[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04124084A - Method for growing dielectric oxide single crystal in electric field - Google Patents

Method for growing dielectric oxide single crystal in electric field

Info

Publication number
JPH04124084A
JPH04124084A JP24152190A JP24152190A JPH04124084A JP H04124084 A JPH04124084 A JP H04124084A JP 24152190 A JP24152190 A JP 24152190A JP 24152190 A JP24152190 A JP 24152190A JP H04124084 A JPH04124084 A JP H04124084A
Authority
JP
Japan
Prior art keywords
crystal
voltage
electric field
single crystal
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24152190A
Other languages
Japanese (ja)
Inventor
Yasushi Obayashi
寧 大林
Hideo Suzuki
英夫 鈴木
Takashi Suzuki
孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP24152190A priority Critical patent/JPH04124084A/en
Publication of JPH04124084A publication Critical patent/JPH04124084A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a uniform and high-quality single crystal having single ferroelectric domain by pulling up a dielectric oxide single crystal by Czochralski process and converting the single crystal into the state of single ferroelectric domain by applying a pulse potential to the crystal. CONSTITUTION:A dielectric oxide single crystal 3 is pulled up from a molten liquid 2 in a platinum crucible 1. In the course of the pulling up operation, a pulse potential is applied to the crystal 3 by turning a switch 5 on to effect the growth of the crystal 3 in poled state by the effect of the applied electric field and, at the same time, the atoms in the molten liquid 2 are ionized to form plus ions and minus ions, which are drawn toward the +electrode and the -electrode, respectively, to form a diffusion layer 4 having non-uniform element distribution in the molten liquid. The switch 5 is turned off to eliminate the diffused layer. The on-and-off of the pulse potential are repeated at intervals of the order of milli-sec to perform the growth of the crystal 3.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はチョクラルスキー法により誘電体酸化物単結晶
を引上育成する場合における電界下育成方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for growing a dielectric oxide single crystal under an electric field by pulling it using the Czochralski method.

「従来の技術」 強誘電体結晶は、育成直後では結晶中の自発分極の向き
がそれぞれ異なった多分域状態であるので、結晶の応用
にあってはこれをそろえて多分域状態にする必要がある
。この方法としては、結晶をキューリー温度近傍におい
て、結晶に外部電場を与え結晶中に一定方向に電流を流
すことにより達成される。この工程はポーリング処理、
あるいは単分域化操作といわれる。−例としてLiNb
O3結晶の場合には既にNa5sauらに紹介されてい
るように、育成後の結晶を再び高温下におし)でポーリ
ング処理する方法と、引き上げ育成するのと同時に電界
をかける電界下育成法がある(K、Na5sau、 H
、J 、 Levinstein and G 、M、
 Loiaeono。
``Prior art'' Immediately after ferroelectric crystal growth, a ferroelectric crystal is in a multi-regional state with different directions of spontaneous polarization within the crystal, so in applications of the crystal, it is necessary to align these to create a multi-regional state. be. This method is achieved by keeping the crystal near its Curie temperature, applying an external electric field to the crystal, and causing a current to flow in a fixed direction through the crystal. This process is a polling process,
It is also called a single-domain operation. - e.g. LiNb
In the case of O3 crystals, as already introduced by Na5sau et al., there are two methods: a method of poling the crystal by exposing it to a high temperature again after growth, and a method of growing under an electric field, in which an electric field is applied at the same time as the crystal is pulled and grown. Yes (K, Na5sau, H
, J., Levinstein and G., M.
Loiaeono.

P hys、Chew、S olids、27.&6.
p989,1966)。
P hys, Chew, Solids, 27. &6.
p989, 1966).

通常のLiNb0.結晶の場合は前者の方法で単分域状
態の結晶が得られる。しかしながら、Mgoをドープし
たLiNb0.ではドープによってキューリー温度が上
昇し、従ってポーリング時の温度も高くしなければなら
ない。するとポーリング温度が結晶の融点に非常に近く
なるため、前者の方法では結晶がダメージを受けるなど
してポーリング処理が困難になる。そこでMgOをドー
プしたLiNb0.の場合には後者の電界下育成法の適
用が考えられる。
Ordinary LiNb0. In the case of crystals, the former method yields single-domain crystals. However, Mgo-doped LiNb0. In this case, the Curie temperature increases due to doping, and therefore the temperature during poling must also be increased. In this case, the poling temperature becomes very close to the melting point of the crystal, so the former method damages the crystal and makes the poling process difficult. Therefore, MgO-doped LiNb0. In this case, the latter electric field growth method may be applied.

[発明が解決しようとする課題」 一般に、電界下育成法は、白金るつぼに入れた融液から
結晶を引上げ育成する場合に、種結晶に巻いた白金線を
一方極とし、白金るつぼを他方極として直流電圧をかけ
て結晶を育成する方法であるが、従来の電界下育成法は
、融液の電気分解などの印加電界による影響のため、結
晶の品質が著しく劣化するという問題があった。すなわ
ち、原子がイオン化して正イオン(金属イオン)と負イ
オン(酸素イオンなど)となり、正イオンは負極側。
[Problem to be solved by the invention] In general, in the electric field growth method, when a crystal is pulled up and grown from a melt placed in a platinum crucible, the platinum wire wound around the seed crystal is used as one pole, and the platinum crucible is used as the other pole. This is a method of growing crystals by applying a direct current voltage, but the conventional growth method under an electric field has the problem that the quality of the crystal deteriorates significantly due to the effects of the applied electric field such as electrolysis of the melt. In other words, atoms are ionized to become positive ions (metal ions) and negative ions (oxygen ions, etc.), and the positive ions are on the negative electrode side.

負イオンは正極側に引かれて融液内に拡散層が形成され
るが、その融液から結晶を引上げると、結晶が正しい組
成で引上らなくなったり、気泡が取込まれたりすること
によるものである。ここで、拡散層とは、融液中の各イ
オン濃度勾配が生じている層をいうものとする。すなわ
ち、融液に電界がかけられ、正イオンが負極側へ、負イ
オンが正極側へ引かれると、濃度勾配が生じ、融液内の
分布が不均一になり、目的の結晶が正しい組成で9上が
らなくなる。このような融液中の各元素の電気泳動によ
る元素分布の偏りに起因する不均一な層を拡散層という
ものとする。
Negative ions are attracted to the positive electrode side and a diffusion layer is formed within the melt, but when a crystal is pulled up from the melt, the crystal may not be pulled up with the correct composition or air bubbles may be trapped. This is due to Here, the diffusion layer refers to a layer in which a concentration gradient of each ion in the melt occurs. In other words, when an electric field is applied to the melt and positive ions are drawn toward the negative electrode and negative ions are drawn toward the positive electrode, a concentration gradient occurs and the distribution within the melt becomes uneven, making it difficult for the desired crystal to have the correct composition. 9 It won't go up. Such a non-uniform layer due to uneven element distribution due to electrophoresis of each element in the melt is called a diffusion layer.

また、気泡が取込まれるとは、LiNbO2等の酸化物
結晶の融液が電気分解すると、酸素がイオン化し、これ
が再び酸素ガスとなって気泡として育成中の結晶に取込
まれることがあり、このような現象をいう。
In addition, when air bubbles are taken in, when a melt of an oxide crystal such as LiNbO2 is electrolyzed, oxygen is ionized, which becomes oxygen gas again and may be taken into the growing crystal as air bubbles. This is a phenomenon like this.

本発明は引上育成をしながら同時に単分域化を行う電界
下育成法において、均質な結晶を得るための方法を提供
することを目的とする。
An object of the present invention is to provide a method for obtaining homogeneous crystals in an electric field growth method that performs single-domain growth while simultaneously performing pulling growth.

[l1題を解決するための手段」 本発明はチョクラルスキー法により誘電体酸化物単結晶
を引上げ育成しながら結晶に電界を印加して単分域化を
はかるようにした電界下育成方法において、前記結晶に
印加する電圧はパルス電圧としたことを特徴とする誘電
体酸化物単結晶の電界下育成方法である。
[Means for Solving Problem 1] The present invention provides a growth method under an electric field in which an electric field is applied to the crystal while pulling and growing a dielectric oxide single crystal using the Czochralski method to achieve single domain formation. , a method for growing a dielectric oxide single crystal under an electric field, characterized in that the voltage applied to the crystal is a pulse voltage.

「作用」 チョクラルスキー法により誘電体酸化物単結晶を引上げ
育成しながら結晶にパルス電圧を印加する。このパルス
電圧のオン(または高電圧印加)時には電界印加の効果
によりポーリング(単分域化操作)された状態で結晶が
成長する。パルス電圧のオフ(または低電圧もしくは負
電圧印加)時には、融液内においてオン時にイオンの移
動によって形成された拡散層が解消され、均一な状態に
戻る。
"Operation" While pulling and growing a dielectric oxide single crystal using the Czochralski method, a pulse voltage is applied to the crystal. When this pulse voltage is turned on (or a high voltage is applied), the crystal grows in a polled (single domain operation) state due to the effect of the electric field application. When the pulse voltage is turned off (or when a low voltage or negative voltage is applied), the diffusion layer formed by the movement of ions in the melt when it is turned on is dissolved, and the state returns to a uniform state.

均一分布に回復したところで再び電界の印加を開始し、
以下周期的に繰返えす。これによって均一な結晶が育成
される。
Once the uniform distribution has been restored, application of the electric field is started again.
The following steps are repeated periodically. This allows uniform crystals to grow.

「実施例」 以下、本発明の一実施例を図面について説明する。"Example" An embodiment of the present invention will be described below with reference to the drawings.

第1図において、(1)は白金るつぼで、この白金るつ
ぼ(1)ノ融液(2)カらMgOドープ(7) L i
 Nb01の引上げなどのような誘電体酸化物単結晶(
3)が引上げ育成される。この引上げ時に、スイッチ(
5)をオンして育成された結晶(3)に第2図のような
パルス電圧を印加する。パルス電圧がオンのとき(t 
ON )は電界印加の効果によりポーリングされた状態
で結晶が成長するとともに、融液(2)中で原子がイオ
ン化して正イオンと負イオンとなってそれぞれ生棲と一
極に引かれ、したがって第1図(a)のように内部に元
素分布の不均一な拡散層(4)が形成される。
In Fig. 1, (1) is a platinum crucible, and from the melt (2) of this platinum crucible (1), MgO dope (7) Li
Dielectric oxide single crystal (such as Nb01 pulled)
3) is raised and cultivated. At this time of pulling up, switch (
5) is turned on and a pulse voltage as shown in FIG. 2 is applied to the grown crystal (3). When the pulse voltage is on (t
ON), as the crystal grows in a poled state due to the effect of applying an electric field, the atoms in the melt (2) are ionized and become positive ions and negative ions, which are attracted to the living and unipolar, respectively. As shown in FIG. 1(a), a diffusion layer (4) with non-uniform element distribution is formed inside.

ついで、スイッチ(5)をオフしたパルス電圧がオフの
とき(tOFF)は、融液(2)内のイオンの移動によ
り、第1図(b)のように、拡散層(4)が解消され、
均一な融液(2)となる。このように均一な分布状態に
回復したところで、再びスイッチ(5)をオン(toi
l) してパルス電圧を印加すると、ポーリングされた
状態で結晶が成長する。以下、パルス電圧のオン(tO
N)、オフ(t(+pp)を繰返えすことで結晶(3)
の均一化が図られる。
Then, when the pulse voltage that turns off the switch (5) is off (tOFF), the diffusion layer (4) is dissolved due to the movement of ions in the melt (2), as shown in FIG. 1(b). ,
A uniform melt (2) is formed. Once the uniform distribution has been restored, the switch (5) is turned on again (toi
l) When a pulse voltage is applied, the crystal grows in a poled state. Below, the pulse voltage is turned on (tO
By repeating N), off (t(+pp)), crystal (3)
The uniformity of the results will be achieved.

直流電場によるポーリング処理では印加電圧の値が単分
極化の成功のための重要なパラメータとなる。
In the poling process using a DC electric field, the value of the applied voltage is an important parameter for the success of single polarization.

これに対し、本発明による以上のようなパルス電圧を印
加した育成法では、平均電圧と最大電圧。
On the other hand, in the growth method according to the present invention in which a pulse voltage is applied as described above, the average voltage and the maximum voltage.

とりわけ下記の平均電圧(Va)の値が重要なパラメー
タとなる。
In particular, the value of the average voltage (Va) below is an important parameter.

この平均電圧(Va)が一定値とした場合、っぎのパラ
メータ (2)パルス電圧のオン時間(tow)(3)パルス電
圧のオフ時間(to□)(4)オン時の印加電圧(VO
)1) (5)オフ時の印加電圧(■。FF) の組合せを適正に選択しなければならない。
When this average voltage (Va) is set to a constant value, the following parameters (2) Pulse voltage on time (tow) (3) Pulse voltage off time (to□) (4) Applied voltage when on (VO
)1) (5) The combination of applied voltage at off time (■.FF) must be selected appropriately.

また、 前記オン時の電圧(■。いとオフ時の電圧(VOFF)
はつぎのような場合から適宜選択される。
In addition, the voltage when on (■. and the voltage when off (VOFF))
is selected as appropriate from the following cases.

(1)■。8が正電圧、 Vo□がO電圧(2) vo
wが高電圧、■。FFが低電圧(3)■。。が正電圧、
 VOFI+が負電圧また、パルス電圧のオン時間t。
(1)■. 8 is positive voltage, Vo□ is O voltage (2) vo
w is high voltage, ■. FF is low voltage (3) ■. . is positive voltage,
When VOFI+ is a negative voltage, the on-time of the pulse voltage is t.

Nとパルス電圧のオフ時間t。FFはミリ秒単位とする
が、使用目的によって適宜決定される。
N and the pulse voltage off time t. The FF is in milliseconds, but it is determined as appropriate depending on the purpose of use.

つぎにMg○ドープのL i N b O,結晶引上げ
の具体的実施例について説明する。
Next, a specific example of Mg○-doped LiNbO and crystal pulling will be described.

前記オン時間(1+))+)とオフ時間(tOFF)の
周期については、理論的には、融液中のイオンまたは電
子などの電荷移動媒体の泳動の速さを考慮して決めるの
が適切と考えられる。すなわち電圧をかけた時イオン等
が電極に向かって移動する速度、および電圧を遮断した
時、偏っていたイオンの分布が緩和して均一に戻る速さ
に対応してオン時間(t。N)とオフ時間(torp)
を決めるべきであると考えられる。
Theoretically, it is appropriate to determine the period of the on-time (1+))+) and off-time (tOFF) by taking into consideration the migration speed of a charge transfer medium such as ions or electrons in the melt. it is conceivable that. In other words, the on-time (t.N) corresponds to the speed at which ions, etc. move toward the electrode when a voltage is applied, and the speed at which the uneven distribution of ions relaxes and returns to uniformity when the voltage is cut off. and off time (torp)
It is considered that the following should be determined.

しかしながら融液中では熱対流など溶媒の流動の影響等
により、イオンの移動のメカニズムは複雑で、前記理論
的な方法でオン時間(toJとオフ時間(topy)を
決めるのは容易ではない。
However, in the melt, the mechanism of ion movement is complicated due to the influence of solvent flow such as thermal convection, and it is not easy to determine the on-time (toJ) and off-time (topy) using the above-mentioned theoretical method.

そこで本発明では周期を決める目安として、Li N 
b O,の基本結晶格子1個分が引上げる速さに対応し
て数値を選んだ。すなわち、結晶はC軸引上げであるの
でL i N b O,のC軸の格子定数的】4人分を
引上げるのに要する時間を、引上げ速度3■/hから計
算すると、約2 m5ecとなる。そこでtoII:t
OP−1−8eCとした。
Therefore, in the present invention, as a guideline for determining the period, Li N
The numerical value was chosen in accordance with the speed at which one basic crystal lattice of bO is pulled up. In other words, since the crystal is pulled up on the C axis, the time required to pull up 4 people is approximately 2 m5ec based on the pulling rate of 3 mm/h. Become. So toII:t
It was designated as OP-1-8eC.

また、LiNb0.のポーリング処理に必要な電流量は
一般に0.5〜1mA/cdとされている。引上中のL
iNb0.の電気抵抗を測定したところ、10にΩ前後
であったので、断面積3dの結晶をポーリングするには
15〜30Vの印加電圧が必要となる。そこで平均印加
電圧(Va)を20Vとし、ON時間(1o、)の印加
電圧を40νとした。
Moreover, LiNb0. The amount of current required for the polling process is generally 0.5 to 1 mA/cd. L being pulled up
iNb0. When the electrical resistance was measured, it was around 10Ω, so an applied voltage of 15 to 30 V is required to poll a crystal with a cross-sectional area of 3 d. Therefore, the average applied voltage (Va) was set to 20V, and the applied voltage during the ON time (1o,) was set to 40ν.

以上の例を含めて、具体的数値をあげれば以下の表の通
りとなる。
Including the above examples, specific numerical values are as shown in the table below.

なお1本発明は以上の例に限定されるものではないこと
は勿論である。
Note that it goes without saying that the present invention is not limited to the above example.

「発明の効果」 本発明は上述のように、ぢ1上げ育成時に結晶にパルス
電圧を印加するようにしたので、オン時にはポーリング
が行なわれ、オフ時には拡散層が解消され、したがって
、均一で良質の結晶を単分域状態で得ることができる。
"Effects of the Invention" As described above, in the present invention, a pulse voltage is applied to the crystal during di-1 growth, so that poling is performed when it is on, and the diffusion layer is eliminated when it is off, resulting in uniform and high quality. crystals can be obtained in a single domain state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明による電界下育成方法の説
明図、第2図はパルス電圧の波形図である。 (1)・・・白金るつぼ、(2)・・・融液、(3)・
・・結晶、(4)・・・拡散層、(5)・・・スイッチ
。 出願人  浜松ホトニクス株式会社 同
FIGS. 1(a) and 1(b) are explanatory diagrams of the method for growing under an electric field according to the present invention, and FIG. 2 is a waveform diagram of a pulse voltage. (1)...Platinum crucible, (2)...Melt, (3)...
...Crystal, (4)...Diffusion layer, (5)...Switch. Applicant: Hamamatsu Photonics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)チョクラルスキー法により誘電体酸化物単結晶を
引上げ育成しながら結晶に電界を印加して単分域化をは
かるようにした電界下育成方法において、前記結晶に印
加する電圧はパルス電圧としたことを特徴とする誘電体
酸化物単結晶の電界下育成方法。
(1) In an electric field growth method in which a dielectric oxide single crystal is pulled and grown using the Czochralski method and an electric field is applied to the crystal to achieve single domain formation, the voltage applied to the crystal is a pulse voltage. A method for growing a dielectric oxide single crystal under an electric field, characterized by:
(2)パルス電圧は所定の電圧を印加するオン時間と、
電圧を印加しないオフ時間との繰返えしからなる請求項
(1)記載の誘電体酸化物単結晶の電界下育成方法。
(2) The pulse voltage has an on-time of applying a predetermined voltage;
2. The method for growing a dielectric oxide single crystal under an electric field according to claim 1, which comprises repeating an off period in which no voltage is applied.
(3)パルス電圧は所定の高電圧を印加する高電圧印加
時間と、低電圧を印加する低電圧印加時間との繰返えし
からなる請求項(1)記載の誘電体酸化物単結晶の電界
下育成方法。
(3) The dielectric oxide single crystal according to claim (1), wherein the pulse voltage consists of repeating a high voltage application time in which a predetermined high voltage is applied and a low voltage application time in which a low voltage is applied. Growth method under electric field.
(4)パルス電圧は所定の正電圧を印加する正電圧印加
時間と、負電圧を印加する負電圧印加時間との繰返えし
からなる請求項(1)記載の誘電体酸化物単結晶の電界
下育成方法。
(4) The dielectric oxide single crystal according to claim (1), wherein the pulse voltage consists of repeating a positive voltage application time for applying a predetermined positive voltage and a negative voltage application time for applying a negative voltage. Growth method under electric field.
(5)パルス電圧の繰返えし時間はミリ秒単位とした請
求項(1)、(2)、(3)、または(4)記載の誘電
体酸化物単結晶の電界下育成方法。
(5) The method for growing a dielectric oxide single crystal under an electric field according to claim (1), (2), (3), or (4), wherein the repetition time of the pulse voltage is set in milliseconds.
JP24152190A 1990-09-12 1990-09-12 Method for growing dielectric oxide single crystal in electric field Pending JPH04124084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24152190A JPH04124084A (en) 1990-09-12 1990-09-12 Method for growing dielectric oxide single crystal in electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24152190A JPH04124084A (en) 1990-09-12 1990-09-12 Method for growing dielectric oxide single crystal in electric field

Publications (1)

Publication Number Publication Date
JPH04124084A true JPH04124084A (en) 1992-04-24

Family

ID=17075584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24152190A Pending JPH04124084A (en) 1990-09-12 1990-09-12 Method for growing dielectric oxide single crystal in electric field

Country Status (1)

Country Link
JP (1) JPH04124084A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047575A1 (en) * 2003-11-12 2005-05-26 National University Of Singapore Colloidal structure and method of forming
JP2008280225A (en) * 2007-05-14 2008-11-20 Sumitomo Metal Ind Ltd Method and apparatus for producing single crystal
CN104313696A (en) * 2014-09-11 2015-01-28 西安交通大学 Processing method of ferroelectric single crystal material free of dielectric dispersion in microwave frequency range

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106594A (en) * 1980-12-23 1982-07-02 Nippon Telegr & Teleph Corp <Ntt> Single crystal producing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57106594A (en) * 1980-12-23 1982-07-02 Nippon Telegr & Teleph Corp <Ntt> Single crystal producing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047575A1 (en) * 2003-11-12 2005-05-26 National University Of Singapore Colloidal structure and method of forming
JP2008280225A (en) * 2007-05-14 2008-11-20 Sumitomo Metal Ind Ltd Method and apparatus for producing single crystal
CN104313696A (en) * 2014-09-11 2015-01-28 西安交通大学 Processing method of ferroelectric single crystal material free of dielectric dispersion in microwave frequency range

Similar Documents

Publication Publication Date Title
DE102004017142B4 (en) Lithium tantalate substrate and process for its preparation
DE2639707C2 (en) Process for controlling the oxygen concentration when pulling silicon crystals
DE2643793A1 (en) PROCESS FOR GROWING MONOCRYSTALLINE EPITACTIC LAYERS FROM RARE EARTH IRON GARNET MATERIALS
CN111455453B (en) Method for growing superlattice lithium niobate crystal
JP2003505335A (en) Method for producing silicon crystal using magnetic field
JPH04124084A (en) Method for growing dielectric oxide single crystal in electric field
DE69318350T2 (en) Process for the production of amorphous hydrogenated silicone films
DE69737283T2 (en) FERROELECTRIC MATERIAL, METHOD FOR THE PRODUCTION THEREOF, SEMICONDUCTOR MEMORY ARRANGEMENT AND PROCESS FOR THE PRODUCTION THEREOF
DE1222022B (en) Process for producing a dendritic crystal
Scholz et al. Preparation of lanthanum hexaboride by electrolysis and measurements of the Raman-active phonons
Vakarin et al. Crystal growth of tungsten bronzes with a hexagonal structure
DE19911755A1 (en) Semiconductor crystal growth apparatus for manufacturing wafers used in integrated electronic device
DE483948C (en) Process for the production of oxide cathodes for glow cathode tubes
DE102013103575A1 (en) METHOD (VARIANTS) AND DEVICE FOR PRODUCING SILICON CARRIER PLATES
DE2523701C2 (en) Method for polarizing a ferroelectric material
Guan et al. Growth, etching, polarization and second harmonic generation of potassium lithium tantalate niobate crystals
US7258740B2 (en) Method and apparatus for fabricating a crystal fiber by utilizing at least two external electric fields
Pillai et al. Effect of Polarizing Temperature on the Characteristics of SR10Vinyl (PVC) Electrets
JPH05117096A (en) Method for growing thin film of lithium niobate single crystal
DE69523270T2 (en) Method and device for producing oxide crystals
JPH0597585A (en) Method for producing single crystal of ktiopo4
Pryakhina et al. Evolution of domain structure and formation of charged domain walls during polarization reversal in lithium niobate single crystals modified by vacuum annealing
CN106531885B (en) One kind being based on Ga2O3Neurobionics device of neurobionics layer and preparation method thereof
JPH01261204A (en) Production of oxide based superconductor
DE1926695C (en) Method and device for coating a metallic support with niobium