[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0410510A - Laminated ceramic capacitor and manufacture thereof - Google Patents

Laminated ceramic capacitor and manufacture thereof

Info

Publication number
JPH0410510A
JPH0410510A JP2112246A JP11224690A JPH0410510A JP H0410510 A JPH0410510 A JP H0410510A JP 2112246 A JP2112246 A JP 2112246A JP 11224690 A JP11224690 A JP 11224690A JP H0410510 A JPH0410510 A JP H0410510A
Authority
JP
Japan
Prior art keywords
laminate
capacitor
external electrode
internal electrodes
green sheets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2112246A
Other languages
Japanese (ja)
Other versions
JP2841346B2 (en
Inventor
Norikazu Oba
則一 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14581901&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0410510(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP2112246A priority Critical patent/JP2841346B2/en
Publication of JPH0410510A publication Critical patent/JPH0410510A/en
Application granted granted Critical
Publication of JP2841346B2 publication Critical patent/JP2841346B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Filters And Equalizers (AREA)

Abstract

PURPOSE:To make it possible to manufacture a laminated ceramic capacitor, as a smoothing capacitor, consisting of single element and having a high noise absorbing property by a method wherein the title capacitor is equipped with a laminated body, which is formed by laminating and sintering a plurality of ceramic green sheets into one body, and an external electrode, formed by connecting an internal electrode to the four-side faces, excluding a cutaway part, is provided on the four corners of the above-mentioned laminated body. CONSTITUTION:A continuous external electrode 6 is formed on the whole side face of a laminated body in advance by connecting the internal electrode exposed part 4, then the continuous external electrode 6 is divided by a cutaway part 7 by removing the four corners of a laminated body 5 including a part of the above-mentioned continuous external electrode part 6, by cutting or printing, and the external electrode 8, 9, 10 and 11, which are independent with each other, are formed on the four side faces of the laminated body 5. As a result, the desired external electrodes 8, 9, 10 and 11 can be formed easily in a precise manner, and this contributes greatly to the improvement of workability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ノイズ吸収性に優れた平滑用コンデンサとし
ての積層セラミックコンデンサ及びその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a multilayer ceramic capacitor as a smoothing capacitor with excellent noise absorption properties and a method for manufacturing the same.

(従来の技術) 近年、スイッチング電源の小形化、軽量化。(Conventional technology) In recent years, switching power supplies have become smaller and lighter.

高効率化のためのスイッチング周波数の高周波化が進み
、この高周波化はますます加速される傾向にある。
Switching frequencies are becoming increasingly high in order to improve efficiency, and this trend toward higher frequencies is accelerating.

積層セラミックコンデンサは、小形、無極性。Multilayer ceramic capacitors are small and non-polar.

高絶縁抵抗、低損失、高信頼性であるという特長を有す
ることから、この高周波化に伴って出力側の平滑コンデ
ンサとして、あるいはノイズ吸収用として注目され多用
されている。
Due to its features of high insulation resistance, low loss, and high reliability, it is attracting attention and being widely used as a smoothing capacitor on the output side or for noise absorption as the frequency becomes higher.

しかして、上記積層セラミックコンデンサの一般構造は
、第11図及び第12図に示すように、表面に一辺を外
周辺まで延ばして内部電極21を設けたセラミックグリ
ーンシート22を用い、前記内部電極21の外周辺まで
延びた一辺が交互に反対側になるように前記セラミック
グリーンシート22を複数枚積層して焼結し、前記内部
電極21が露出した両側面に外部電極23を形成したも
のからなっている。
As shown in FIGS. 11 and 12, the general structure of the multilayer ceramic capacitor is to use a ceramic green sheet 22 on which an internal electrode 21 is provided with one side extending to the outer periphery. A plurality of ceramic green sheets 22 are stacked and sintered so that one side extending to the outer periphery of the ceramic green sheet 22 is alternately opposite to the other, and external electrodes 23 are formed on both sides where the internal electrodes 21 are exposed. ing.

しかしながら、このような@層セラミックコンデンサは
、その形状に起因して自己共振周波数を有しており、そ
の周波数より高い成分を有するノイズに対しては効果が
なく、ノイズ除去ができないことになる。
However, such @layer ceramic capacitors have a self-resonant frequency due to their shape, and are ineffective against noise having components higher than that frequency, making it impossible to eliminate noise.

すなわち、コンデンサは一般的にり、C,Rが直列に接
続された等価回路で現ねされ、そのインピーダンス Z
の絶対値I71は となり、自己共振周波数より高い周波数に対しではω 
L 1すなわちインダクタンス成分りが無視できなくな
り、高周波ノイズに対するインピーダンスが増大する。
In other words, a capacitor is generally represented by an equivalent circuit in which C and R are connected in series, and its impedance Z
The absolute value I71 of is ω for frequencies higher than the self-resonant frequency.
L1, that is, the inductance component can no longer be ignored, and the impedance to high frequency noise increases.

このLの大きさを決定する要因は、コンデンサのリード
線の長さと電極端子間の長さである。この要因のリード
線長さに対しては、コンデンサの端子部からリド線をそ
れぞれ2本ずつ引出し、リード線部に起因するインダク
タンス成分をキャンセルでき、また、リードレス化して
チップ構造とすることによっても同様の効果を得ること
ができる。
The factors that determine the size of L are the length of the lead wire of the capacitor and the length between the electrode terminals. Regarding the lead wire length, which is a factor, two lead wires are drawn out from each terminal part of the capacitor, and the inductance component caused by the lead wire part can be canceled, and by making it leadless and making it a chip structure. You can also get the same effect.

しかし、もう一方の要因である電極端子間の長さに起因
するインダクタンス成分は依然として残ることになる。
However, the other factor, the inductance component due to the length between the electrode terminals, still remains.

しかして、このような電極端子間の長さに起因するイン
ダクタンス成分は、高周波化になるほど無視できなくな
り、前述のようなスイッチング電源の高周波化傾向下の
中で上記構成になる積層セラミックコンデンサは、自己
共振周波数以上のノイズ吸収が難しくなることより、そ
の回路に用いるコンデンサとして問題をかかえる結果と
なっていた。
However, the inductance component caused by the length between the electrode terminals cannot be ignored as the frequency becomes higher, and as the frequency of switching power supplies increases as described above, the multilayer ceramic capacitors having the above structure are Since it becomes difficult to absorb noise above the self-resonant frequency, this results in problems for capacitors used in such circuits.

そのため従来は、L、Cフィルタを構成したり、コンデ
ンサを複数並列接続したりしてノイズ吸収性を高めてい
たが、回路基板に実装する部品点数が多くなり、機器の
小形化並びに軽量化指向に逆行し、かつ低価格化を阻害
することになり、改善が望まれていた。
Conventionally, noise absorption was improved by configuring L and C filters or connecting multiple capacitors in parallel, but this increased the number of components mounted on the circuit board, and the trend was toward smaller and lighter equipment. This went against the grain and impeded price reductions, and improvements were desired.

(発明が解決しようとする課題) 以上のように、従来−膜化している積層セラミンクコン
デンサは、自己共振周波数以上のノイズ吸収性に劣るた
め、これらのコンデンサを用いるにはり、Cフィルタを
構成したり、複数のコンデンサを並列接続化するなどの
手段を講じなければならず、それだけ機器の大形化並び
に高価格化となり、昨今の機器の小形化並びに軽量化の
要請に応える上で解決すべき問題を有する結果となって
いた。
(Problems to be Solved by the Invention) As described above, conventional film-based multilayer ceramic capacitors have poor noise absorption properties above the self-resonant frequency, so it is necessary to configure a C filter when using these capacitors. However, it is necessary to take measures such as connecting multiple capacitors in parallel, making the equipment larger and more expensive, which cannot be solved in response to the recent demands for smaller and lighter equipment. The result was a problem that should have been avoided.

本発明は、上記の点に鑑みてなされたもので、単一素子
で、より広いノイズ吸収が可能な平滑用コンデンサとし
ての積層セラミックコンデンサ及びその製造方法を提供
することを目的とするものである。
The present invention has been made in view of the above points, and aims to provide a multilayer ceramic capacitor as a smoothing capacitor capable of absorbing a wider range of noise using a single element, and a method for manufacturing the same. .

[発明の構成] (課題を解決するための手段) 本発明による積層セラミックコンデンサは、内部電極を
設けたグリーンシートを複数枚積層し焼結一体化した積
層体の四角を欠如部とし、この欠如部を除いた四側面に
内部電極と接続しツレぞれ分離した外部電極を設けたこ
とを特徴とするもので、更に、このようなコンデンサの
製造方法として積層体の全側面に内部電極と接続した外
部電極を形成した後、積層体の四角部を除去し欠如部を
設けて前記外部電極を四分割するようにするか、又は積
層体の四角部を除去し欠如部を設けた後、この欠如部を
除く四側面に内部電極と連続した外部電極を形成するよ
うにすることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The multilayer ceramic capacitor according to the present invention has a multilayer ceramic capacitor in which a plurality of green sheets provided with internal electrodes are laminated and sintered into one piece, with the squares of the laminate being formed into a defective portion, and the defect is removed. The capacitor is characterized by having separate external electrodes connected to the internal electrodes on all four sides of the laminate except for the laminate. After forming the external electrode, the square part of the laminate is removed and a missing part is formed to divide the external electrode into four parts, or after the square part of the laminate is removed and a missing part is created, This is characterized in that external electrodes that are continuous with internal electrodes are formed on all four sides excluding the missing portion.

(作用) 上記のように構成しているので、隣り合う一対の端子を
入力端子とし、もう一方の端子対を出力端子としての使
用が可能で、CとRの分布定数的な4端子フィルタ回路
が形成され5、高周波成分は出力に現われがたくなり、
L成分はミクロンオーダーの内部電極間隔、すなわち誘
電体の厚みにしか起因しないため、同一誘電体の厚みで
あればコンデンサの形状が大きくなっても変わらず、容
易に低インダクタンス化が可能となり、自己共振周波数
より高い成分のノイズ吸収ができる。
(Function) Since it is configured as described above, it is possible to use one pair of adjacent terminals as input terminals and the other pair of terminals as output terminals, making it possible to use a four-terminal filter circuit with distributed constants of C and R. is formed5, and high frequency components are less likely to appear in the output.
Since the L component is caused only by the internal electrode spacing on the order of microns, that is, the thickness of the dielectric, it does not change even if the capacitor's shape becomes larger as long as the dielectric has the same thickness, making it easy to reduce the inductance. Can absorb noise components higher than the resonant frequency.

また、外部電極形成手段としてあらかじめ連続して形成
した外部電極の不要部分を除去し分割するか、又は積層
体側面の外部電極形成部以外の部分をあらかじめ除去し
四角を欠如部とした後外部電極を形成するものであるた
め、精度よく所望の外部電極を容易に形成することがで
きる。
In addition, as an external electrode forming means, unnecessary parts of external electrodes that have been continuously formed in advance can be removed and divided, or parts other than the external electrode forming part on the side surface of the laminate can be removed in advance to form squares as missing parts, and then external electrodes can be formed. Therefore, desired external electrodes can be easily formed with high precision.

(実施例) 以下、本発明の実施例につき説明する。(Example) Examples of the present invention will be described below.

ずなわら、第2図に示すように、回外周辺中、対向する
二外周辺まで延長し、内部電極1を設けたセラミックグ
リーンシート2を用い、このセラミックグリーンシート
2を前記内部電極1が交互に交差するように複数枚積層
し、第3図に示すように上下それぞれにカバーシート3
を積層した後、加圧焼結し四側面にそれぞれ内部電極露
出部4を有する積層体5を形成する。
As shown in FIG. 2, a ceramic green sheet 2 is used which extends from the supination periphery to the two opposing lateral peripheries and is provided with internal electrodes 1. A plurality of sheets are laminated so as to cross each other alternately, and cover sheets 3 are placed on each of the upper and lower sides as shown in Fig. 3.
After being laminated, pressure sintering is performed to form a laminate 5 having internal electrode exposed portions 4 on each of its four sides.

次に、第4図に示すようにこの積層体5の全側面を順次
外部電極ペーストに浸漬−引上げて乾燥焼付け、積層体
5の全側面に前記内部電極露出部4と接続した連続外部
電極6を形成し、しかるのち、第1図に示すようにこの
連続外部電極6の一部を含めて積層体5の四角を切断。
Next, as shown in FIG. 4, all sides of this laminate 5 are sequentially immersed in an external electrode paste, pulled up, and dried and baked, and continuous external electrodes 6 connected to the internal electrode exposed portions 4 are formed on all sides of the laminate 5. Then, as shown in FIG. 1, a square of the laminate 5 including a part of the continuous external electrode 6 is cut.

切削又は研摩により除去し、欠如部7を設け、外部電極
8,9.10.11を積層体5の四側面にそれぞれ独立
して位置するようにしてなるものである。
It is removed by cutting or polishing to provide a cutout 7, and the external electrodes 8, 9, 10, 11 are positioned independently on each of the four sides of the laminate 5.

以上のような構成になる積層セラミックコンデンサをス
イッチング電源回路に接続して使用する場合、第5図に
示すように隣り合う一対の外部電極8,9を入力端子と
してスイッチング電源の出力に接続することによっても
う一方の外部電極10.11対から取り出される出力電
圧に含まれるノイズ電圧が大幅に軽減させることができ
、本発明者の実験に用いた内部電極を形成した0、05
m+のセラミックグリーンシートを45枚積層し、前述
した手段によって得た静電容量10μFの積層セラミッ
クコンデンサによれば、従来例に比しノイズ電圧が約1
/4と大幅なノイズ電圧低減が確認された。
When using a multilayer ceramic capacitor with the above configuration connected to a switching power supply circuit, a pair of adjacent external electrodes 8 and 9 should be connected to the output of the switching power supply as input terminals, as shown in Fig. 5. The noise voltage included in the output voltage taken out from the other pair of external electrodes 10.11 can be significantly reduced by 0.05, which formed the internal electrodes used in the inventor's experiments.
According to a multilayer ceramic capacitor with a capacitance of 10 μF obtained by laminating 45 m+ ceramic green sheets by the above-mentioned method, the noise voltage is approximately 1
A significant noise voltage reduction of /4 was confirmed.

これは、コンデンサの等価インダクタンスが小さくなる
とともに内部でCRフィルタが形成されることによって
高周波成分に対するノイズ吸収能力が増加したことによ
るものであり、例えばスペクトラムアナライザを使用し
て測定した場合も第6図及び第7図から明らかなように
同様の結果が得られることが確認された。
This is due to the fact that the equivalent inductance of the capacitor becomes smaller and the CR filter is formed internally, which increases the noise absorption ability for high frequency components. As is clear from FIG. 7, it was confirmed that similar results were obtained.

また、このような積層セラミックコンデンサの製造方法
によれば、あらかじめ積層体の全側面に内部電極露出部
4と接続して連続外部電極6を形成し、しかるのち、こ
の連続外部電極6の一部を含めて積層体5の四角を切断
、切削又は研摩により除去して欠如部7によって前記連
続外部電極6を分割し、g1層体5の四側面にぞれぞれ
独立した外部電極8,9.10.11を形成するもので
あるため、精成よく所望の外部電極8.9.10.11
を容易に形成でき、作業性向上に大きく貢献できる。
Further, according to the manufacturing method of such a multilayer ceramic capacitor, a continuous external electrode 6 is formed by connecting the internal electrode exposed portion 4 on all sides of the multilayer body in advance, and then a part of the continuous external electrode 6 is formed. The continuous external electrode 6 is divided by the cutout part 7 by cutting, cutting, or polishing to remove a square of the laminate 5 including .10.11, the desired external electrode 8.9.10.11 can be formed with precision.
can be easily formed, greatly contributing to improved workability.

なお、欠如部7の形状として上記実施例では角部を直線
的に角落とししたものを例示して説明したが、第8図に
示すように角部を湾曲状に除去した欠如部12形状をは
じめ、その他適宜な形状でもかまわない。
In the above embodiment, the shape of the cutout part 7 has been explained by exemplifying a shape in which the corners are cut off in a straight line, but as shown in FIG. In addition, any other suitable shape may be used.

また、上記実施例では外部電極8,9.10゜11形成
手段として積層体5の全側面にあらかじめ連続外部電極
6を形成し、この連続外部電極6の一部を含めて積層体
5の四角を除去する手段を例示して説明したが、第9図
に示すように積層体13の四角をあらかじめ除去して欠
如部14を設け、しかるのち、第10図に示すように欠
如部14を除いた側面に外部電極15゜16.1’7.
18を設けるようにしても同効であり、この場合、欠如
部14形状として第8図に示すような形状であってもよ
いことは勿論である。
Further, in the above embodiment, as a means for forming external electrodes 8, 9, 10° 11, continuous external electrodes 6 are formed in advance on all sides of the laminate 5, and the squares of the laminate 5 including a part of the continuous external electrodes 6 are formed in advance on all sides of the laminate 5. The explanation has been given by exemplifying the means for removing the laminate 13, but as shown in FIG. 9, the squares of the laminate 13 are removed in advance to provide the missing portions 14, and then, as shown in FIG. 10, the missing portions 14 are removed. External electrode 15°16.1'7.
The same effect can be achieved by providing the missing portion 18. In this case, the shape of the missing portion 14 may of course be as shown in FIG.

更に内部電極形状は、上記実施例に限定されることなく
、要するに門外周辺中、対向する二外周辺まで延長した
部分があれば適宜な形状でかまわない。
Furthermore, the shape of the internal electrodes is not limited to the above-mentioned embodiments, but may be any suitable shape as long as it has a portion extending to the two opposing outer peripheries in the outer periphery of the gate.

なお、上記各実施例では、リードレス形を例示して述べ
たが、外部電極それぞれにリード線を接続したもの、あ
るいは各種外装化したもの、更にはリード線に7エライ
ドビーズを通したものなども本発明に含まれるものであ
る。
In each of the above embodiments, a leadless type has been described as an example, but a lead wire is connected to each external electrode, a variety of exteriors are provided, and a lead wire is passed through 7 Elide beads. etc. are also included in the present invention.

[発明の効果] 本発明によれば、インダクタンス成分が小さくなるとと
もにコンデンサの内部でCRフィルタが形成されること
によって、高周波成分に対するノイズ吸収効果の優れた
実用的価値の高い8に層セラミックコンデンサ及びその
製造方法を得ることができる。
[Effects of the Invention] According to the present invention, an inductance component is reduced and a CR filter is formed inside the capacitor, so that an 8-layer ceramic capacitor and a highly practical value with excellent noise absorption effects against high frequency components can be manufactured. A manufacturing method thereof can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は本発明に係り第1図は積層セラミック
コンデンサを示す平面図、第2図はセラミックグリーン
シートの構成及びその積層状態を示す斜視図、第3図は
積層体を示す斜視図、第4図は積層体全側面に連続外部
電極を形成した状態をホす斜視図、第5図は第1図に示
すコンデンサを使用したスイッチング電源の回路図、第
6図は本発明によるコンデンサを用いたときの周波数応
答曲線図、第7図は従来の積層セラミックコンデンサを
用いたときの周波数応答曲線図、第8図〜第10図は本
発明の他の実施例に係り、第8図は積層セラミックコン
デンサを示す平面図、第9図は積層体を示す斜視図、第
10図は積層セラミックコンデンサを小す平面図、第1
1図及び第12図は従来例に係り、第11図はセラミッ
クグリンシートの積層状態を示す斜視図、第12図は積
層セラミックコンデンサを示す斜視図である。 1・・・・・・内部電極 2・・・・・・セラミックグリーンシート5・・・・・
・積層体 6・・・・・・連続外部電極 7・・・・・・欠如部 8.9,10.11・・・・・・外部電極12・・・・
・・欠如部 13・・・・・・積層体 14・・・・・・欠如部 15.16,17.18・・・・・・外部電極特許出願
人  マルコン電子株式会社 積flitラミックコンデンサの平面間第  1  図 セラミックグリーンシートの積層状態の斜視間第  2
  図 O 周波数(MHz ) 周波数応答曲線図(実施例) 第  6  図 周波数(MH2) 周 波数応答曲線 第  7  図 図(従来例) 他の実施例の 積層セラミックコンデンサの平面間 第  10  図 手 続 補 正 書 (自発) 事件の表示 平成2年特許願第1 2246号 2、発明の名称 積層セラミックコンデンサ及び 第 図 その製造方法 3゜ 補正をする者 事件との関係
Figures 1 to 5 relate to the present invention; Figure 1 is a plan view showing a multilayer ceramic capacitor, Figure 2 is a perspective view showing the configuration of ceramic green sheets and their laminated state, and Figure 3 is a laminate. 4 is a perspective view showing a state in which continuous external electrodes are formed on all sides of the laminate, FIG. 5 is a circuit diagram of a switching power supply using the capacitor shown in FIG. 1, and FIG. 6 is a diagram of the present invention. FIG. 7 is a frequency response curve diagram when a conventional multilayer ceramic capacitor is used, and FIGS. 8 to 10 relate to other embodiments of the present invention. Fig. 8 is a plan view showing a multilayer ceramic capacitor, Fig. 9 is a perspective view showing a multilayer body, Fig. 10 is a small plan view of the multilayer ceramic capacitor, and Fig. 1
1 and 12 relate to a conventional example, FIG. 11 is a perspective view showing a laminated state of ceramic green sheets, and FIG. 12 is a perspective view showing a multilayer ceramic capacitor. 1... Internal electrode 2... Ceramic green sheet 5...
・Laminated body 6...Continuous external electrode 7...Missing portions 8.9, 10.11...External electrode 12...
... Missing part 13 ... Laminate 14 ... Missing part 15, 16, 17, 18 ... External electrode patent applicant Marukon Electronics Co., Ltd. Flat surface of multi-flit ramic capacitor Figure 1: A perspective view of the laminated state of ceramic green sheets Figure 2:
Figure O Frequency (MHz) Frequency response curve diagram (Example) Figure 6 Frequency (MH2) Frequency response curve Figure 7 (Conventional example) Figure 10 Procedure amendment between planes of multilayer ceramic capacitors of other examples ( Spontaneous) Description of the case 1990 Patent Application No. 1 2246 2 Title of the invention Multilayer ceramic capacitor and its manufacturing method 3゜Relationship with the case

Claims (3)

【特許請求の範囲】[Claims] (1)四外周辺中対向する二外周辺まで延長し内部電極
を設けたセラミックグリーンシートと、前記内部電極が
交互に交差するように前記セラミックグリーンシートを
複数枚積層し焼結一体化した積層体と、この積層体の四
角に設けた欠如部と、この欠如部を除いた前記積層体の
四側面に前記内部電極と接続して設けた外部電極とを具
備したことを特徴とする積層セラミックコンデンサ。
(1) Ceramic green sheets extending from the four outer peripheries to two opposing outer peripheries and provided with internal electrodes, and a laminate in which a plurality of ceramic green sheets are laminated and sintered so that the internal electrodes alternately intersect with each other. A multilayer ceramic comprising: a body, a cutout provided in a square of the laminate, and external electrodes connected to the internal electrode and provided on four sides of the laminate excluding the cutout. capacitor.
(2)セラミツクグリーンシートの四外周辺中対向する
二外周辺まで延長した内部電極を形成する工程と、前記
内部電極が交互に交差するように前記セラミックグリー
ンシートを複数枚積層し焼結一体化した積層体を得る工
程と、前記積層体の全側面に前記内部電極と接続した連
続外部電極を形成する工程と、前記積層体の四角部を切
断、切削又は研摩により除去し欠如部を設け前記連続外
部電極を四分割する工程を順次経ることを特徴とする積
層セラミックコンデンサの製造方法。
(2) Forming internal electrodes extending from the four outer peripheries of the ceramic green sheets to two opposing outer peripheries, and laminating and sintering a plurality of ceramic green sheets so that the internal electrodes alternately intersect. a step of forming continuous external electrodes connected to the internal electrodes on all sides of the laminate; and a step of removing the square portions of the laminate by cutting, cutting or polishing to provide a missing portion. A method for manufacturing a multilayer ceramic capacitor, characterized by sequentially passing through the steps of dividing a continuous external electrode into four parts.
(3)セラミックグリーンシートの四外周辺中対向する
二外周辺まで延長した内部電極を形成する工程と、前記
内部電極が交互に交差するように前記セラミックグリー
ンシートを複数枚積層し焼結一体化した積層体を得る工
程と、前記積層体の四角部を切断、切削又は研摩により
除去し欠如部を設ける工程と、前記欠如部を除く前記積
層体の四側面に前記内部電極と連続した外部電極を形成
する工程を順次経ることを特徴とする積層セラミックコ
ンデンサの製造方法。
(3) Forming internal electrodes extending from the four outer peripheries of the ceramic green sheets to two opposing outer peripheries, and stacking and sintering a plurality of ceramic green sheets so that the internal electrodes alternately intersect. a step of removing the square portions of the laminate by cutting, grinding or polishing to provide a missing portion; and providing external electrodes continuous with the internal electrodes on four sides of the laminate excluding the missing portions. 1. A method for manufacturing a multilayer ceramic capacitor, comprising sequentially forming steps.
JP2112246A 1990-04-27 1990-04-27 Multilayer ceramic capacitor and method of manufacturing the same Expired - Lifetime JP2841346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2112246A JP2841346B2 (en) 1990-04-27 1990-04-27 Multilayer ceramic capacitor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2112246A JP2841346B2 (en) 1990-04-27 1990-04-27 Multilayer ceramic capacitor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0410510A true JPH0410510A (en) 1992-01-14
JP2841346B2 JP2841346B2 (en) 1998-12-24

Family

ID=14581901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2112246A Expired - Lifetime JP2841346B2 (en) 1990-04-27 1990-04-27 Multilayer ceramic capacitor and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2841346B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176693A (en) * 1997-12-15 1999-07-02 Matsushita Electric Ind Co Ltd Manufacture of multiple laminate ceramic capacitor
US7188933B2 (en) 1998-06-09 2007-03-13 Silverbrook Research Pty Ltd Printhead chip that incorporates nozzle chamber reduction mechanisms
US7326309B2 (en) * 2001-04-12 2008-02-05 Denso Corporation Method of producing ceramic laminate body
CN107004506A (en) * 2014-12-19 2017-08-01 京瓷株式会社 Multilayer capacitor and attachment structure
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127736U (en) * 1973-03-03 1974-11-01
JPS55138222A (en) * 1979-04-11 1980-10-28 Tdk Electronics Co Ltd Method of manufacturing condenser assembly
JPS6225871U (en) * 1985-07-31 1987-02-17
JPS6331520U (en) * 1986-08-15 1988-03-01

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127736U (en) * 1973-03-03 1974-11-01
JPS55138222A (en) * 1979-04-11 1980-10-28 Tdk Electronics Co Ltd Method of manufacturing condenser assembly
JPS6225871U (en) * 1985-07-31 1987-02-17
JPS6331520U (en) * 1986-08-15 1988-03-01

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176693A (en) * 1997-12-15 1999-07-02 Matsushita Electric Ind Co Ltd Manufacture of multiple laminate ceramic capacitor
US7188933B2 (en) 1998-06-09 2007-03-13 Silverbrook Research Pty Ltd Printhead chip that incorporates nozzle chamber reduction mechanisms
US7326309B2 (en) * 2001-04-12 2008-02-05 Denso Corporation Method of producing ceramic laminate body
US10603765B2 (en) 2010-05-20 2020-03-31 Baker Hughes, a GE company, LLC. Articles comprising metal, hard material, and an inoculant, and related methods
CN107004506A (en) * 2014-12-19 2017-08-01 京瓷株式会社 Multilayer capacitor and attachment structure

Also Published As

Publication number Publication date
JP2841346B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5051712A (en) LC filter
JP4864271B2 (en) Multilayer capacitor
US7466535B2 (en) Multilayer capacitor
JPS6379307A (en) Moltilayered transformer
JP2002237429A (en) Laminated lead-through capacitor and array thereof
JPH04257112A (en) Laminated chip t-type filter
JPH0410510A (en) Laminated ceramic capacitor and manufacture thereof
JP4287807B2 (en) Multilayer capacitor
JPH0442910A (en) Multilayer ceramic capacitor
JPH0456207A (en) Monolithic ceramic capacitor and circuit using the same
JP3135443B2 (en) Multilayer ceramic capacitors
JP2995073B2 (en) Multilayer ceramic capacitors
JPH08172026A (en) Capacitor
JPH05136001A (en) Laminated electronic part
JP2000151324A (en) Laminated type noise filter
WO2005060093A1 (en) Multilayer ceramic electronic component
JP5031650B2 (en) Multilayer capacitor
JPH0410676Y2 (en)
JP2000269078A (en) Laminated electronic component
JPH02271704A (en) Lc filter
JP4748177B2 (en) Multilayer capacitor
JPH03155609A (en) Lc composite component
JPH0434913A (en) Manufacture of laminated ceramic capacitor
JPH0660134U (en) Multilayer chip EMI removal filter
JP2000261272A (en) Low pass filter and electronic apparatus using this filter