[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04115461A - Preparation method of single cell of solid-electrolyte-type fuel battery - Google Patents

Preparation method of single cell of solid-electrolyte-type fuel battery

Info

Publication number
JPH04115461A
JPH04115461A JP2233010A JP23301090A JPH04115461A JP H04115461 A JPH04115461 A JP H04115461A JP 2233010 A JP2233010 A JP 2233010A JP 23301090 A JP23301090 A JP 23301090A JP H04115461 A JPH04115461 A JP H04115461A
Authority
JP
Japan
Prior art keywords
electrode
membrane
solid electrolyte
electrode material
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2233010A
Other languages
Japanese (ja)
Inventor
Shuzo Hirata
修三 平田
Kiyoyuki Morimoto
清幸 森本
Takaaki Makino
槇野 隆章
Masateru Shimozu
下津 正輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HAKUYO KIKI KAIHATSU KYOKAI, Mitsui Engineering and Shipbuilding Co Ltd filed Critical NIPPON HAKUYO KIKI KAIHATSU KYOKAI
Priority to JP2233010A priority Critical patent/JPH04115461A/en
Publication of JPH04115461A publication Critical patent/JPH04115461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To lessen the electric contact resistance between a solid electrolytic membrane and an electrode membrane and heighten the physical strength of the electrode membrane. CONSTITUTION:A cut part corresponding to the thickness of an oxygen-side electrode or a fuel-side electrode is formed in both sides of an electrolytic ceramic body 1 and a fine powder of the electrode 2 in the oxygen side is stuck to one cut part like a film and a fine powder of the electrode 2 in the fuel side is stuck to the other cut part like a film by spraying. Then, with that state, the resulting body is heated to 1500 deg.C at 5-100 deg.C/hour by an electric furnace, etc., and held for about 1-10 hours to be sintered and cooled gradually at about 100-200 deg.C/hour.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固体電解質型燃料電池の単電池製造方法に係
り、特に固体電解質膜と電極膜との間の電気的接触抵抗
を小さくすることができる固体電解質型燃料電池の単電
池製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a single cell of a solid electrolyte fuel cell, and particularly to a method for reducing electrical contact resistance between a solid electrolyte membrane and an electrode membrane. The present invention relates to a method for manufacturing a single cell of a solid oxide fuel cell.

〔従来の技術〕[Conventional technology]

低公害のエネルギー源として注目を集めている燃料電池
の中で、特に電解質の漏洩のおそれがなく、反応速度が
大きいとして期待されているのが固体電解質型燃料電池
である。
Among fuel cells that are attracting attention as a low-pollution energy source, solid oxide fuel cells are particularly promising because they have no fear of electrolyte leakage and have a high reaction rate.

固体電解質型燃料電池は、電池の最小単位である単電池
を多数積層して構成されており、この単電池は、電解質
膜に電極膜を積層して構成される。
A solid oxide fuel cell is constructed by laminating a large number of single cells, which are the smallest unit of the battery, and each single cell is constructed by laminating an electrode membrane on an electrolyte membrane.

単電池における電解質膜には緻密度が要求される一方、
電極膜には多孔質性が要求される。緻密度が要求される
電解質膜上に、多孔質性が要求される電極膜を積層する
場合は、通常、固体電解質膜上にシートまたはフィルム
状の電極膜を積層させて焼成する方法が採られるが、焼
きしまりの違いにより、各々要求される特性が充分に満
足されず、電極膜が剥離したり、ひび割れするなどの問
題があった。また、電解質膜と電極膜との間の電気的接
触抵抗は、その製造方法によって大きく左右され、従来
の単電池の製造方法では、固体電解質膜と電極膜との間
の電気的接触抵抗を小さくすることができないという問
題があった。
While electrolyte membranes in single cells are required to be dense,
The electrode film is required to have porosity. When laminating an electrode membrane that requires porosity on an electrolyte membrane that requires density, the method usually used is to laminate a sheet or film-like electrode membrane on a solid electrolyte membrane and then sinter it. However, due to differences in hardening, the characteristics required for each were not fully satisfied, and there were problems such as peeling and cracking of the electrode film. In addition, the electrical contact resistance between the electrolyte membrane and the electrode membrane is greatly influenced by the manufacturing method.In the conventional cell manufacturing method, the electrical contact resistance between the solid electrolyte membrane and the electrode membrane is reduced. The problem was that I couldn't do it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、上記従来技術の問題点を解決し、電解
質膜および電極膜がそれぞれ要求される特性を充分に満
たし、剥離、ひび割れ等に対する電極膜の物理的強度が
大きく、かつ固体電解質膜と電極膜との電気的接触抵抗
が小さい固体電解質型燃料電池の電極膜製造方法を提供
することにある。
It is an object of the present invention to solve the problems of the prior art described above, to provide an electrolyte membrane and an electrode membrane that sufficiently satisfy the respective required characteristics, to have a high physical strength of the electrode membrane against peeling, cracking, etc., and to provide a solid electrolyte membrane. An object of the present invention is to provide a method for manufacturing an electrode membrane for a solid oxide fuel cell in which the electrical contact resistance between the electrode membrane and the electrode membrane is small.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、固体電解質膜と、これに積層される電極膜
との電気的接触抵抗を低減するために鋭意研究の結果、
固体電解質膜に粉末状の電極材を薄層状に付着させた後
、焼成することにより、固体電解質膜と電極膜との間の
電気的接触抵抗が小さくなり、かつ電極膜が固体電解質
膜の焼成に影響を与えることなく、多孔性に冨んだもの
になることを見出し本発明に到達した。
As a result of intensive research to reduce the electrical contact resistance between a solid electrolyte membrane and an electrode membrane laminated thereon, the present inventor has discovered that
By attaching a thin layer of powdered electrode material to the solid electrolyte membrane and then firing it, the electrical contact resistance between the solid electrolyte membrane and the electrode membrane is reduced, and the electrode membrane is heated by firing the solid electrolyte membrane. The present invention was achieved by discovering that the porosity can be increased without affecting the porosity.

すなわち、本発明は、固体電解質膜の片面または両面に
電極膜を形成する固体電解質型燃料電池の単電池製造方
法において、前記固体電解質膜の電極膜形成部分に粉末
状の電極材を薄層状に付着させた後、焼成して多孔質膜
を形成することを特徴とする。
That is, the present invention provides a method for manufacturing a unit cell of a solid electrolyte fuel cell in which an electrode film is formed on one or both sides of a solid electrolyte membrane, in which a powdery electrode material is formed in a thin layer on the electrode film forming portion of the solid electrolyte membrane. It is characterized in that after being deposited, it is fired to form a porous film.

〔作用〕[Effect]

固体電解質膜に粉末状の電極材を付着させた後、焼成す
ることにより、電極膜自身の多孔性により弾力性を有し
、電解質膜が緻密に焼きしまるのを電極膜が妨害するこ
とがなく、また固体電解質膜と電極膜とが緊密に接触す
るので電気的接触抵抗が大幅に小さくなる。
By attaching a powdered electrode material to a solid electrolyte membrane and then firing it, the electrode membrane has elasticity due to its own porosity, and the electrode membrane does not prevent the electrolyte membrane from being baked into a dense structure. Moreover, since the solid electrolyte membrane and the electrode membrane are in close contact with each other, the electrical contact resistance is significantly reduced.

本発明において固体電解質としては、例えばZrO2−
Y203  (YSZ) 、CeO2−CaO1Ce0
2−Y203系のもの等が使用される。また、酸素側電
極材としては、例えばランタン系のLa CoO3、L
a、7S r、jMn03 、Laa7C”aJ Mn
O3、L ao、、 B a、、 Cao4 Cu、、
、03等が、一方、燃料側電極材としては、例えば、ニ
ンケル系のN1O−Zr02−Y203等が使用される
。電極材は、例えば0.1μm〜10μmに粉砕した電
極材粉末として使用される。粉末状の電極材には、例え
ばポリビニールブチラール(PVB)等の添加剤の粉末
を混合させてもよく、また、電極材と添加剤との性質を
共有する、例えばあらかしめ電極材と添加剤とを溶融し
たものを乾燥後、粉砕して使用してもよい。この場合、
PVB等の添加剤は、電極材粉末の整形性を確保すると
いうはたらきがあり、前記電極材と同様0.1〜10μ
mに粉砕して使用される。
In the present invention, the solid electrolyte is, for example, ZrO2-
Y203 (YSZ), CeO2-CaO1Ce0
2-Y203 series etc. are used. In addition, as the oxygen side electrode material, for example, lanthanum-based LaCoO3, L
a, 7S r, jMn03, Laa7C”aJ Mn
O3, Lao,, B a,, Cao4 Cu,,
. The electrode material is used, for example, as an electrode material powder ground to 0.1 μm to 10 μm. The powdered electrode material may be mixed with a powder of an additive such as polyvinyl butyral (PVB), or a powdered electrode material and an additive that share the properties of the electrode material and the additive. It may also be used by drying and pulverizing a molten product. in this case,
Additives such as PVB have the function of ensuring the shapeability of the electrode material powder, and like the electrode material, 0.1 to 10μ
It is used after being ground to m.

本発明において、固体電解質膜に、例えば粉末状の電極
材を付着させる方法としては、例えば、電極材の乾燥粉
末を振りかける方法、電極材の乾燥粉末を溶剤に溶かし
てスプレーする方法、または電極材の乾燥粉末と溶剤と
をそれぞれ別にスプレーを用いて吹き付ける方法があげ
られるが、特にこれらに限定されるものではない。
In the present invention, the method of attaching the powdered electrode material to the solid electrolyte membrane includes, for example, a method of sprinkling dry powder of the electrode material, a method of dissolving the dry powder of the electrode material in a solvent and spraying it, or a method of spraying the dry powder of the electrode material. Examples include, but are not limited to, a method of spraying the dry powder and the solvent separately using sprays.

本発明においては、固体電解質膜に電極材を付着させた
後、例えば1100〜1600”Cで1〜10時間焼成
する。このときの昇温および降温速度は、電解質単独膜
の場合とほぼ同一であることが好ましい。
In the present invention, after the electrode material is attached to the solid electrolyte membrane, it is fired at, for example, 1100 to 1600''C for 1 to 10 hours.The temperature increase and decrease rates at this time are almost the same as in the case of an electrolyte-only membrane. It is preferable that there be.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

第1図は、本発明の一実施例における、固体電解質膜に
電極材を付着させた状態を示す断面図である。図におい
て、YSZからなる電解質セラミック体1の両面に酸素
側電極または燃料側電極の厚さに見合うだけの切欠部が
あり、この切欠部の一方に酸素側の電極材2としてL 
an、7 s r、、3 MnO3を0.1〜10μm
に粉砕した粉末が、他方の切欠部に燃料側の電極材2と
してN i O−Y S Zを0.1〜10μmに粉砕
した粉末がそれぞれ、溶剤としてトルエン等を用いてス
プレーされて薄膜状に付着されている。その後この状態
で、例えばトンネル型電気炉により、昇温速度5〜10
0℃/ h rで1500℃まで昇温し、この温度で1
〜10時間保持して焼成した後、降温速度100〜20
0℃/ h rで冷却されて単電池となる。
FIG. 1 is a sectional view showing a state in which an electrode material is attached to a solid electrolyte membrane in one embodiment of the present invention. In the figure, an electrolyte ceramic body 1 made of YSZ has notches on both sides corresponding to the thickness of the oxygen-side electrode or fuel-side electrode, and one of the notches has an L as the oxygen-side electrode material 2.
an, 7 s r,, 3 MnO3 0.1-10 μm
A powder obtained by pulverizing N i O-Y SZ to a size of 0.1 to 10 μm is sprayed onto the other notch as the electrode material 2 on the fuel side using toluene as a solvent to form a thin film. is attached to. Thereafter, in this state, for example, a tunnel electric furnace is used to increase the temperature at a rate of 5 to 10.
Raise the temperature to 1500℃ at 0℃/hr, and at this temperature 1
After holding and firing for ~10 hours, the temperature decrease rate is 100 ~ 20
It is cooled at 0°C/hr to form a single cell.

得られた単電池の電解質セラミック体と電極膜との電気
的接触抵抗は1000℃で0.01Ωであり、電極材を
粉末状にしないで、従来どおり一体化した膜状の電極材
を付着させて焼成したときの電気的接触抵抗の0.1Ω
に較べて著しく小さくなった。またこの単電池は100
0℃で200時間使用しても電極膜の剥離、ひび割れ等
は生じなかった。
The electrical contact resistance between the electrolyte ceramic body and the electrode film of the obtained unit cell was 0.01Ω at 1000°C, and the electrode material was not made into powder, but an integrated film-like electrode material was attached as before. Electrical contact resistance of 0.1Ω when fired
It is significantly smaller than . Also, this cell is 100
Even after 200 hours of use at 0° C., no peeling or cracking of the electrode film occurred.

第2図は、本発明の他の実施例における、固体電解質膜
に電極材と添加剤との混合物を付着させた状態を示す断
面図である。図において、YSZからなる電解質セラミ
ック体1の片面に電極膜と同じ厚さで、電極膜の大きさ
だけくり抜いた、プラスティックスからなるマスキング
材3が積層されており、前記くり抜いた部分に0.1μ
m〜1゜pmに粉砕されたN1O−YSZと、PVBの
微粉との混合物が、例えば溶剤としてトルエンを用いて
電極材料と溶剤とがそれぞれ別のスプレーにより噴霧さ
れ、その後、前記実施例と同様の条件で焼成される。
FIG. 2 is a sectional view showing a state in which a mixture of an electrode material and an additive is attached to a solid electrolyte membrane in another embodiment of the present invention. In the figure, a masking material 3 made of plastic is laminated on one side of an electrolyte ceramic body 1 made of YSZ and has the same thickness as the electrode film and is hollowed out by the size of the electrode film. 1μ
A mixture of N1O-YSZ pulverized to a particle size of 0.0 m to 1° pm and a fine powder of PVB is sprayed using separate sprays for the electrode material and the solvent, for example, using toluene as a solvent, and then the mixture is sprayed in the same manner as in the previous example. It is fired under the following conditions.

本実施例における固体電解質膜と電極膜との間の電気的
接触抵抗は、0.03Ωであり、前記実施例同様、粉砕
しない電極材を用いた場合に較べて著しく小さくなった
。また電極膜の物理的な強度も前記実施例と同様に従来
のものに較べて著しく向上した。
The electrical contact resistance between the solid electrolyte membrane and the electrode membrane in this example was 0.03Ω, which was significantly smaller than in the case where non-pulverized electrode material was used, as in the previous example. Also, the physical strength of the electrode film was significantly improved compared to the conventional one, as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、粉末状の電極材を用い、固体電解質膜
上で該電極材を焼成し、多孔質膜状とすることにより、
固体電解質膜と電極膜との電気的接触抵抗が小さく、か
つ、電極膜の物理的強度の大きい単電池が得られる。
According to the present invention, by using a powdered electrode material and baking the electrode material on a solid electrolyte membrane to form a porous membrane,
A cell can be obtained in which the electrical contact resistance between the solid electrolyte membrane and the electrode membrane is low, and the electrode membrane has high physical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例における単電池の断面図、
第2図は、本発明の他の実施例における固体電解質膜と
電極膜との積層体の断面を示す図である。 1・・・電解質セラミック体、2・・・電極材、3・・
・マスキング材。
FIG. 1 is a cross-sectional view of a single cell in an embodiment of the present invention;
FIG. 2 is a diagram showing a cross section of a laminate of a solid electrolyte membrane and an electrode membrane in another embodiment of the present invention. 1... Electrolyte ceramic body, 2... Electrode material, 3...
・Masking material.

Claims (1)

【特許請求の範囲】[Claims] (1)固体電解質膜の片面または両面に電極膜を形成す
る固体電解質型燃料電池の単電池製造方法において、前
記固体電解質膜の電極膜形成部分に粉末状の電極材を薄
層状に付着させた後、焼成して多孔質膜を形成すること
を特徴とする固体電解質型燃料電池の単電池製造方法。
(1) In a method for manufacturing a single cell of a solid electrolyte fuel cell in which an electrode film is formed on one or both sides of a solid electrolyte membrane, a powdered electrode material is adhered in a thin layer to the electrode film forming portion of the solid electrolyte membrane. 1. A method for manufacturing a single cell of a solid oxide fuel cell, comprising: then firing to form a porous membrane.
JP2233010A 1990-09-03 1990-09-03 Preparation method of single cell of solid-electrolyte-type fuel battery Pending JPH04115461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2233010A JPH04115461A (en) 1990-09-03 1990-09-03 Preparation method of single cell of solid-electrolyte-type fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2233010A JPH04115461A (en) 1990-09-03 1990-09-03 Preparation method of single cell of solid-electrolyte-type fuel battery

Publications (1)

Publication Number Publication Date
JPH04115461A true JPH04115461A (en) 1992-04-16

Family

ID=16948404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2233010A Pending JPH04115461A (en) 1990-09-03 1990-09-03 Preparation method of single cell of solid-electrolyte-type fuel battery

Country Status (1)

Country Link
JP (1) JPH04115461A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193065A (en) * 1987-10-05 1989-04-12 Mitsubishi Heavy Ind Ltd Manufacture of solid electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0193065A (en) * 1987-10-05 1989-04-12 Mitsubishi Heavy Ind Ltd Manufacture of solid electrolyte

Similar Documents

Publication Publication Date Title
KR950001256B1 (en) Fuel cell utilizing solidous electrolyte
US6017647A (en) Electrode structure for solid state electrochemical devices
JP3502012B2 (en) Solid oxide fuel cell and method of manufacturing the same
JPH04118861A (en) Solid electrolyte type fuel cell and its manufacture
Chen et al. Nanoscaled Sm-doped CeO2 buffer layers for intermediate-temperature solid oxide fuel cells
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
CN109768215A (en) A kind of solid state lithium battery anode low resistance interface processing method and anode structure
CN112952108A (en) Solid oxide fuel cell and preparation method thereof
KR101429944B1 (en) Solid oxide fuel cell comprising post heat-treated composite cathode and preparing method for thereof
JP2513920B2 (en) Fuel electrode for solid electrolyte fuel cell and method for manufacturing the same
JP3347561B2 (en) Solid oxide fuel cell
JPH0395859A (en) Solid electrolyte fuel cell
JPH09259895A (en) Electrode base of solid electrolytic fuel cell
JPH04115461A (en) Preparation method of single cell of solid-electrolyte-type fuel battery
KR101424701B1 (en) The segment-in-series type sofc module and the method of manufacturing the same
JP2007311060A (en) Nickel oxide powder composition for solid oxide fuel cell, its manufacturing method, and fuel electrode material using it
JPH09266000A (en) Solid electrolyte type fuel cell and its manufacture
EP0519681B1 (en) Method for preparing anode for solid oxide fuel cells
JPH0855625A (en) Manufacture of fuel electrode substrate
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
Balachandran et al. Material and fabrication challenges in the development of monolithic solid oxide fuel cells
JPH07320757A (en) Solid electrolytic fuel cell interconnector, and its manufacture
JP2003151578A (en) Manufacturing method of solid electrolyte fuel cell fuel electrode film
KR102559723B1 (en) High-performance lsgm electrolyte-supported solid oxide fuel cell using ultrasonic spray method and method of manuafcturing the same
JP2957404B2 (en) Single cell manufacturing method of solid oxide fuel cell