nickel-chromium-iron alloy.
(2)上記連通気孔の平均孔径が0.1〜0.5mmで
ある請求項(1)記載のディーゼルエンジン排気用微粒
子トラップメディア。
(2) The particulate trap media for diesel engine exhaust according to claim (1), wherein the communicating holes have an average pore diameter of 0.1 to 0.5 mm.
(3)請求項(1)記載の合金に、アルミニウムを1〜
6重量%添加したことを特徴とするディーゼルエンジン
排気用微粒子トラップメデイア。
(3) 1 to 10% of aluminum is added to the alloy according to claim (1).
Particulate trap media for diesel engine exhaust characterized by containing 6% by weight.
(4)イットリウム、セリウム等の希土類元素を骨格表
面から100μm内のところに0.005〜0.1重量
%となるように分布させた拡散層をもつことを特徴とす
る請求項(1)〜(3)のいずれかに記載のディーゼル
エンジン排気用微粒子トラップメディア。
(4) Claims (1) to 10 include a diffusion layer in which a rare earth element such as yttrium or cerium is distributed within 100 μm from the skeleton surface at a concentration of 0.005 to 0.1% by weight. (3) Particulate trap media for diesel engine exhaust according to any one of the above.
(5)骨格表面に、ゾル−ゲル法により3〜20μmの
厚みで被覆された耐熱セラミックス層を有することを特
徴とする請求項(1)又は(2)記載のディーゼルエン
ジン排気用微粒子トラップメディア。
(5) The particulate trap media for diesel engine exhaust according to claim 1 or 2, characterized in that the skeleton surface has a heat-resistant ceramic layer coated with a thickness of 3 to 20 μm by a sol-gel method.
(6)請求項(5)記載の耐熱セラミックス層がZrO
_2からなることを特徴とするディーゼルエンジン排気
用微粒子トラップメディア。
(6) The heat-resistant ceramic layer according to claim (5) is ZrO.
Particulate trap media for diesel engine exhaust characterized by consisting of _2.
JP24496690A 1990-09-13 1990-09-13 Particle trap media for diesel engine exhaust Expired - Lifetime JP2841803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24496690A JP2841803B2 (en) 1990-09-13 1990-09-13 Particle trap media for diesel engine exhaust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24496690A JP2841803B2 (en) 1990-09-13 1990-09-13 Particle trap media for diesel engine exhaust

Publications (2)

Publication Number Publication Date
JPH04124419A true JPH04124419A (en) 1992-04-24
JP2841803B2 JP2841803B2 (en) 1998-12-24

Family

ID=17126605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24496690A Expired - Lifetime JP2841803B2 (en) 1990-09-13 1990-09-13 Particle trap media for diesel engine exhaust

Country Status (1)

Country Link
JP (1) JP2841803B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006538A1 (en) * 1992-09-14 1994-03-31 Sumitomo Electric Industries, Ltd. Exhaust gas cleaning filter medium and method of manufacturing the same
EP0639398A1 (en) * 1993-08-20 1995-02-22 Sumitomo Electric Industries, Limited Corrosion-resistant metal filters
JPH0853723A (en) * 1994-07-13 1996-02-27 Stork Screens Bv Foam article
JPH09313831A (en) * 1996-01-31 1997-12-09 Corning Inc Device for changing feed material and its production and its utilization
JP2010180789A (en) * 2009-02-05 2010-08-19 Sumitomo Electric Ind Ltd Gas decomposing element
JP2010242611A (en) * 2009-04-04 2010-10-28 Sumitomo Electric Ind Ltd NOx DECOMPOSITION ELEMENT AND GENERATOR
JP2011101872A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994006538A1 (en) * 1992-09-14 1994-03-31 Sumitomo Electric Industries, Ltd. Exhaust gas cleaning filter medium and method of manufacturing the same
EP0639398A1 (en) * 1993-08-20 1995-02-22 Sumitomo Electric Industries, Limited Corrosion-resistant metal filters
US5505757A (en) * 1993-08-20 1996-04-09 Sumitomo Electric Industries, Ltd. Corrosion-resistant metal filters
JPH0853723A (en) * 1994-07-13 1996-02-27 Stork Screens Bv Foam article
JPH09313831A (en) * 1996-01-31 1997-12-09 Corning Inc Device for changing feed material and its production and its utilization
JP2010180789A (en) * 2009-02-05 2010-08-19 Sumitomo Electric Ind Ltd Gas decomposing element
JP2010242611A (en) * 2009-04-04 2010-10-28 Sumitomo Electric Ind Ltd NOx DECOMPOSITION ELEMENT AND GENERATOR
JP2011101872A (en) * 2009-11-12 2011-05-26 Mitsubishi Materials Corp Foamed metal body for cleaning exhaust gas of hybrid car and exhaust gas cleaning catalyst

Also Published As

Publication number Publication date
JP2841803B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5505757A (en) Corrosion-resistant metal filters
JP3893049B2 (en) Honeycomb structure and manufacturing method thereof
US7469532B2 (en) Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings
JP5447757B2 (en) Catalyst coated particle filter, process for its production and use thereof
US7041359B2 (en) Honeycomb structure and assembly thereof
JP5452606B2 (en) Exhaust gas purification filter
US5766458A (en) Modulated and regenerative ceramic filter with insitu heating element
KR100277616B1 (en) Exhaust gas purification filter
JP5258768B2 (en) Washcoat coated particulate matter filter substrate
WO2011040554A1 (en) Exhaust gas purification filter
US20030024393A1 (en) Particulate filtering method and device using the same
US20040096625A1 (en) Honeycomb structure and assembly thereof
JPH04124419A (en) Particulate trap medium for diesel engine exhaust
JPH03193108A (en) Element for filtering and/or purifyivg high temperature gas and manufacturing process thereof
JP2008537510A (en) Catalytic filter for filtering gases comprising a coating and / or joint with controlled porosity
US5830415A (en) Filter member for purifying exhaust gas and method for manufacturing the same
EP4281595A1 (en) Transplanted thermal barrier coating system
EP0626188A1 (en) Exhaust gas cleaning filter medium and method of manufacturing the same
JP2841772B2 (en) Particle trap media for diesel engine exhaust
JP3899998B2 (en) Honeycomb structure, manufacturing method thereof, and diesel particulate filter
JP2962042B2 (en) Particulate trap for purifying diesel engine exhaust gas
JP2007138875A (en) Exhaust emission control system and purification method
CA2611658A1 (en) Catalyst for purifying exhaust gases and process for producing the same
JP3367160B2 (en) Conductive filter and method of manufacturing the same
JPH04121412A (en) Particulate trap for exhaust gas of diesel engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071023

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081023

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091023

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101023

Year of fee payment: 12

EXPY Cancellation because of completion of term