JPH0411933A - Asymmetric carbon hollow fiber membrane and its production - Google Patents
Asymmetric carbon hollow fiber membrane and its productionInfo
- Publication number
- JPH0411933A JPH0411933A JP11015790A JP11015790A JPH0411933A JP H0411933 A JPH0411933 A JP H0411933A JP 11015790 A JP11015790 A JP 11015790A JP 11015790 A JP11015790 A JP 11015790A JP H0411933 A JPH0411933 A JP H0411933A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- membrane
- fiber membrane
- asymmetric
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 152
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 137
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 74
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000007789 gas Substances 0.000 claims abstract description 54
- 239000004642 Polyimide Substances 0.000 claims abstract description 42
- 229920001721 polyimide Polymers 0.000 claims abstract description 42
- 125000003118 aryl group Chemical group 0.000 claims abstract description 37
- 239000012298 atmosphere Substances 0.000 claims abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 150000001721 carbon Chemical group 0.000 claims description 6
- 238000010000 carbonizing Methods 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 10
- 239000001257 hydrogen Substances 0.000 abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 description 31
- 239000010410 layer Substances 0.000 description 23
- 238000010438 heat treatment Methods 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 19
- 239000002904 solvent Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000003763 carbonization Methods 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 8
- 238000009987 spinning Methods 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 150000004984 aromatic diamines Chemical class 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229940090668 parachlorophenol Drugs 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000000379 polymerizing effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000000930 thermomechanical effect Effects 0.000 description 3
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 2
- JVERADGGGBYHNP-UHFFFAOYSA-N 5-phenylbenzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC=CC=2)=C1C(O)=O JVERADGGGBYHNP-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- -1 aromatic tetracarboxylic acid Chemical class 0.000 description 2
- 230000001112 coagulating effect Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 101100243025 Arabidopsis thaliana PCO2 gene Proteins 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、芳香族ポリイミド製の非対称性中空糸膜を
部分的に炭素化して得られた、炭素原子の含有率が70
〜93重量%とかなり高い特殊な材料で形成されている
非対称性中空糸炭素膜、並びに、芳香族ポリイミド製の
非対称性中空糸膜を、250〜495℃の温度であって
該中空糸膜の非対称性構造が維持される温度で予備熱処
理して熱安定化し、次いで、500〜900℃の高温で
部分的に炭化して、部分炭化された前記の組成の材料で
形成されている非対称性中空糸炭素膜を製造する方法に
係わる。Detailed Description of the Invention [Industrial Field of Application] This invention is directed to a carbon atom content of 70%, which is obtained by partially carbonizing an asymmetric hollow fiber membrane made of aromatic polyimide.
An asymmetric hollow fiber carbon membrane made of a special material with a considerably high content of ~93% by weight, as well as an asymmetric hollow fiber membrane made of aromatic polyimide, were heated at a temperature of 250 to 495°C. An asymmetric hollow formed of a partially carbonized material of the above composition, which is thermally stabilized by preheat treatment at a temperature that maintains the asymmetric structure, and then partially carbonized at a high temperature of 500 to 900 °C. The present invention relates to a method for producing a carbon fiber membrane.
この発明の非対称性中空糸炭素膜は、極めて研れた耐熱
性、耐溶剤性を有していると共に、水素とメタンとの混
合ガスから水素を分離する場合などのガス分離性能が高
いレベルのものである。The asymmetric hollow fiber carbon membrane of this invention has extremely high heat resistance and solvent resistance, and has a high level of gas separation performance, such as when separating hydrogen from a mixed gas of hydrogen and methane. It is something.
[従来技術の説明]
従来、透過選択性の高い非対称性のガス分離膜は、種々
のポリマーを素材とするものが知られている。それらの
中で、ビフェニルテトラカルボン酸二無水物と芳香族ジ
アミンとを重合及びイミド化して得られた可溶性の芳香
族ポリイミドの溶液を使用して、湿式製膜法で製造され
た非対称性のガス分離膜(中空糸膜)は、特に、耐熱性
、耐薬品性が良好であるガス分離膜であることが、特開
昭61−133106号公報などにおいて、知られてい
る。[Description of Prior Art] Conventionally, asymmetric gas separation membranes with high permselectivity are known to be made of various polymers. Among them, an asymmetric gas produced by a wet film forming method using a solution of soluble aromatic polyimide obtained by polymerizing and imidizing biphenyltetracarboxylic dianhydride and aromatic diamine. The separation membrane (hollow fiber membrane) is known from Japanese Patent Application Laid-Open No. 133106/1983, etc., as a gas separation membrane having particularly good heat resistance and chemical resistance.
ところが、公知のガス分離膜は、分離すべき原料混合ガ
ス中に、ヘキサン、トルエンなどの有機溶剤などの不純
物を多く含む場合には、膜性能に悪影響を与えることが
あり、前述の不純物を除去するという前処理を充分にし
た後でないと、原料混合ガスの分離操作を行うことがで
きなかったのである。However, with known gas separation membranes, if the raw material mixture gas to be separated contains a large amount of impurities such as organic solvents such as hexane and toluene, the membrane performance may be adversely affected, and it is necessary to remove the impurities mentioned above. Separation of the raw material mixture gas could only be carried out after sufficient pretreatment.
最近、例えば、特開昭60−179102号公報、特開
平1−221518号公報などにおいて、有機ポリマー
類の膜を極めて高温で熱処理して多孔質有機膜を炭化し
て、耐薬品性の優れたガス分離膜用の炭素膜を製造する
方法、および、それらの方法で得られた炭素膜(中空糸
炭素膜)について、捉案された。Recently, for example, in JP-A-60-179102 and JP-A-1-221518, organic polymer membranes are heat treated at extremely high temperatures to carbonize porous organic membranes, resulting in excellent chemical resistance. A method for manufacturing carbon membranes for gas separation membranes and carbon membranes (hollow fiber carbon membranes) obtained by these methods were proposed.
しかし、特開昭60−179102号公報には、具体的
には、ポリアクリルニトリル製の膜を、1200℃付近
の温度で熱処理して充分な炭素化を行って、膜全体に微
細孔を形成させた分離性炭素膜を製造する方法が記載さ
れており、前述の製法によって得られたガス分離炭素膜
は、実質的に多孔質ガス分離−に関するものであるので
、その分離用炭素膜は、透過速度が比較的大きいのであ
るが、選択透過性が非常に小さいものであり、実用的な
ガス分離膜とはならないものであった。However, in JP-A No. 60-179102, specifically, a film made of polyacrylonitrile is heat-treated at a temperature of around 1200°C to sufficiently carbonize it, thereby forming micropores throughout the film. The gas separation carbon membrane obtained by the above-mentioned manufacturing method is substantially related to porous gas separation, so the separation carbon membrane is Although the permeation rate was relatively high, the permselectivity was extremely low, and it could not be used as a practical gas separation membrane.
また、特開平1−221518号公報−には、概略、ポ
リアクリルニトリル、セルロース、ポリビニルアルコー
ルなどの有機ポリマーからなる多孔質中空糸膜を、架橋
、酸化を施した後、不活性雰囲気、600〜1000℃
の温度で炭素化し、さらに、水蒸気、炭酸ガス等の酸化
性ガスを含む雰囲気で賦活性化処理をして、細孔径10
〜50人の多孔質構造を有する中空糸炭素膜を製造し、
最後に、前記中空糸炭素膜を、必要であれば熱分解性炭
化水素に浸漬した後、不活性ガス中で900℃以上の温
度で1分間以上熱処理して細孔を熱収縮させて、特殊な
中空糸炭素膜を製造する方法、並びに、前述のようにし
て製造された特殊な中空糸炭素膜が記載されている。Furthermore, in Japanese Patent Application Laid-Open No. 1-221518, a porous hollow fiber membrane made of an organic polymer such as polyacrylonitrile, cellulose, or polyvinyl alcohol is crosslinked and oxidized, and then placed in an inert atmosphere at 600~ 1000℃
Carbonization is carried out at a temperature of
Producing a hollow fiber carbon membrane with a porous structure of ~50 people,
Finally, the hollow fiber carbon membrane is immersed in a pyrolyzable hydrocarbon if necessary, and then heat-treated in an inert gas at a temperature of 900°C or more for 1 minute or more to heat-shrink the pores. A method for producing a hollow fiber carbon membrane, as well as a special hollow fiber carbon membrane produced as described above, is described.
前記の公知の製法は、前述のようにして有機ポリマー類
の中空糸膜から製造される細孔径10〜50人の多孔質
構造を有する中空糸炭素膜を準備して使用することが必
要であり、その製造が極めて複雑であり、その後の細孔
の収縮のための熱処理も簡単ではないと共に、最初の有
機ポリマー類の中空糸膜に対する中空糸炭素膜の収率が
30%以下であり、極めて生産性の悪いものであった。The above-mentioned known production method requires preparing and using a hollow fiber carbon membrane having a porous structure with a pore size of 10 to 50 pores, which is manufactured from a hollow fiber membrane of an organic polymer as described above. However, its production is extremely complicated, and the subsequent heat treatment for shrinking the pores is not easy, and the yield of hollow fiber carbon membranes is less than 30% compared to the hollow fiber membranes of the first organic polymers. It was unproductive.
この発明は、公知の芳香族ポリイミドからなるガス分離
膜と、実質的に同程度のガス透過速度と高い選択透過性
(高い分離度)とを有していると共に、極めて優れた耐
溶剤性と耐熱性とを有している非対称性中空糸炭素膜を
、工業的に容易に製造することができる方法を徒供する
こと、並びに、炭素原子の含有率が70〜93重量%と
かなり高い特殊な材質からなる前述の優れたガス分離性
能を有する非対称性中空糸炭素膜を捉供することを目的
とするものである。This invention has substantially the same gas permeation rate and high permselectivity (high degree of separation) as known gas separation membranes made of aromatic polyimide, as well as extremely excellent solvent resistance and The purpose of the present invention is to develop a method that can easily industrially produce an asymmetric hollow fiber carbon membrane having heat resistance, and a special method with a considerably high carbon atom content of 70 to 93% by weight. The purpose of this invention is to provide an asymmetric hollow fiber carbon membrane made of the above-mentioned material and having excellent gas separation performance.
この出願の第1の発明は、中空糸膜を形成している材料
が、炭素原子の含有率;70〜93重量%、窒素原子の
含有率;3.5〜7重量%、および、水素原子の含有率
、 i、 O〜4.0重量%である、芳香族ポリイミド
の部分炭素化物であり、そして、該中空糸膜の外表面に
緻密層を有すると共に、中空糸膜の内部が前記緻密層と
連続して多孔質支持層を有する非対称性中空糸炭素膜で
あることを特徴とする非対称性中空糸炭素膜に関する。The first invention of this application is that the material forming the hollow fiber membrane has a carbon atom content of 70 to 93% by weight, a nitrogen atom content of 3.5 to 7% by weight, and a hydrogen atom content of 70 to 93% by weight. It is a partially carbonized aromatic polyimide having a content of i, O ~ 4.0% by weight, and has a dense layer on the outer surface of the hollow fiber membrane, and the inside of the hollow fiber membrane has the dense layer. The present invention relates to an asymmetric hollow fiber carbon membrane characterized in that it has a porous support layer continuous to the layer.
また、この出願の第2の発明は、芳香族ポリイミドから
なる非対称性中空糸膜を、250〜495℃の範囲内の
温度であってしかも該中空糸膜の非対称性構造が維持さ
れる温度、および、酸素含有ガスの雰囲気で、予備熱処
理して熱安定化し、次いで、その予備熱処理された中空
糸膜を、5゜0〜900℃でおよび不活性ガスの雰囲気
下で部分的に炭素化処理することを特徴とする非対称性
中空糸炭素膜の製法に関する。Further, the second invention of this application is to prepare an asymmetric hollow fiber membrane made of an aromatic polyimide at a temperature within a range of 250 to 495° C. and at a temperature at which the asymmetric structure of the hollow fiber membrane is maintained. and thermally stabilized by preheating in an oxygen-containing gas atmosphere, and then partially carbonizing the preheated hollow fiber membrane at 5° to 900°C and in an inert gas atmosphere. The present invention relates to a method for producing an asymmetric hollow fiber carbon membrane characterized by:
以下、この発明の各要件についてさらに詳しく説明する
。Each requirement of the present invention will be explained in more detail below.
この発明の非対称性中空糸炭素膜は、該中空糸膜を形成
している材料が、
(a) 炭素原子の含有率が70〜92重量%(特に
70〜90重量%)、
(b) 窒素原子の含有率が3.5〜7重量%(特に
4.0〜6.5重量%)、および、
(C) 水素原子の含有率が1.0〜4.0重量%(
特に1.5〜3.5重量%)であって、
(d) 芳香族ポリイミドを高温で熱処理して部分的
に炭素化された部分炭素化物であり、そして、
(イ)該中空糸膜の外表面に、厚さ0. OO05〜5
μm(特にO,OO1〜2μm)の緻密層を有すると共
に、
(ロ)中空糸膜の内部が、前記緻密層と連続して多孔質
支持層(平均孔径50〜20000人、特に100〜1
0000人程度の微細孔を多数有する厚さ10〜200
0μm、特に20〜1000μmの多孔質支持層)
を有する非対称性中空糸炭素膜であることが好ましい。The asymmetric hollow fiber carbon membrane of the present invention is characterized in that the material forming the hollow fiber membrane (a) has a carbon atom content of 70 to 92% by weight (particularly 70 to 90% by weight), and (b) nitrogen. The content of atoms is 3.5 to 7% by weight (especially 4.0 to 6.5% by weight), and (C) the content of hydrogen atoms is 1.0 to 4.0% by weight (
(in particular, 1.5 to 3.5% by weight), (d) a partially carbonized product obtained by partially carbonizing aromatic polyimide by heat-treating it at high temperature, and (i) the hollow fiber membrane. The outer surface has a thickness of 0. OO05~5
(2) The interior of the hollow fiber membrane is continuous with the dense layer and has a porous support layer (average pore diameter of 50 to 20,000, particularly 100 to 1
Thickness 10-200mm with many micropores of about 0,000mm
An asymmetric hollow fiber carbon membrane having a porous support layer of 0 μm, especially 20 to 1000 μm is preferred.
この発明の非対称性中空糸炭素膜は、水素ガスの透過速
度(PHz、50℃)が、3×1O−s〜80 X 1
0−’d/ct ・sec ・csHg、特に、5X
10’〜60 X 10−’ad/afi−sec
−aeHg程度であって、水素ガスの透過速度(pH,
,50℃)とメタンガスの透過速度(PCtl、 、5
0℃)との比(PH,/PCB、 )で示される選択透
過性(分離度)が80〜1000、特に100〜800
程度であることが好ましい。The asymmetric hollow fiber carbon membrane of the present invention has a hydrogen gas permeation rate (PHZ, 50°C) of 3 × 1 O-s to 80 × 1
0-'d/ct ・sec ・csHg, especially 5X
10'~60 x 10-'ad/afi-sec
-aeHg, hydrogen gas permeation rate (pH,
, 50℃) and methane gas permeation rate (PCtl, , 5
The permselectivity (separation degree) indicated by the ratio (PH, /PCB,
It is preferable that the degree of
この発明の非対称性中空糸炭素膜は、その中空糸膜を形
成している材料が炭素原子の含有率の余り低いものであ
って、炭素化の程度が低くなり過ぎると、n−ヘキサン
、ベンゼン、トルエン、キシレン、シクロヘキサンなど
の有機溶剤に対する耐溶剤性が著しく低下することがあ
るので適当ではなく、また、前記の炭素原子の含有率の
余りに多いものであって炭素化の程度が高くなり過ぎる
と、水素ガスなどの透過速度が低下したり、選択透過性
が悪化したりするので適当ではない。In the asymmetric hollow fiber carbon membrane of the present invention, the material forming the hollow fiber membrane has a very low carbon atom content, and if the degree of carbonization becomes too low, n-hexane, benzene, etc. It is not suitable because its solvent resistance to organic solvents such as toluene, xylene, and cyclohexane may be significantly reduced, and the content of the aforementioned carbon atoms is too high, resulting in an excessively high degree of carbonization. This is not appropriate because the permeation rate of hydrogen gas or the like decreases or the permselectivity deteriorates.
この発明の非対称性中空糸炭素膜は、その外径が100
〜2000μm、特に150〜1000μm程度である
ことが好ましく、また、その膜厚が10〜200μm、
特に20〜150μm程度であることが好ましい。The asymmetric hollow fiber carbon membrane of this invention has an outer diameter of 100 mm.
~2000 μm, particularly preferably about 150 to 1000 μm, and the film thickness is 10 to 200 μm,
In particular, it is preferably about 20 to 150 μm.
この発明の非対称性中空糸炭素膜は、部分的に適度に炭
素化されている材料で形成されており、極めて薄い緻密
層(ガス分離活性層)と比較的厚い多孔質層(支持層)
とを一体に有する非対称性構造を有しているものである
ので、高いガス透過性と高い選択性(分離性)とを同時
に保持していると共に、有機溶剤が含有されている混合
ガスを前記非対称性中空糸炭素膜へ供給して、長時間、
ガス分離操作を行っても、前記中空糸炭素膜のガス分離
性能が高い割合(トルエン溶剤で保持率が70%以上で
ある)で維持され、耐久性が優れているガス分離膜であ
る。The asymmetric hollow fiber carbon membrane of this invention is made of a material that is partially carbonized to an appropriate degree, and includes an extremely thin dense layer (gas separation active layer) and a relatively thick porous layer (supporting layer).
Since it has an asymmetric structure in which the gas mixture containing the organic solvent is Supply to the asymmetric hollow fiber carbon membrane for a long time.
Even when a gas separation operation is performed, the gas separation performance of the hollow fiber carbon membrane is maintained at a high rate (retention rate is 70% or more in toluene solvent), and the gas separation membrane has excellent durability.
この発明の非対称性中空糸炭素膜の製法では、例えば、
まず、芳香族テトラカルボン酸成分と芳香族ジアミン成
分とを重合およびイミド化して得られる芳香族ポリイミ
ドの溶液から湿式製膜法などで製造された非対称性中空
糸膜を、250〜495℃(好ましくは260〜450
℃)の範囲内の温度であってしかも該中空糸膜の非対称
性構造が維持される温度、および、酸素含有ガスの雰囲
気で、0.1〜100時間、特に0.3〜50時間、予
備熱処理して熱安定化し、次いで、
その予備熱処理された芳香族ポリイミド製の非対称性中
空糸膜を、500〜900”C(好ましくは550〜8
00℃)の温度および不活性ガスの雰囲気下で、0.5
秒間〜100分間、特に1秒間〜50分間、部分的に炭
素化処理して、部分的に炭素化されていて、緻密層と多
孔質層とを一体に有する非対称性中空糸炭素膜を製造す
るのである。In the method for producing an asymmetric hollow fiber carbon membrane of the present invention, for example,
First, an asymmetric hollow fiber membrane manufactured by a wet membrane forming method or the like from a solution of aromatic polyimide obtained by polymerizing and imidizing an aromatic tetracarboxylic acid component and an aromatic diamine component is heated at 250 to 495°C (preferably is 260-450
0.1 to 100 hours, especially 0.3 to 50 hours, at a temperature within the range of 0.3 °C, at which the asymmetric structure of the hollow fiber membrane is maintained, and in an oxygen-containing gas atmosphere. The preheated asymmetric hollow fiber membrane made of aromatic polyimide is heated to 500-900"C (preferably 550-8"C).
0.5 at a temperature of 0.0 °C) and an atmosphere of inert gas.
Partially carbonized for 1 second to 50 minutes, particularly for 1 second to 50 minutes, to produce an asymmetric hollow fiber carbon membrane that is partially carbonized and has a dense layer and a porous layer integrally. It is.
前記の芳香族ポリイミドからなる非対称性中空糸膜は、
特開昭61−133106号公報などに記載の製法など
で製造することができる。The asymmetric hollow fiber membrane made of aromatic polyimide is
It can be manufactured by the manufacturing method described in JP-A-61-133106 and the like.
すなわち、前記の非対称性中空糸膜は、ビフェニルテト
ラカルボン酸二無水物などの芳香族テトラカルボン酸成
分と、ジアミノジメチルジフェニレンスルホン、ジアミ
ノジフェニルメタン、4,4′−ジアミノジフェニルエ
ーテルなどの芳香族ジアミン成分とを、略等モル、パラ
クロルフェノールなどのフェノール系溶媒中で、重合お
よびイミド化して、可溶性の芳香族ポリイミドの溶液を
調製し、その溶液を製膜用ドープ液として使用して、チ
ューブ・イン・オリフィスタイプの紡糸用ノズルから、
窒素雰囲気中に中空糸状に押し出し、次いで、エタノー
ル水溶液からなる凝固液中で凝固させて、非対称性構造
の中空糸膜となし、最後に、その中空糸膜をエタノール
洗浄してフェノール系溶媒を抽出して除去し、イソオク
タン溶剤によって前記エタノールの置換を行った後、乾
燥し、さらに熱処理して、好適なガス透過速度および選
択透過性を有する非対称性中空糸膜を製造することがで
きる。That is, the asymmetric hollow fiber membrane described above contains an aromatic tetracarboxylic acid component such as biphenyltetracarboxylic dianhydride, and an aromatic diamine component such as diaminodimethyldiphenylene sulfone, diaminodiphenylmethane, and 4,4'-diaminodiphenyl ether. A soluble aromatic polyimide solution is prepared by polymerizing and imidizing approximately equimolar amounts of the above in a phenolic solvent such as parachlorophenol. From an in-orifice type spinning nozzle,
It is extruded into a hollow fiber shape in a nitrogen atmosphere, then coagulated in a coagulation solution consisting of an aqueous ethanol solution to form a hollow fiber membrane with an asymmetric structure.Finally, the hollow fiber membrane is washed with ethanol to extract the phenolic solvent. After removing the ethanol and replacing the ethanol with an isooctane solvent, it is dried and further heat-treated to produce an asymmetric hollow fiber membrane having a suitable gas permeation rate and permselectivity.
この発明の製法に使用される芳香族ポリイミド製の非対
称性中空糸膜は、水素ガスの透過速度(P)1..50
℃)がlX10−’〜100XIO−5c4/c4 ・
sec ・cmHg、特に、2X10−’ 〜70X
10−’aA/afl −sec −cmHg程度で
あって、水素ガスの透過速度(PH2)とメタンガスの
透過速度(PCl、 、50℃)との比(P H2/
P CH4)で示される選択透過性(分離度)が30〜
250、特に50〜200程度であり、さらに、
厚さ0.001〜5μm程度の緻密層(表面層)と厚さ
10〜2000μm程度の多孔質層(内部層)とが連続
して一体となっている非対称性構造が形成されている中
空糸膜であることが、この発明の製法において最終的に
得られる非対称性中空糸炭素膜が充分な非対称性構造を
有するようにするため、また、そのガス分離性能を高い
レベルとする上で、特に好ましい。The asymmetric hollow fiber membrane made of aromatic polyimide used in the production method of this invention has a hydrogen gas permeation rate (P) of 1. .. 50
°C) is lX10-'~100XIO-5c4/c4 ・
sec・cmHg, especially 2X10-' to 70X
The ratio (PH2/
The permselectivity (degree of separation) indicated by P CH4) is 30~
250, particularly about 50 to 200, and furthermore, a dense layer (surface layer) with a thickness of about 0.001 to 5 μm and a porous layer (inner layer) with a thickness of about 10 to 2000 μm are continuously integrated. In order to ensure that the asymmetric hollow fiber carbon membrane finally obtained by the production method of the present invention has a sufficient asymmetric structure, the hollow fiber membrane has a sufficient asymmetric structure. This is particularly preferred in terms of achieving a high level of gas separation performance.
二の発明の製法では、前述の酸素含有気体中での予備熱
処理(熱安定化処理)は、次の炭素化処理工程において
前記の中空糸膜の非対称性構造が維持できるように、前
記中空糸膜を形成している芳香族ポリイミドを一部架橋
および/または一部環化させ、あるいは、不融化または
不溶化して、熱的に安定である芳香族ポリイミドとする
ために、250〜495℃の範囲内の温度であって、前
記中空糸膜の非対称性構造が維持される温度で行われる
。In the manufacturing method of the second invention, the preliminary heat treatment (thermal stabilization treatment) in the oxygen-containing gas described above is performed to maintain the asymmetric structure of the hollow fiber membrane in the next carbonization treatment step. The aromatic polyimide forming the membrane is partially crosslinked and/or partially cyclized, or made infusible or insolubilized to produce a thermally stable aromatic polyimide. The temperature range is such that the asymmetric structure of the hollow fiber membrane is maintained.
前記の中空糸膜の非対称性構造が維持される温度とは、
例えば、該ポリイミドが後述する測定法で測定された軟
化温度を有する場合には、該ポリイミドの軟化温度より
も、5 ’C以上低い温度、特に10℃以上低い温度で
あり、また、該ポリイミドが実質的に軟化温度又は二次
転移温度を有していない場合には、その該ポリイミド製
中空糸膜の非対称性構造が電子顕微鏡などで観察して大
幅に変形したりしない温度、多孔質層の平均孔径が大幅
に(50%以下に)縮小したりしない温度であればよい
。The temperature at which the asymmetric structure of the hollow fiber membrane is maintained is:
For example, when the polyimide has a softening temperature measured by the measuring method described below, the temperature is 5'C or more lower than the softening temperature of the polyimide, particularly 10C or more lower, and the temperature is lower than the softening temperature of the polyimide. If the polyimide hollow fiber membrane has substantially no softening temperature or secondary transition temperature, the temperature at which the asymmetric structure of the polyimide hollow fiber membrane does not significantly deform when observed with an electron microscope, etc., and the porous layer Any temperature is sufficient as long as the average pore diameter does not decrease significantly (to 50% or less).
前記の予備熱処理は、前述の温度範囲内であれば、例え
ば、280℃の付近の温度から450℃の付近の高温ま
で徐々に昇温させながら行うことによる予備熱処理、あ
るいは、250〜350℃の温度で5〜100時間(好
ましくは10〜50時間)の熱処理し、次いで、350
〜490℃の温度で10〜300分間(好ましくは20
〜200分間)の熱処理するというように、複数段階で
行う予備熱処理であってもよい。As long as the preheat treatment is within the above-mentioned temperature range, for example, the preheat treatment may be carried out by gradually raising the temperature from around 280°C to a high temperature around 450°C, or a preheating treatment at 250 to 350°C. Heat treatment at temperature for 5-100 hours (preferably 10-50 hours), then 350
at a temperature of ~490°C for 10-300 minutes (preferably 20
Preliminary heat treatment may be performed in multiple stages, such as heat treatment for 200 minutes).
前記の非対称性中空糸膜の予備熱処理は、前記中空糸膜
(長尺の中空糸)を高温の加熱炉に連続的に供給して連
続的に行うことができ、また、複数本の非対称性中空糸
膜の糸束を形成して、その糸束を適当な温度の加熱炉内
に配置しである時間加熱炉内に放置してバッチ的に熱処
理を行うこともできる。The preliminary heat treatment of the asymmetric hollow fiber membrane can be performed continuously by continuously supplying the hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace. It is also possible to form a fiber bundle of hollow fiber membranes, place the fiber bundle in a heating furnace at an appropriate temperature, and leave it in the heating furnace for a certain period of time to carry out the heat treatment in a batch manner.
前記の予備熱化処理で使用する酸素含有気体としては、
例えば、空気、酸素と窒素との混合ガスなどを好適に挙
げることができる。The oxygen-containing gas used in the preheating treatment is as follows:
For example, air, a mixed gas of oxygen and nitrogen, etc. can be suitably used.
二の発明の製法では、前述の酸素含有気体中での予備熱
処理を行わないと、その後の工程の炭素化工程で、中空
糸膜の非対称性構造が損なわれるので適当ではなく、ま
た、予備熱処理を余りに高い温度で行うと、芳香族ポリ
イミド類の非対称性中空糸膜がその非対称性構造を最適
に維持できなくなり、非対称性構造が損なわれたり、著
しくガス分離性能の劣った構造になったりすることがあ
り、最終的な非対称性中空糸炭素膜が低い性能のガス分
離膜となるので適当ではない。In the manufacturing method of the second invention, if the preliminary heat treatment in the oxygen-containing gas described above is not performed, the asymmetric structure of the hollow fiber membrane will be damaged in the subsequent carbonization step, so it is not suitable. If this is carried out at too high a temperature, the asymmetric hollow fiber membrane of aromatic polyimides will not be able to maintain its asymmetric structure optimally, and the asymmetric structure will be impaired or the structure will have a significantly inferior gas separation performance. This may not be suitable as the final asymmetric hollow fiber carbon membrane will result in a gas separation membrane with poor performance.
この発明の製法では、前述のようにして、予備熱処理さ
れた非対称性中空糸膜は、例えば、窒素ガス、ヘリウム
ガス、アルゴンガスなどの不活性気体の雰囲気中で、5
00〜900℃(好ましくは550〜800℃の範囲内
の温度で、0.5秒間〜100分間(特に1秒間〜50
分間)、部分的に炭素化処理をすることが好ましい。In the manufacturing method of the present invention, the asymmetric hollow fiber membrane that has been preheated as described above is heated for 50 minutes in an atmosphere of an inert gas such as nitrogen gas, helium gas, or argon gas.
00 to 900°C (preferably 550 to 800°C) for 0.5 seconds to 100 minutes (especially 1 second to 50 minutes)
It is preferable to carry out a partial carbonization treatment for 1 minute).
前述の部分的な炭素化処理は、前述の温度範囲内であれ
ば、例えば、500℃〜600℃の付近の温度から70
0℃〜800℃の付近の高温まで昇温させながら約10
秒間〜60分間で行うことによる高熱処理、あるいは、
500〜550℃の温度付近で0.5〜60分間(好ま
しくは1〜30分間)の高熱処理し、次いで、600〜
800℃の温度付近で0.5秒間〜20分間(好ましく
は1秒間〜10分間)の高熱処理をするというように複
数段階で行う高熱処理であってもよい。The above-mentioned partial carbonization treatment can be carried out within the above-mentioned temperature range, for example, from a temperature around 500°C to 600°C to 70°C.
About 10℃ while raising the temperature to a high temperature around 0℃~800℃
High heat treatment for seconds to 60 minutes, or
High heat treatment at a temperature of 500 to 550°C for 0.5 to 60 minutes (preferably 1 to 30 minutes), then 600 to 550°C.
The high heat treatment may be performed in multiple stages, such as high heat treatment at a temperature around 800° C. for 0.5 seconds to 20 minutes (preferably 1 second to 10 minutes).
前記の予備加熱された非対称性中空糸膜の炭素化処理は
、前述の予備加熱と同様に、前記中空糸膜(長尺の中空
糸)を高温の加熱炉に連続的に供給して連続的に行うこ
とができ、また、複数本の非対称性中空糸膜の糸束を形
成して、その糸束を適当な温度の加熱炉内に配置しであ
る時間加熱炉内に放置してバッチ的に高熱処理(炭素化
)を行うこともできる。The carbonization treatment of the preheated asymmetric hollow fiber membrane is performed by continuously supplying the hollow fiber membrane (long hollow fiber) to a high-temperature heating furnace, similarly to the preheating described above. It can also be carried out in batches by forming a fiber bundle of multiple asymmetric hollow fiber membranes, placing the fiber bundle in a heating furnace at an appropriate temperature, and leaving it in the heating furnace for a certain period of time. High heat treatment (carbonization) can also be performed.
以下、この発明を参考例および実施例によってさらに詳
しく説明する。しかし、この発明はそれらの実施例によ
って限定されるものではない。Hereinafter, this invention will be explained in more detail by reference examples and examples. However, the invention is not limited to these examples.
非対称性中空糸膜又は非対称性中空糸炭素膜について、
各ガスの透過性能、耐溶剤性、収率なとは、次に示すそ
れぞれの方法で測定した。Regarding the asymmetric hollow fiber membrane or the asymmetric hollow fiber carbon membrane,
The permeation performance, solvent resistance, and yield of each gas were measured using the following methods.
まず、前述のようにして製造した非対称性中空糸炭素膜
と、ステンレスバイブと、エポキシ樹脂系接着剤とを使
用して、透過性能評価用の中空糸エレメントを作成した
。First, a hollow fiber element for permeation performance evaluation was created using the asymmetric hollow fiber carbon membrane produced as described above, a stainless steel vibrator, and an epoxy resin adhesive.
(a)透過性能の測定A
そして、透過性能Aは、ステンレス容器に透過性能評価
用の中空糸エレメントを装着し、水素ガスとメタンガス
との混合ガスを用いて、50℃の温度、10kg/cd
の圧でガス透過試験を行い、ガス透過速度と、各ガスの
透過速度比(選択透過性、ガス分離度を示す)とを、ガ
スクロマトグラフィー分析の測定値から算出した。(a) Measurement of permeation performance A The permeation performance A was measured by attaching a hollow fiber element for permeation performance evaluation to a stainless steel container and using a mixed gas of hydrogen gas and methane gas at a temperature of 50°C and 10 kg/cd.
A gas permeation test was carried out at a pressure of , and the gas permeation rate and the permeation rate ratio of each gas (indicating permselectivity and degree of gas separation) were calculated from the measured values of gas chromatography analysis.
(b)透過性能の測定B
前述のようにして製造した非対称性中空糸炭素膜は、前
述のガス透過−性能に用いる原料ガスを、40℃に加熱
したトルエン中にバブリングさせ、トルエン蒸気濃度が
7400ppmの混合ガスとして、このトルエン含有の
混合ガスを用いて、しかも、混合ガスの供給開始後18
時間後に測定することにしたほかは上述の透過性能の測
定Aと同様にして、非対称性中空糸炭素膜の透過性能を
測定した。(b) Measurement of permeation performance B The asymmetric hollow fiber carbon membrane produced as described above was prepared by bubbling the raw material gas used for the gas permeation performance described above into toluene heated to 40°C. This toluene-containing mixed gas was used as a 7400 ppm mixed gas, and 18
The permeation performance of the asymmetric hollow fiber carbon membrane was measured in the same manner as the above-mentioned measurement A of permeation performance, except that the measurement was performed after a certain period of time.
(C)耐溶剤性
したがって、非対称性中空糸炭素膜は、耐溶剤性を示す
指標として、前記の透過性・能Aと透過性能Bとにおけ
る保持率(B/A)X100 (%)を算出した。(C) Solvent resistance Therefore, as an indicator of solvent resistance of the asymmetric hollow fiber carbon membrane, the retention rate (B/A) x 100 (%) of the above permeability/ability A and permeability B is calculated. did.
また、芳香族ポリイミド類の非対称性中空糸膜を、前述
のように予備加熱し、炭素化して、非対称性中空糸炭素
膜を製造する際の炭素膜の収率は、未処理の中空糸膜の
重量と、炭素化処理後の中空糸炭素膜の重量とを測定し
、両者から収率を算出した。In addition, when an asymmetric hollow fiber membrane of aromatic polyimide is preheated and carbonized as described above to produce an asymmetric hollow fiber carbon membrane, the yield of the carbon membrane is the same as that of the untreated hollow fiber membrane. and the weight of the hollow fiber carbon membrane after carbonization treatment were measured, and the yield was calculated from both.
元素分析は、元素分析装置(パーキンエルマー社製、2
40C型)を用いて測定した。Elemental analysis was performed using an elemental analyzer (manufactured by PerkinElmer, 2
40C type).
電子顕微鏡を使用して、中空糸炭素膜などの断面の10
000倍の写真を写し、その写真における中空糸炭素膜
の断面を観察することにより、中空糸炭素膜の緻密層と
多孔質層とからなる非対称性構造の状態、有無などを確
認した。Using an electron microscope, 10 cross-sections of hollow fiber carbon membranes etc.
By taking a photograph at a magnification of 1,000 times and observing the cross section of the hollow fiber carbon membrane in the photograph, the state and presence of an asymmetric structure consisting of a dense layer and a porous layer of the hollow fiber carbon membrane were confirmed.
参考例1
3.3’、4.4’−ビフェニルテトラカルボン酸二無
水物99ミリモルと、4,4゛−ジアミノジフェニルエ
ーテル60ミリモルと、3.5−ジアミノ安息香酸30
ミリモルと、4,4゛−ジアミノジフェニルメタン10
ミリモルとを、パラクロルフェノール253gと共に、
攪拌機と窒素ガス導入管とが付設されたセパラブルフラ
スコに入れて、窒素ガスを流して、攪拌しながら、18
0℃で13時間重合させて、芳香族ポリイミド濃度が1
5重量%である芳香族ポリイミド溶液を調製した。Reference Example 1 99 mmol of 3.3',4.4'-biphenyltetracarboxylic dianhydride, 60 mmol of 4,4'-diaminodiphenyl ether, and 30 mmol of 3.5-diaminobenzoic acid.
mmol and 4,4゛-diaminodiphenylmethane 10
mmol, along with 253 g of parachlorophenol,
Place it in a separable flask equipped with a stirrer and a nitrogen gas inlet tube, supply nitrogen gas, and stir while stirring.
Polymerization was carried out at 0°C for 13 hours, and the aromatic polyimide concentration was 1.
A 5% by weight aromatic polyimide solution was prepared.
この芳香族ポリイミド溶液は、100℃の回転粘度が1
116ボイズであり、70℃での回転粘度が3920ボ
イズであった。この芳香族ポリイミド溶液を、400メ
ツシユのステンレス金網で濾過して、紡糸用のドープ液
を準備した。This aromatic polyimide solution has a rotational viscosity of 1 at 100°C.
The rotational viscosity at 70° C. was 3920 voids. This aromatic polyimide solution was filtered through a 400-mesh stainless wire mesh to prepare a dope solution for spinning.
その紡糸用ドープ液を、中空糸紡糸用ノズル(円形開口
部の外径、1000μm、円形開口部のスリット幅:2
00μm、芯部開口部の外径;400μm)を備えた紡
糸装置にそれぞれ仕込み、そして、前記紡糸用ノズルか
ら中空糸状に吐出させて、その中空糸状体を窒素雰囲気
中を通した後、65重量%のエタノール水溶液からなる
一次凝固液(0℃)にそれぞれ浸漬し、さらに、一対の
案内ロールを備えた二次凝固装置内の二次凝固液(0℃
)中で案内ロール間を往復させて、中空糸状体の凝固を
完了させて、芳香族ポリイミド製のガス分離中空糸膜を
引き取りロールで引き取りながら(引き取り速度15m
/分)、紡糸を行った。The spinning dope liquid was passed through a hollow fiber spinning nozzle (outer diameter of circular opening: 1000 μm, slit width of circular opening: 2
00 μm, outer diameter of the core opening: 400 μm), and the hollow fibers were discharged from the spinning nozzle, and the hollow fibers were passed through a nitrogen atmosphere. % ethanol aqueous solution (0°C), and further immersed in a secondary coagulating liquid (0°C) in a secondary coagulating device equipped with a pair of guide rolls.
), the hollow fiber membrane is reciprocated between guide rolls to complete solidification of the hollow fiber, and the aromatic polyimide gas separation hollow fiber membrane is taken up with a take-up roll (take-up speed: 15 m).
/min), spinning was performed.
最後に、この中空糸膜をボビンに巻き取り、エタノール
で充分に凝固溶媒等を洗浄した後、イソオクタン(置換
溶媒)でエタノール置換し、さらに、中空糸膜を100
℃に加熱して、イソオクタンの蒸発・乾燥を行い、さら
に、260℃の温度で30分間、中空糸膜の熱処理を行
って、乾燥及び熱処理された芳香族ポリイミド製の非対
称性中空糸膜を製造した。Finally, this hollow fiber membrane is wound up on a bobbin, and after thoroughly washing the coagulation solvent etc. with ethanol, the ethanol is replaced with isooctane (substitution solvent), and the hollow fiber membrane is
℃ to evaporate and dry isooctane, and then heat-treat the hollow fiber membrane at a temperature of 260℃ for 30 minutes to produce a dried and heat-treated asymmetric hollow fiber membrane made of aromatic polyimide. did.
この芳香族ポリイミド製の非対称性中空糸膜の軟化温度
は、デュポン990型熱分析装置を用いて引張りモード
による熱機械分析により、窒素ガス雰囲気下、昇温速度
1017分で測定した。The softening temperature of this asymmetric hollow fiber membrane made of aromatic polyimide was measured by thermomechanical analysis in tensile mode using a DuPont 990 thermal analyzer under a nitrogen gas atmosphere at a heating rate of 1017 minutes.
前記の熱機械分析において、該中空糸膜が急激に伸び始
める温度を観測した結果、前記芳香族ポリイミドの軟化
温度は290℃であった。In the thermomechanical analysis described above, the temperature at which the hollow fiber membrane began to rapidly expand was observed, and as a result, the softening temperature of the aromatic polyimide was 290°C.
参考例2
芳香族ジアミン成分として、3,7−ジミアノー2゜8
−ジメチル−ジフェニレンスルホン90ミリモル、4.
4′−ジアミノジフェニルエーテル10ミリモルを使用
し、パラクロルフェノール293gを使用したほかは、
参考例1と同様にして重合して、芳香族ポリイミド濃度
が15重量%である芳香族ポリイミド溶液を調製した。Reference Example 2 As the aromatic diamine component, 3,7-dimiano 2゜8
-dimethyl-diphenylenesulfone 90 mmol, 4.
Except that 10 mmol of 4'-diaminodiphenyl ether and 293 g of parachlorophenol were used.
Polymerization was carried out in the same manner as in Reference Example 1 to prepare an aromatic polyimide solution having an aromatic polyimide concentration of 15% by weight.
この芳香族ポリイミド溶液を使用し、熱処理温度を30
0℃としたほかは、参考例1と同様にして紡糸及び後処
理を行い、非対称性中空糸膜を製造した。Using this aromatic polyimide solution, the heat treatment temperature was set to 30
An asymmetric hollow fiber membrane was produced by performing spinning and post-treatment in the same manner as in Reference Example 1 except that the temperature was 0°C.
前記芳香族ポリイミド製の非対称性中空糸膜の軟化温度
は、参考例1と同様の熱機械分析で測定したが、450
℃までの温度において、明確な軟化現象が現れなかった
。The softening temperature of the asymmetric hollow fiber membrane made of aromatic polyimide was measured by the same thermomechanical analysis as in Reference Example 1.
No clear softening phenomenon appeared at temperatures up to ℃.
実施例1
参考例1で得られた非対称性中空糸膜を、空気雰囲気の
オープン中、無緊張下、270℃で38時間熱処理した
後さらに400℃で30分間、予備熱処理して熱安定化
した。Example 1 The asymmetric hollow fiber membrane obtained in Reference Example 1 was heat-treated at 270°C for 38 hours under no tension in an open air atmosphere, and then further preheated at 400°C for 30 minutes to thermally stabilize it. .
次に、予備熱処理された非対称性中空糸膜は、石英ガラ
ス管中を700℃に調節し窒素雰囲気に保たれた電気管
状炉内を、送りだしロールと引き取りロールとの間で2
0C11/分の等速度で通過して、滞留時間4分間の炭
素化処理が行なわれ、中空糸炭素膜が製造された。Next, the preheat-treated asymmetric hollow fiber membrane is passed through an electric tubular furnace in which the temperature in the quartz glass tube is adjusted to 700°C and maintained in a nitrogen atmosphere, between a delivery roll and a take-up roll.
The carbonization treatment was carried out by passing at a constant speed of 0C11/min for a residence time of 4 minutes, and a hollow fiber carbon membrane was manufactured.
この中空炭素膜は、参考例1で用いた芳香族ポリイミド
を溶解する溶媒であるバラクロルフエノ−ルに浸漬し、
200℃で1時間加熱したが、実質的に溶解せず、また
、前記中空糸炭素膜を電子顕微鏡写真によって観察すれ
ば、その中空糸膜が非対称性構造(緻密層および多孔質
層)が確認され、芳香族ポリイミド製の非対称性中空膜
と同様な有効な非対称性構造の形状で維持されていた。This hollow carbon membrane was immersed in balachlorphenol, a solvent that dissolves the aromatic polyimide used in Reference Example 1, and
Although it was heated at 200°C for 1 hour, it did not substantially dissolve, and when the hollow fiber carbon membrane was observed using an electron microscope, it was confirmed that the hollow fiber membrane had an asymmetric structure (a dense layer and a porous layer). and maintained an effective asymmetric structure shape similar to that of an asymmetric hollow membrane made of aromatic polyimide.
前述の透過性能の測定Aの結果、前記非対称性中空糸炭
素膜は、水素ガスの透過速度(Plh)が、18 X
10−’c4/c4 ・sec −crtrHgであ
り、また、水素ガスの透過速度(PH,)とメタンガス
の透過速度(Pcn、)との比(Plh/ PCO2)
が140であった。As a result of the above-mentioned permeation performance measurement A, the asymmetric hollow fiber carbon membrane has a hydrogen gas permeation rate (Plh) of 18
10-'c4/c4 sec -crtrHg, and the ratio of hydrogen gas permeation rate (PH,) to methane gas permeation rate (Pcn, ) (Plh/PCO2)
was 140.
前述の透過性能の測定Bの結果、前記の非対称性中空糸
炭素膜は、水素ガスの透過速度が、17X 10−5a
A/ all−sec −cmHgであり、また、水
素ガスの透過速度とメタンガスの透過速度との比(P
H2/ P CH4)が148であった。As a result of the above-mentioned permeation performance measurement B, the above-mentioned asymmetric hollow fiber carbon membrane has a hydrogen gas permeation rate of 17X 10-5a.
A/all-sec-cmHg, and the ratio of the permeation rate of hydrogen gas to the permeation rate of methane gas (P
H2/P CH4) was 148.
前記の透過性能の測定A及びBの結果から算出した耐溶
剤性(分離度の保持率)は106%であり、そして、前
記の非対称性中空糸炭素膜の収率は71.5%であって
、さらに、その炭素含有率は87.2%であった。The solvent resistance (retention rate of separation) calculated from the results of the permeation performance measurements A and B was 106%, and the yield of the asymmetric hollow fiber carbon membrane was 71.5%. Further, its carbon content was 87.2%.
実施例2〜5
前述の参考例2で製造した芳香族ポリイミド製の非対称
性中空糸膜を使用して、第1表に示した条件で、熱安定
化処理、および、炭素化処理を行ったほかは、実施例1
と同様の方法で、非対称性中空糸炭素膜を製造した。Examples 2 to 5 Using the asymmetric hollow fiber membrane made of aromatic polyimide produced in Reference Example 2 above, thermal stabilization treatment and carbonization treatment were performed under the conditions shown in Table 1. Others are Example 1
An asymmetric hollow fiber carbon membrane was manufactured in the same manner as described above.
各非対称性中空糸炭素膜について、透過性能、耐溶剤性
、収率、元素分析値を、第1表に示す。Table 1 shows the permeation performance, solvent resistance, yield, and elemental analysis values for each asymmetric hollow fiber carbon membrane.
比較例1
参考例2で製造した芳香族ポリイミド製の非対称性中空
糸膜について、透過性能の測定Aを行った結果、水素ガ
スの透過速度が16 x 10−5c111/cd −
sec −ctaHgであり、また、水素ガスの透過
速度とメタンガスの透過速度との比(P Hz/ P
CH4)が167であったが、透過性能の測定Bを行っ
た結果、水素ガスの透過速度が6.2 X 10−’c
d/cd・sec−cml(gであり、また、水素ガス
の透過速度とメタンガスの透過速度との比(P R,/
P CH4)が25であって、前記の透過性能の測定
A及びBの結果から算出した耐溶剤性(分離度の保持率
)は15%であった。Comparative Example 1 As a result of permeation performance measurement A performed on the asymmetric hollow fiber membrane made of aromatic polyimide produced in Reference Example 2, the permeation rate of hydrogen gas was 16 x 10-5c111/cd -
sec -ctaHg, and the ratio of the permeation rate of hydrogen gas to the permeation rate of methane gas (P Hz/P
CH4) was 167, but as a result of permeation performance measurement B, the permeation rate of hydrogen gas was 6.2 x 10-'c
d/cd・sec-cml (g, and the ratio of the permeation rate of hydrogen gas to the permeation rate of methane gas (P R, /
P CH4) was 25, and the solvent resistance (retention rate of separation degree) calculated from the results of the above-mentioned permeation performance measurements A and B was 15%.
比較例2
参考例2で製造した芳香族ポリイミド製の非対称性中空
糸膜を、空気雰囲気のオーブン中、無緊張下、400℃
で30分間熱処理し熱安定化した。Comparative Example 2 The asymmetric hollow fiber membrane made of aromatic polyimide produced in Reference Example 2 was heated at 400°C under no tension in an air atmosphere oven.
The mixture was heat-treated for 30 minutes for thermal stabilization.
前述のようにして、得られた熱安定化のみが行われた中
空糸膜について、透過性能の測定A及びBを行った結果
を第1表に示す。Table 1 shows the results of permeation performance measurements A and B performed on the hollow fiber membranes that were only thermally stabilized as described above.
前記の熱安定化のみがなされた中空糸膜は、炭素元素含
有率が、66.4%と低く、そのための耐溶剤性(分離
度の保持率)が、35%と極めて低かった。The hollow fiber membrane subjected to only thermal stabilization had a low carbon element content of 66.4%, and therefore had an extremely low solvent resistance (retention rate of separation) of 35%.
比較例3
炭素化の温度を1000℃としたほかは、実施例4と同
様にして、中空糸炭素膜を製造した。Comparative Example 3 A hollow fiber carbon membrane was produced in the same manner as in Example 4, except that the carbonization temperature was 1000°C.
その中空糸炭素膜について、透過性能の測定A及びBな
どを行った結果を第1表に示す。Table 1 shows the results of measurements A and B of permeability of the hollow fiber carbon membrane.
前記の中空糸炭素膜は、水素原子含有率が0.6%と低
く、そして、水素ガスの透過速度が、1.1x 10−
’cd/cd −sec −cmHgと小さく、実用
的な中空糸炭素膜ではなかった。The hollow fiber carbon membrane has a hydrogen atom content as low as 0.6%, and a hydrogen gas permeation rate of 1.1x 10-
'cd/cd -sec -cmHg, which was small and was not a practical hollow fiber carbon membrane.
この発明の非対称性中空糸炭素膜は、炭素含有率が70
〜93重量%であって、しかも、緻密層と多孔質層とを
一体に有する非対称性構造を保持しているので、例えば
、水素を含む混合ガスから水素を高い分離性能で分離す
ることができ、しかも、有機溶剤などの不純物成分が混
入した混合ガスの分離においても、その分離性能(分離
度等)がほとんど低下しないものであり、さらに、高温
で長期間使用できる高い耐熱性を有しているものである
。The asymmetric hollow fiber carbon membrane of this invention has a carbon content of 70
~93% by weight, and also maintains an asymmetric structure that integrates a dense layer and a porous layer, making it possible, for example, to separate hydrogen from a hydrogen-containing mixed gas with high separation performance. Furthermore, even when separating mixed gases mixed with impurity components such as organic solvents, the separation performance (separation degree, etc.) hardly deteriorates, and furthermore, it has high heat resistance that can be used at high temperatures for long periods of time. It is something that exists.
また、この発明の製法は、前述の優れた性能の非対称性
中空糸炭素膜を、再現性よく高い生産性で容易に製造す
ることができる優れた製法である。Further, the manufacturing method of the present invention is an excellent manufacturing method that allows the aforementioned asymmetric hollow fiber carbon membrane with excellent performance to be easily manufactured with good reproducibility and high productivity.
特許出願人 宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.
Claims (2)
率;70〜93重量%、窒素原子の含有率;3.5〜7
重量%、および、水素原子の含有率;1.0〜4.0重
量%である、芳香族ポリイミドの部分炭素化物であり、
そして、該中空糸膜の外表面に緻密層を有すると共に、
中空糸膜の内部が前記緻密層と連続して多孔質支持層を
有する非対称性中空糸炭素膜であることを特徴とする非
対称性中空糸炭素膜。(1) The material forming the hollow fiber membrane has a carbon atom content of 70 to 93% by weight and a nitrogen atom content of 3.5 to 7% by weight.
A partially carbonized aromatic polyimide having a weight% and a hydrogen atom content of 1.0 to 4.0% by weight,
and having a dense layer on the outer surface of the hollow fiber membrane,
An asymmetric hollow fiber carbon membrane characterized in that the inside of the hollow fiber membrane is an asymmetric hollow fiber carbon membrane having a porous support layer continuous with the dense layer.
250〜495℃の範囲内の温度であってしかも該中空
糸膜の非対称性構造が維持される温度、および、酸素含
有ガスの雰囲気で、予備熱処理して熱安定化し、次いで
、その予備熱処理された中空糸膜を、500〜900℃
でおよび不活性ガスの雰囲気下で部分的に炭素化処理す
ることを特徴とする非対称性中空糸炭素膜の製法。(2) An asymmetric hollow fiber membrane made of aromatic polyimide,
The hollow fiber membrane is thermally stabilized by preheat treatment at a temperature within the range of 250 to 495°C at which the asymmetric structure of the hollow fiber membrane is maintained and in an oxygen-containing gas atmosphere, and then the preheat treatment is performed. The hollow fiber membrane was heated to 500 to 900℃.
1. A method for producing an asymmetric hollow fiber carbon membrane, characterized by partially carbonizing it under an atmosphere of an inert gas.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11015790A JPH07121344B2 (en) | 1990-04-27 | 1990-04-27 | Asymmetric hollow fiber carbon membrane and method for producing the same |
EP91303687A EP0459623B1 (en) | 1990-04-27 | 1991-04-24 | Asymmetric hollow filamentary carbon membrane and process for producing same |
DE69102350T DE69102350T2 (en) | 1990-04-27 | 1991-04-24 | Asymmetric hollow fiber membrane made of carbon and process for its production. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11015790A JPH07121344B2 (en) | 1990-04-27 | 1990-04-27 | Asymmetric hollow fiber carbon membrane and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0411933A true JPH0411933A (en) | 1992-01-16 |
JPH07121344B2 JPH07121344B2 (en) | 1995-12-25 |
Family
ID=14528499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11015790A Expired - Lifetime JPH07121344B2 (en) | 1990-04-27 | 1990-04-27 | Asymmetric hollow fiber carbon membrane and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07121344B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185212A (en) * | 1998-12-22 | 2000-07-04 | Ube Ind Ltd | Method for separating and recovering perfluoro compound gas and device therefor |
JP2000342944A (en) * | 1999-03-05 | 2000-12-12 | Ube Ind Ltd | Partially carbonized asymmetric hollow fiber separation membrane, production thereof and gas separation method |
US6395066B1 (en) | 1999-03-05 | 2002-05-28 | Ube Industries, Ltd. | Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method |
WO2005087355A1 (en) * | 2004-03-12 | 2005-09-22 | Ngk Insulators, Ltd. | Carbon film laminate and method for production thereof, and voc removing device |
JP2007054693A (en) * | 2005-08-22 | 2007-03-08 | National Institute Of Advanced Industrial & Technology | Particulate-dispersed tubular membrane and its manufacturing method |
WO2014132993A1 (en) | 2013-02-27 | 2014-09-04 | Nok株式会社 | Method of manufacturing hollow fiber carbon membrane |
JP2018522713A (en) * | 2015-06-01 | 2018-08-16 | ジョージア・テック・リサーチ・コーポレーション | Superselective carbon molecular sieve membrane and manufacturing method |
JP2019510624A (en) * | 2016-03-21 | 2019-04-18 | ダウ グローバル テクノロジーズ エルエルシー | Improved method of making carbon molecular sieve membranes |
JP2020516445A (en) * | 2017-04-06 | 2020-06-11 | ダウ グローバル テクノロジーズ エルエルシー | Asymmetric polyvinylidene chloride membranes and carbon molecular sieve membranes made therefrom |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7356768B1 (en) | 2002-11-27 | 2008-04-08 | Adobe Systems Incorporated | Using document templates to assemble a collection of documents |
-
1990
- 1990-04-27 JP JP11015790A patent/JPH07121344B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000185212A (en) * | 1998-12-22 | 2000-07-04 | Ube Ind Ltd | Method for separating and recovering perfluoro compound gas and device therefor |
JP2000342944A (en) * | 1999-03-05 | 2000-12-12 | Ube Ind Ltd | Partially carbonized asymmetric hollow fiber separation membrane, production thereof and gas separation method |
US6395066B1 (en) | 1999-03-05 | 2002-05-28 | Ube Industries, Ltd. | Partially carbonized asymmetric hollow fiber separation membrane, process for its production, and gas separation method |
AU2005221562B2 (en) * | 2004-03-12 | 2010-05-27 | Ngk Insulators, Ltd. | Carbon film laminate and method for production thereof, and VOC removing device |
US7621979B2 (en) | 2004-03-12 | 2009-11-24 | Ngk Insulators, Ltd. | Carbon film laminate and method for production thereof, and VOC removing device |
WO2005087355A1 (en) * | 2004-03-12 | 2005-09-22 | Ngk Insulators, Ltd. | Carbon film laminate and method for production thereof, and voc removing device |
JP2007054693A (en) * | 2005-08-22 | 2007-03-08 | National Institute Of Advanced Industrial & Technology | Particulate-dispersed tubular membrane and its manufacturing method |
WO2014132993A1 (en) | 2013-02-27 | 2014-09-04 | Nok株式会社 | Method of manufacturing hollow fiber carbon membrane |
JP2014161816A (en) * | 2013-02-27 | 2014-09-08 | Nok Corp | Production method of hollow fiber carbon membrane |
US9731250B2 (en) | 2013-02-27 | 2017-08-15 | Nok Corporation | Method for producing hollow fiber carbon membrane |
JP2018522713A (en) * | 2015-06-01 | 2018-08-16 | ジョージア・テック・リサーチ・コーポレーション | Superselective carbon molecular sieve membrane and manufacturing method |
JP2019510624A (en) * | 2016-03-21 | 2019-04-18 | ダウ グローバル テクノロジーズ エルエルシー | Improved method of making carbon molecular sieve membranes |
JP2020516445A (en) * | 2017-04-06 | 2020-06-11 | ダウ グローバル テクノロジーズ エルエルシー | Asymmetric polyvinylidene chloride membranes and carbon molecular sieve membranes made therefrom |
Also Published As
Publication number | Publication date |
---|---|
JPH07121344B2 (en) | 1995-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0459623B1 (en) | Asymmetric hollow filamentary carbon membrane and process for producing same | |
JP2673846B2 (en) | Asymmetric hollow fiber carbon membrane and method for producing the same | |
US5141642A (en) | Aromatic polyimide double layered hollow filamentary membrane and process for producing same | |
JP2588806B2 (en) | Gas separation hollow fiber membrane and method for producing the same | |
JPH03267130A (en) | Gas separation hollow-fiber membrane and its production | |
JPH0144804B2 (en) | ||
JP2626837B2 (en) | Manufacturing method of asymmetric hollow fiber carbon membrane | |
JPH08299769A (en) | Porous ceramic composite hollow fiber membrane and its production | |
US5514413A (en) | Process for producing composite membranes | |
EP1034836B1 (en) | Use of a partially carbonized asymmetric hollow fiber separation membrane | |
JPH0411933A (en) | Asymmetric carbon hollow fiber membrane and its production | |
JP4239618B2 (en) | Asymmetric gas separation membrane | |
JP4081956B2 (en) | Partially carbonized asymmetric hollow fiber separation membrane, its production method and gas separation method | |
JP2671072B2 (en) | Gas separation membrane manufacturing method | |
JPH06254367A (en) | Gas separating membrane of asymmetrical hollow yarn made of polyimide | |
JPH0247930B2 (en) | ||
JPS6135282B2 (en) | ||
JPS60150806A (en) | Preparation of polyimide hollow yarn membrane | |
JPH0636854B2 (en) | Polyimide gas separation membrane | |
JP2000185212A (en) | Method for separating and recovering perfluoro compound gas and device therefor | |
JPH10156157A (en) | Aromatic polyimide gas separation film | |
JPS6238207A (en) | Manufacture of polyimide hollow yarn | |
JPH0788601B2 (en) | Method for producing hollow fiber having finger-shaped pores | |
JPS62231017A (en) | Copolyimide hollow yarn and production thereof | |
JPH0693985B2 (en) | Manufacturing method of polyimide two-layer hollow fiber membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071225 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081225 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091225 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101225 Year of fee payment: 15 |