[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7617763B2 - Building with low stiffness floor - Google Patents

Building with low stiffness floor Download PDF

Info

Publication number
JP7617763B2
JP7617763B2 JP2021022285A JP2021022285A JP7617763B2 JP 7617763 B2 JP7617763 B2 JP 7617763B2 JP 2021022285 A JP2021022285 A JP 2021022285A JP 2021022285 A JP2021022285 A JP 2021022285A JP 7617763 B2 JP7617763 B2 JP 7617763B2
Authority
JP
Japan
Prior art keywords
low
rigidity
columns
joined
lower beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021022285A
Other languages
Japanese (ja)
Other versions
JP2022124569A (en
Inventor
健治 田野
健太郎 松永
裕一 平田
浩之 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsui Construction Co Ltd filed Critical Sumitomo Mitsui Construction Co Ltd
Priority to JP2021022285A priority Critical patent/JP7617763B2/en
Publication of JP2022124569A publication Critical patent/JP2022124569A/en
Application granted granted Critical
Publication of JP7617763B2 publication Critical patent/JP7617763B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本開示は、免震層と同様の機能を有するように、制振装置を設けた低剛性層を備える建物に関する。 This disclosure relates to a building that includes a low-rigidity layer equipped with a vibration control device so that it has the same function as a seismic isolation layer.

基礎等の下部構造体と上部構造体との間に積層ゴム支承等の免震装置を備える免震層を設け、耐震建物に比べて上部構造体の応答加速度や層間変位を減らした免震建物が普及している(例えば、特許文献1)。非特許文献1には、ピロティ形式の建物において、鉄筋コンクリート造のピロティ柱に円形フープを用いて変形能力を大にすることにより、柱が免震装置として機能するという推測が記載されている。 Seismic isolation buildings, which have a seismic isolation layer equipped with a seismic isolation device such as laminated rubber bearings between the lower structure such as the foundation and the upper structure, have become widespread, reducing the response acceleration and inter-story displacement of the upper structure compared to earthquake-resistant buildings (for example, Patent Document 1). Non-Patent Document 1 speculates that in pilotis-style buildings, by using circular hoops in the pilotis columns made of reinforced concrete to increase the deformation capacity, the columns function as seismic isolation devices.

特開2018-096501号公報JP 2018-096501 A

「コンクリート工学 Vol.58,No.5」、公益社団法人日本コンクリート工学会、2020年5月、pp.346-352"Concrete Engineering Vol. 58, No. 5", Japan Concrete Institute, May 2020, pp. 346-352

積層ゴム支承等の従来の免震装置を使用した免震層では、積層ゴム支承自体が高価であること、上部構造体の略全ての柱の下に設置するため多くの免震装置が必要であること、及び、免震装置の上下にフーチング及び基礎梁が必要であること等により、免震層を構築するための費用が高価であった。また、非特許文献1に記載の発明では、より大きな柱の変形能力の確保や、過大な変形を防止するための手段の開発が望まれていた。 In seismic isolation layers that use conventional seismic isolation devices such as laminated rubber bearings, the laminated rubber bearings themselves are expensive, many seismic isolation devices are required to be installed under almost all columns of the superstructure, and footings and foundation beams are required above and below the seismic isolation devices, making the cost of constructing the seismic isolation layer high. Furthermore, in the invention described in Non-Patent Document 1, there was a need to develop a means to ensure the deformation capacity of larger columns and prevent excessive deformation.

このような問題に鑑み、本発明は、免震建物と同様の機能を有し、比較的安価に構築できる建物を提供することを目的とする。 In light of these problems, the present invention aims to provide a building that has the same functions as a seismically isolated building and can be constructed relatively inexpensively.

本発明のある実施形態に係る建物(1)は、上端に設けられた下部梁(6)を含む下部構造体(2)と、複数の上部柱(7)、及び下端に設けられて前記上部柱(7)に接合する上部梁(8)を含む上部構造体(3)と、前記下部構造体(2)及び前記上部構造体(3)の間に配置された低剛性層(4)であって、前記上部柱(7)よりも低い曲げ剛性を有し、かつ前記下部梁(6)及び前記上部梁(8)に接合して前記下部梁(6)及び前記上部梁(8)とともにラーメン構造(12)を構成する低剛性柱(10,61)を含む、該低剛性層(4)と、前記ラーメン構造(12)に取り付けられ、地震時に前記ラーメン構造(12)における前記上部梁(8)の前記下部梁(6)に対する変位を抑制するように構成された制振装置(5,31,41,51)と、を備えることを特徴とする。 A building (1) according to an embodiment of the present invention is characterized by comprising a lower structure (2) including a lower beam (6) at the upper end, a plurality of upper columns (7), and an upper structure (3) including an upper beam (8) at the lower end and joined to the upper columns (7), a low-rigidity layer (4) arranged between the lower structure (2) and the upper structure (3), the low-rigidity layer (4) including low-rigidity columns (10, 61) having a lower bending rigidity than the upper columns (7) and joined to the lower beams (6) and the upper beams (8) to form a rigid frame structure (12) together with the lower beams (6) and the upper beams (8), and a vibration control device (5, 31, 41, 51) attached to the rigid frame structure (12) and configured to suppress displacement of the upper beams (8) relative to the lower beams (6) in the rigid frame structure (12) during an earthquake.

この構成によれば、低剛性柱の曲げ剛性が低いため、地震時にラーメン構造が大きく変形するとともに、制振装置によってラーメン構造の過大な変形が抑制されるため、低剛性層が免震層と同様の機能を発揮する。また、建物は、比較的コストが高い積層ゴム等の免震装置を用いないため、比較的安価に構築できる。 With this configuration, the low bending rigidity of the low-rigidity columns causes the rigid frame structure to deform significantly during an earthquake, but the vibration control device prevents excessive deformation of the rigid frame structure, allowing the low-rigidity layer to function in the same way as a seismic isolation layer. In addition, the building can be constructed relatively inexpensively because it does not use seismic isolation devices such as laminated rubber, which are relatively expensive.

本発明のある実施形態は、上記構成において、複数の前記低剛性柱(6,61)は、前記下部梁(6)及び前記上部梁(8)の一方に接合して第1接合隅部(21)を形成する第1低剛性柱(10a,61a)と、前記上部梁(6)及び前記下部梁(8)の前記一方に接合して第2接合隅部(23)を形成する第2低剛性柱(10b,61b)とを含み、前記制振装置(5,31,41,51)は、ピン接合体(19)を介して前記ラーメン構造(12)を含む構面に直交する軸線方向回りに回転可能に前記下部梁(6)及び前記上部梁(8)の他方に取り付けられたシーソー部材(20,32,42)と、一端部が前記軸線方向回りに回転可能に前記シーソー部材(20,32,42)に接合し、他端部が前記軸線方向回りに回転可能に前記第1接合隅部(21)に接合する第1タイロッド(22)と、一端部が前記軸線方向回りに回転可能に前記シーソー部材(20,32,42)に接合し、他端部が前記軸線方向回りに回転可能に前記第2接合隅部(23)に接合する第2タイロッド(24,52)と、前記シーソー部材(20,32,42)の前記軸線方向回りの回転を抑制するべく、前記シーソー部材(20,32,42)、並びに前記下部梁(6)及び前記上部梁(8)の前記他方に取り付けられたダンパー(25)とを含むことを特徴とする。 In one embodiment of the present invention, in the above configuration, the low-rigidity columns (6, 61) include a first low-rigidity column (10a, 61a) joined to one of the lower beam (6) and the upper beam (8) to form a first joint corner (21), and a second low-rigidity column (10b, 61b) joined to the one of the upper beam (6) and the lower beam (8) to form a second joint corner (23), and the vibration control device (5, 31, 41, 51) includes a seesaw member (20, 32, 42) attached to the other of the lower beam (6) and the upper beam (8) via a pin joint (19) so as to be rotatable around an axial direction perpendicular to the structural plane including the rigid frame structure (12), and a vibration control device (5, 31, 41, 51) having one end that is rotatable around the axial direction perpendicular to the structural plane including the rigid frame structure (12). The system is characterized in that it includes a first tie rod (22) that is joined to the seesaw member (20, 32, 42) rotatably around the axis and the other end of which is joined to the first joint corner (21) rotatably around the axis, a second tie rod (24, 52) that is joined to the seesaw member (20, 32, 42) rotatably around the axis and the other end of which is joined to the second joint corner (23) rotatably around the axis, and a damper (25) attached to the seesaw member (20, 32, 42) and the other of the lower beam (6) and the upper beam (8) to suppress the rotation of the seesaw member (20, 32, 42) around the axis.

この構成によれば、制振装置が、比較的低コストで製造でき、かつ、1構面当たり1つ設置すればよいため、構築コストを抑制することができる。 With this configuration, the vibration control device can be manufactured at a relatively low cost, and since it is only necessary to install one per structural surface, construction costs can be reduced.

本発明のある実施形態は、直上の構成において、前記制振装置(5,31,41,51)は、前記建物(1)の外構面に配置されたことを特徴とする。 One embodiment of the present invention is characterized in that in a direct-above configuration, the vibration control device (5, 31, 41, 51) is arranged on the exterior surface of the building (1).

この構成によれば、低剛性層の内部を有効利用することができる。 This configuration allows for effective use of the interior of the low-rigidity layer.

本発明のある実施形態は、上記の第2又は第3の構成において、前記下部構造体(2)は、基礎構造体であり、前記下部梁(6)及び前記上部梁(8)の前記他方は、前記下部梁(6)であり、前記下部梁(6)は、基礎梁であることを特徴とする。 One embodiment of the present invention is characterized in that in the second or third configuration, the lower structure (2) is a foundation structure, the other of the lower beam (6) and the upper beam (8) is the lower beam (6), and the lower beam (6) is a foundation beam.

制振装置のシーソー部材がピン接合体を介して取り付けられる部材には、シーソー部材及びダンパーから大きな力を受けるが、この構成によれば、もともと剛強な基礎梁にシーソー部材が取り付けられるため、シーソー部材を取り付けるために下部梁を補強する必要がない。 The member to which the seesaw member of the vibration control device is attached via the pin joint receives a large force from the seesaw member and the damper, but with this configuration, the seesaw member is attached to the foundation beam, which is already strong, so there is no need to reinforce the lower beam to attach the seesaw member.

本発明のある実施形態は、上記構成の何れかにおいて、複数の前記低剛性柱(10,61)は、アンボンドプレストレストコンクリート造であることを特徴とする。 In one embodiment of the present invention, in any of the above configurations, the low-rigidity columns (10, 61) are made of unbonded prestressed concrete.

この構成によれば、低剛性柱の曲げ剛性を低減でき、ラーメン構造の弾性振動する無損傷振動領域が著しく大きくなる。 This configuration reduces the bending stiffness of the low stiffness columns, significantly increasing the undamaged vibration region where the rigid frame structure elastically vibrates.

本発明のある実施形態は、直上の構成において、複数の前記低剛性柱(61)における前記下部梁に接合する下端部において、その直上部分よりも細い横断面を有し、及び/又はその直上部分よりも少ない主筋(13)を含むことを特徴とする。 One embodiment of the present invention is characterized in that in the direct-above configuration, the lower ends of the low-rigidity columns (61) that join to the lower beam have a narrower cross section than the portion directly above them and/or contain fewer main reinforcements (13) than the portion directly above them.

この構成によれば、低剛性柱の曲げ剛性を更に低減できる。 This configuration allows the bending stiffness of the low stiffness columns to be further reduced.

本発明のある実施形態は、上記の第5又は第6の構成において、複数の前記低剛性柱(10,61)は、コンクリート部分(15)の外側面に全周に渡って当接する鋼製又は繊維強化プラスチック製の拘束部材(18)を含み、及び/又はコンクリート部分内に鋼製若しくは樹脂製の繊維を含むことを特徴とする。 In one embodiment of the present invention, in the fifth or sixth configuration, the low-rigidity columns (10, 61) include a steel or fiber-reinforced plastic restraining member (18) that contacts the outer surface of the concrete portion (15) over the entire circumference, and/or includes steel or resin fibers within the concrete portion.

この構成によれば、拘束部材又は繊維によってコンファインド効果が得られ、コンクリート部分の圧壊を防止できる。 With this configuration, the restraining member or fiber provides a confining effect, preventing the concrete portion from collapsing.

本発明のある実施形態は、低剛性柱をアンボンドプレストレストコンクリート造とした構成を除く上記構成の何れかにおいて、複数の前記上部柱(7)は、鉄骨造であり、複数の前記低剛性柱(10)は、複数の前記上部柱(7)よりも小さな横断面を有する鉄骨造であることを特徴とする。 An embodiment of the present invention is characterized in that in any of the above configurations except for the configuration in which the low-rigidity columns are made of unbonded prestressed concrete, the upper columns (7) are made of steel, and the low-rigidity columns (10) are made of steel with a smaller cross section than the upper columns (7).

この構成によれば、鉄骨造の建物において、上部柱よりも曲げ剛性の低い低剛性柱を構築することができる。 This configuration allows the construction of low-rigidity columns with lower bending rigidity than the upper columns in steel-framed buildings.

本発明のある実施形態は、上記構成の何れかにおいて、複数の前記低剛性柱(10,61)は、前記上部構造体における1階層以上の高さを有することを特徴とする。 In one embodiment of the present invention, in any of the above configurations, the low-rigidity columns (10, 61) are characterized in that they have a height of one or more stories in the upper structure.

この構成によれば、低剛性柱が長くなるため低剛性層の振動の周期を長期ができ、また、低剛性層の内部を有効利用できる。 With this configuration, the low-rigidity columns are longer, which lengthens the vibration period of the low-rigidity layer and allows for effective use of the interior of the low-rigidity layer.

本発明によれば、免震層と同様の機能を有し、比較的安価に構築でき、かつ十分な変形能力を有する低剛性層を有する建物を提供することができる。 The present invention makes it possible to provide a building with a low-rigidity layer that has the same function as a seismic isolation layer, can be constructed relatively inexpensively, and has sufficient deformation capacity.

実施形態に係る建物を示す正面図FIG. 1 is a front view of a building according to an embodiment; 実施形態に係る建物の変形例を示す正面図FIG. 1 is a front view showing a modified example of a building according to an embodiment; 実施形態に係る建物の低剛性柱を示す横断面図FIG. 1 is a cross-sectional view showing a low-rigidity column of a building according to an embodiment. 実施形態に係る制振装置の第1変形例を示す正面図FIG. 1 is a front view showing a first modified example of a vibration damping device according to an embodiment; 実施形態に係る制振装置の第2変形例を示す正面図FIG. 11 is a front view showing a second modified example of the vibration damping device according to the embodiment; 実施形態に係る制振装置の第3変形例を示す正面図FIG. 13 is a front view showing a third modified example of the vibration damping device according to the embodiment; 実施形態に係る低剛性柱の変形例を示す正面図FIG. 1 is a front view showing a modified example of a low-rigidity column according to an embodiment of the present invention;

以下、図面を参照して、本発明の実施形態に係る建物1について説明する。図1に示すように、建物1は、下部構造体2と、上部構造体3と、下部構造体2と上部構造体3との間に配置された低剛性層4と、低剛性層4内に配置された制振装置5とを備える。図1に示す例では、低剛性層4が地上部分に設けられるが、図2に示すように、低剛性層4が地下部分に設けられてもよい。 Below, a building 1 according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, the building 1 comprises a lower structure 2, an upper structure 3, a low-rigidity layer 4 disposed between the lower structure 2 and the upper structure 3, and a vibration control device 5 disposed within the low-rigidity layer 4. In the example shown in FIG. 1, the low-rigidity layer 4 is provided in the aboveground portion, but as shown in FIG. 2, the low-rigidity layer 4 may also be provided in the underground portion.

図1及び図2に示すように、下部構造体2は、地盤に構築された基礎構造物であり、その上端に基礎梁である下部梁6が設けられている。下部構造体2は、基礎構造物に加えて建物1の下層階部分を含んでもよく、この場合、下層階部分の上端に設けられた梁が下部梁6となる。 As shown in Figures 1 and 2, the lower structure 2 is a foundation structure built on the ground, and a lower beam 6, which is a foundation beam, is provided at the upper end of the lower structure. The lower structure 2 may include the lower floor portion of the building 1 in addition to the foundation structure, in which case the beam provided at the upper end of the lower floor portion becomes the lower beam 6.

上部構造体3は、複数の上部柱7と、上部構造体3の下端に設けられて複数の上部柱7に接合する上部梁8と、上部梁8よりも上方に設けられて複数の上部柱7に接合する複数の上層梁9とを含む。 The upper structure 3 includes a plurality of upper columns 7, an upper beam 8 provided at the lower end of the upper structure 3 and joined to the plurality of upper columns 7, and a plurality of upper beams 9 provided above the upper beam 8 and joined to the plurality of upper columns 7.

低剛性層4は、下端において下部梁6に接合し、上端において上部梁8に接合して、複数の上部柱7よりも曲げ剛性の低い複数の低剛性柱10と、複数の低剛性柱10の中間部に接合する層内梁11とを含む。下部梁6、上部梁8及び低剛性柱10は、ラーメン構造12を形成する。複数の低剛性柱10は、建物1の1つの外構面において、方向の一方の端部に配置された第1低剛性柱10aと、他方の端部に配置された第2低剛性柱10bと、第1低剛性柱10a及び第2低剛性柱10bの間に配置された第3低剛性柱10cとを含む。複数の低剛性柱10は、複数の上部柱7の延長線上に配置されることが好ましい。図示する低剛性層4は、2階層の構造であるが、低剛性層4は、層内梁11を有さない1階層の構造であってもよく、上下方向における位置が互いに異なる複数の層内梁11を有する3以上の階層の構造であってもよい。 The low-rigidity layer 4 is joined at its lower end to the lower beam 6 and at its upper end to the upper beam 8, and includes a plurality of low-rigidity columns 10 having a lower bending rigidity than the plurality of upper columns 7, and an inner-story beam 11 joined to the middle of the plurality of low-rigidity columns 10. The lower beam 6, the upper beam 8, and the low-rigidity columns 10 form a rigid frame structure 12. The plurality of low-rigidity columns 10 include a first low-rigidity column 10a arranged at one end in the lateral direction on one exterior surface of the building 1, a second low-rigidity column 10b arranged at the other end, and a third low-rigidity column 10c arranged between the first low-rigidity column 10a and the second low-rigidity column 10b. The plurality of low-rigidity columns 10 are preferably arranged on an extension line of the plurality of upper columns 7. The illustrated low-rigidity layer 4 has a two-story structure, but the low-rigidity layer 4 may be a one-story structure without an inner-story beam 11, or a three-story structure with a plurality of inner-story beams 11 at different positions in the vertical direction.

建物1の柱梁架構は、鉄筋コンクリート造である。建物1の柱梁架構は、プレキャストコンクリート部材を用いて構築されてもよく、現場打コンクリートを用いて構築されてもよく、両者を併用して構築されてもよい。プレキャストコンクリート部材を利用する場合は、施工省力化や生産性向上のために、それぞれが大きな寸法を有するプレキャストコンクリート部材を用いてもよく、また、軽量化して比較的小型のクレーンで釣り上げ可能にするために分割されたプレキャストコンクリート部材を用いてもよい。複数の低剛性柱10は、複数の上部柱7よりも曲げ剛性を低くするため、アンボンドプレストレストコンクリート造となっており、複数の上部柱7よりも細いことが好ましい。 The column-beam structure of the building 1 is made of reinforced concrete. The column-beam structure of the building 1 may be constructed using precast concrete members, cast-in-place concrete, or a combination of both. When using precast concrete members, large precast concrete members may be used to reduce the labor required for construction and improve productivity, or divided precast concrete members may be used to reduce weight and enable lifting with a relatively small crane. The low-rigidity columns 10 are made of unbonded prestressed concrete to have a lower bending rigidity than the upper columns 7, and are preferably thinner than the upper columns 7.

図3に示すように、低剛性柱10の各々は、上下方向に延在する複数の主筋13と、複数の主筋13を囲むように水平方向に延在する複数の帯筋14と、主筋13及び帯筋14を埋設するコンクリート部分15と、コンクリート部分15に付着していない緊張材16とを含む。緊張材16として、PC鋼棒を用いることが好ましいが、PC鋼線、PC鋼より線等を用いてもよい。緊張材16は、コンクリート部分15内に上下方向に沿って延在する孔17内に挿通され、引張力を加えられた状態で低剛性柱10の上下の両端部に定着されることにより、低剛性柱10にプレストレスを与えている。 As shown in FIG. 3, each low-rigidity column 10 includes a plurality of main reinforcements 13 extending in the vertical direction, a plurality of tie bars 14 extending in the horizontal direction so as to surround the plurality of main reinforcements 13, a concrete portion 15 in which the main reinforcements 13 and tie bars 14 are embedded, and a tension member 16 that is not attached to the concrete portion 15. It is preferable to use a PC steel rod as the tension member 16, but PC steel wire, PC steel strand, etc. may also be used. The tension member 16 is inserted into a hole 17 extending in the vertical direction in the concrete portion 15, and is fixed to both the upper and lower ends of the low-rigidity column 10 while a tensile force is applied thereto, thereby applying prestress to the low-rigidity column 10.

低剛性柱10の各々は、コンクリート部分15の外側面に全周に渡って当接する鋼製のシート若しくは鋼管、又は炭素繊維若しくはアラミド繊維等の繊維強化プラスチック製のシート等の拘束部材18を更に含むことが好ましい。低剛性柱10のコンクリート部分15には大きな圧縮力が加わるが、拘束部材18によってコンファインド効果が得られるため、コンクリート部分15の圧壊が防止できる。拘束部材18に代えて、又は拘束部材18とともに、コンクリート部分15が鋼繊維又は樹脂繊維を含むことによって、コンファインド効果を得てもよい。 Each of the low-rigidity columns 10 preferably further includes a restraining member 18, such as a steel sheet or steel pipe, or a sheet made of fiber-reinforced plastic such as carbon fiber or aramid fiber, that abuts the outer surface of the concrete portion 15 over the entire circumference. Although a large compressive force is applied to the concrete portion 15 of the low-rigidity column 10, the restraining member 18 provides a confining effect, preventing the concrete portion 15 from collapsing. Instead of or in addition to the restraining member 18, the concrete portion 15 may include steel fibers or resin fibers to provide a confining effect.

なお、建物1の柱梁架構は、鉄筋コンクリート造に代えて、鉄骨造でもよい。この場合、複数の低剛性柱10は、複数の上部柱7よりも小さな横断面を有することにより、複数の上部柱7よりも低い曲げ剛性を有する。 The column-beam structure of the building 1 may be made of steel instead of reinforced concrete. In this case, the low-rigidity columns 10 have a smaller cross section than the upper columns 7, and therefore have a lower bending rigidity than the upper columns 7.

以下、第1及び第2低剛性柱10a,10bを有するラーメン構造12を含む構面に直交する方向(図1及び図2の紙面に直交する方向)を「軸線方向」と記す。図1及び図2に示すように、制振装置5は、いわゆる揺動制振機構を備えた装置であって、ピン接合体19を介して軸線方向回りに回転可能に下部梁6に取り付けられたシーソー部材20と、一端部が軸線方向回りに回転可能にシーソー部材20に接合し、他端部が軸線方向回りに回転可能に第1低剛性柱10aの上端部と上部梁8の一端部とによって形成された第1接合隅部21に接合する第1タイロッド22と、一端部が軸線方向回りに回転可能にシーソー部材20に接合し、他端部が軸線方向回りに回転可能に第2低剛性柱10bの上端部と上部梁8の他端部とによって形成された第2接合隅部23に接合する第2タイロッド24と、シーソー部材20の軸線方向回りの回転を抑制するべく、シーソー部材20及び前記下部梁6に取り付けられた1対のダンパー25とを含む。第1及び第2タイロッド22,24は、ピン接合体19の上方で互いに交差し、下端部においてシーソー部材20の両端部に接合している。第1及び第2タイロッド22,24の交差位置は、下部梁6と上部梁8との間の中央よりも下部梁6側に位置する。第1及び第2タイロッド22,24は、ガセットプレート26(図4参照)を介して、第1及び第2接合隅部21,23に接合している。 Hereinafter, the direction perpendicular to the structural plane including the rigid frame structure 12 having the first and second low-rigidity columns 10a, 10b (the direction perpendicular to the plane of the paper in Figures 1 and 2) will be referred to as the "axial direction." As shown in Figures 1 and 2, the vibration control device 5 is a device equipped with a so-called oscillating vibration control mechanism, and includes a seesaw member 20 attached to the lower beam 6 via a pin joint 19 so as to be rotatable around the axial direction, a first tie rod 22 having one end joined to the seesaw member 20 so as to be rotatable around the axial direction and the other end joined to a first joint corner 21 formed by the upper end of the first low-rigidity column 10a and one end of the upper beam 8 so as to be rotatable around the axial direction, a second tie rod 24 having one end joined to the seesaw member 20 so as to be rotatable around the axial direction and the other end joined to a second joint corner 23 formed by the upper end of the second low-rigidity column 10b and the other end of the upper beam 8 so as to be rotatable around the axial direction, and a pair of dampers 25 attached to the seesaw member 20 and the lower beam 6 to suppress rotation of the seesaw member 20 around the axial direction. The first and second tie rods 22, 24 cross each other above the pin joint 19, and their lower ends are joined to both ends of the seesaw member 20. The crossing position of the first and second tie rods 22, 24 is located on the lower beam 6 side rather than the center between the lower beam 6 and the upper beam 8. The first and second tie rods 22, 24 are joined to the first and second joint corners 21, 23 via gusset plates 26 (see FIG. 4).

ピン接合体19は、下部梁6に固定されて、軸線方向回りに回転可能にシーソー部材20を支持する。ピン接合体19は、例えばクレビスによって構成されてもよい。 The pin joint 19 is fixed to the lower beam 6 and supports the seesaw member 20 so that it can rotate about the axial direction. The pin joint 19 may be formed, for example, by a clevis.

シーソー部材20は、非地震時には下部梁6の延在方向と略平行に延在する長尺部材を含み、長尺部材として形鋼等の鋼材を使用できる。 The seesaw member 20 includes a long member that extends approximately parallel to the extension direction of the lower beam 6 during non-earthquakes, and steel materials such as structural steel can be used as the long member.

第1及び第2タイロッド22,24は、他部材とピン接合できるように両端部がフォーク状に形成された鋼棒を含む。なお、第1及び第2タイロッド22,24は、それぞれ、1本の鋼棒で構成されることに代えて、互いの遠位側の端部がフォーク状に形成された2つの鋼棒と、2つの鋼棒の互いに近接する側の端部を互いに連結するターンバックル27(図4参照)とを含んでもよい。第1及び第2タイロッド22,24の長さは互いに略等しく、第1及び第2タイロッド22,24の上部梁8に対する角度は互いに略等しいことが好ましい。第1及び第2タイロッド22,24の双方に非地震時に引張力が加わるように、あらかじめ第1及び第2タイロッド22,24の双方に引張力を導入しておくことが好ましい。 The first and second tie rods 22, 24 include steel rods with both ends formed into a fork shape so that they can be pin-joined to other members. Instead of being composed of a single steel rod, the first and second tie rods 22, 24 may each include two steel rods with their distal ends formed into a fork shape and a turnbuckle 27 (see FIG. 4) that connects the ends of the two steel rods that are close to each other. It is preferable that the lengths of the first and second tie rods 22, 24 are approximately equal to each other, and that the angles of the first and second tie rods 22, 24 with respect to the upper beam 8 are approximately equal to each other. It is preferable to introduce a tensile force to both the first and second tie rods 22, 24 in advance so that a tensile force is applied to both the first and second tie rods 22, 24 during a non-earthquake.

1対のダンパー25は、ピン接合体19を挟むように配置され、それぞれ、下端部にて下部梁6に固定され、上端部にてシーソー部材20の延在方向の両端部の近傍に固定される。ダンパー25は、制振ダンパーであって、例えば、鋼材ダンパー等の履歴型ダンパー、オイルダンパー又は粘弾性ダンパー等である。1対のダンパー25は、互いに同じものでも異なるものでもよい。1対のダンパー25は、シーソー部材20の両端部に対して上下方向に減衰力を与える。 The pair of dampers 25 are arranged to sandwich the pin joint 19, and are fixed at their lower ends to the lower beam 6 and at their upper ends near both ends of the seesaw member 20 in the extension direction. The dampers 25 are vibration dampers, and are, for example, hysteretic dampers such as steel dampers, oil dampers, or viscoelastic dampers. The pair of dampers 25 may be the same or different. The pair of dampers 25 apply damping forces in the vertical direction to both ends of the seesaw member 20.

制振装置5は、地震時にラーメン構造12の変形を抑制するように作用する。下部梁6と、上部梁8と、第1及び第2低剛性柱10a,10bによって構成される4角形のラーメン構造12に着目して説明する。 The vibration control device 5 acts to suppress deformation of the rigid frame structure 12 during an earthquake. The following description focuses on the rectangular rigid frame structure 12 composed of the lower beam 6, upper beam 8, and first and second low-rigidity columns 10a, 10b.

地震時に上部梁8が下部梁6に対して図1の右方に向かう地震力(慣性力)を受けると、複数の低剛性柱10が右方に傾斜及び/又は湾曲するように上部梁8が下部梁6に対して平行な状態を保って移動し、4角形のラーメン構造12は変形する。変形したラーメン構造12では変形前に比べて、右上隅と左下隅とを結ぶ対角線が長くなり、左上隅と右下隅とを結ぶ対角線が短くなる。ラーメン構造12の右上隅と左下隅とを結ぶ対角線が長くなるため、第2タイロッド24に引張力が生じ、この引張力が地震力に抵抗する方向にラーメン構造12に作用する。また、第2タイロッド24に生じた引張力によって、シーソー部材20が軸線方向回りに時計回りに回転する。この回転は、第1タイロッド22の両端部が接合している部分の距離、すなわち、第1接合隅部21とシーソー部材20の一方の端部(図1における右端部)との間の距離を広げる。この回転による第1接合隅部21とシーソー部材20の右端部との間の距離の増加量は、ラーメン構造12の左上隅と右下隅とを結ぶ対角線が短くなることによる第1タイロッド22を圧縮させる方向の長さの減少量に概ね等しいため、第1タイロッド22の長さは非地震時の長さと略変わらず、第1タイロッド22に圧縮力が加わることが抑制される。 During an earthquake, when the upper beam 8 receives a seismic force (inertia force) toward the right in FIG. 1 relative to the lower beam 6, the upper beam 8 moves while remaining parallel to the lower beam 6 so that the multiple low-rigidity columns 10 tilt and/or curve to the right, and the rectangular rigid frame structure 12 is deformed. In the deformed rigid frame structure 12, the diagonal line connecting the upper right corner and the lower left corner becomes longer and the diagonal line connecting the upper left corner and the lower right corner becomes shorter compared to before the deformation. Since the diagonal line connecting the upper right corner and the lower left corner of the rigid frame structure 12 becomes longer, a tensile force is generated in the second tie rod 24, and this tensile force acts on the rigid frame structure 12 in a direction that resists the seismic force. In addition, the tensile force generated in the second tie rod 24 rotates the seesaw member 20 clockwise around the axis. This rotation widens the distance between the parts where both ends of the first tie rod 22 are joined, i.e., the distance between the first joint corner 21 and one end of the seesaw member 20 (the right end in FIG. 1). The increase in the distance between the first joint corner 21 and the right end of the seesaw member 20 due to this rotation is roughly equal to the decrease in length in the direction compressing the first tie rod 22 due to the shortening of the diagonal line connecting the upper left corner and the lower right corner of the rigid frame structure 12, so the length of the first tie rod 22 remains roughly the same as in the absence of an earthquake, and the application of compressive force to the first tie rod 22 is suppressed.

続いて、地震の振動方向が変化し、上部梁8が下部梁6に対して図1の左方に向かう地震力を受けると、低剛性柱10が右方に傾斜及び/又は湾曲した状態から鉛直の状態に戻る間も、ダンパー25からの減衰力によって、第1タイロッド22に引張力が生じ、この引張力がラーメン構造12に対して地震力に抵抗する方向に作用する。 Next, when the direction of the earthquake vibration changes and the upper beam 8 is subjected to a seismic force toward the left in FIG. 1 relative to the lower beam 6, a tensile force is generated in the first tie rod 22 by the damping force from the damper 25 while the low-rigidity column 10 returns from its rightward inclined and/or curved state to a vertical state, and this tensile force acts on the rigid frame structure 12 in a direction that resists the seismic force.

低剛性柱10が左方に傾斜及び/又は湾曲すると、変形したラーメン構造12では変形前に比べて、左上隅と右下隅とを結ぶ対角線が長くなり、右上隅と左下隅とを結ぶ対角線が短くなる。ラーメン構造12の左上隅と右下隅とを結ぶ対角線が長くなるため、第1タイロッド22に引張力が生じ、この引張力が地震力に抵抗する方向にラーメン構造12に作用する。また、第1タイロッド22に生じた引張力によって、シーソー部材20が軸線方向回りに反時計回りに回転する。この回転は、第2タイロッド24の両端部が接合している部分、すなわち、第2接合隅部23とシーソー部材20の他方の端部(図1における左端部)との間の距離を広げる。この回転による第2接合隅部23とシーソー部材20の左端部との間の距離の増加量は、ラーメン構造12の右上隅と左下隅とを結ぶ対角線が短くなることによる第2タイロッド24を圧縮させる方向の長さの減少量に概ね等しいため、第2タイロッド24の長さは、非地震時の長さと略変わらず、第2タイロッド24に圧縮力が加わることが抑制される。 When the low-rigidity column 10 is tilted and/or curved to the left, the diagonal line connecting the upper left corner and the lower right corner of the deformed rigid frame structure 12 becomes longer and the diagonal line connecting the upper right corner and the lower left corner becomes shorter compared to before the deformation. Since the diagonal line connecting the upper left corner and the lower right corner of the rigid frame structure 12 becomes longer, a tensile force is generated in the first tie rod 22, and this tensile force acts on the rigid frame structure 12 in a direction that resists the earthquake force. In addition, the tensile force generated in the first tie rod 22 rotates the seesaw member 20 counterclockwise around the axis. This rotation widens the distance between the part where both ends of the second tie rod 24 are joined, i.e., between the second joint corner 23 and the other end of the seesaw member 20 (the left end in FIG. 1). The increase in the distance between the second joint corner 23 and the left end of the seesaw member 20 due to this rotation is roughly equal to the decrease in length in the direction compressing the second tie rod 24 due to the shortening of the diagonal line connecting the upper right corner and the lower left corner of the rigid frame structure 12, so the length of the second tie rod 24 remains roughly the same as in the absence of an earthquake, and the application of compressive force to the second tie rod 24 is suppressed.

続いて、地震の振動方向が変化し、上部梁8が下部梁6に対して図1の右方に向かう地震力を受けると、低剛性柱10が左方に傾斜及び/又は湾曲した状態から鉛直の状態に戻る間も、ダンパー25からの減衰力によって、第2タイロッド24に引張力が生じ、この引張力がラーメン構造12に対して地震力に抵抗する方向に作用する。 Next, when the direction of the earthquake vibration changes and the upper beam 8 is subjected to a seismic force toward the right in FIG. 1 relative to the lower beam 6, a tensile force is generated in the second tie rod 24 by the damping force from the damper 25 while the low-rigidity column 10 returns from its leftward inclined and/or curved state to a vertical state, and this tensile force acts on the rigid frame structure 12 in a direction that resists the seismic force.

制振装置5は、地震時に以上のような動きを繰り返すことにより、ラーメン構造12の過大な変形を防止する。 The vibration control device 5 repeats the above-mentioned movements during an earthquake to prevent excessive deformation of the rigid frame structure 12.

低剛性柱10が、アンボンドプレストレストコンクリート造であるため、曲げモーメントに抵抗するPC鋼棒からなる緊張材16のひずみ発生が抑制され、低剛性柱10の曲げ剛性が低減している。低剛性柱10が、上部柱7に比べて曲げ剛性が低いため、ラーメン構造12の弾性振動する無損傷振動領域が著しく大きくなり、低剛性層4が免震層と同様の機能を発揮する。また、制振装置5をラーメン構造12に取り付けることにより、ラーメン構造12の過大な変形が防止できる。 Because the low-stiffness columns 10 are made of unbonded prestressed concrete, the occurrence of strain in the tendons 16 made of PC steel bars that resist bending moments is suppressed, and the bending stiffness of the low-stiffness columns 10 is reduced. Because the low-stiffness columns 10 have lower bending stiffness than the upper columns 7, the elastically vibrating undamaged vibration region of the rigid frame structure 12 becomes significantly larger, and the low-stiffness layer 4 performs the same function as a seismic isolation layer. In addition, by attaching the vibration control devices 5 to the rigid frame structure 12, excessive deformation of the rigid frame structure 12 can be prevented.

低剛性柱10において、拘束部材18及び/又はコンクリート部分15内に含まれる繊維によってコンファインド効果が得られるため、コンクリート部分15の圧壊が防止される。 In the low-rigidity column 10, a confining effect is obtained by the restraining member 18 and/or the fibers contained in the concrete portion 15, preventing the concrete portion 15 from collapsing.

制振装置5は、比較的低コストで製造でき、かつ、1構面当たり1つ設置すればよいため、単価が高く、多くの数量が必要であり、設置のための基礎の構築が必要な積層ゴム支承等を使用した免震層に比べて、構築コストが低い。また、低剛性層4は略メンテナンスフリーとすることができる。 The vibration control device 5 can be manufactured at a relatively low cost, and since it is sufficient to install one per structural surface, the construction cost is lower than that of seismic isolation layers that use laminated rubber bearings, etc., which have a high unit price, require a large number of units, and require the construction of foundations for installation. In addition, the low-rigidity layer 4 can be made almost maintenance-free.

制振装置5を外構面に配置することにより、低剛性層4の内部を有効利用できる。例えば、低剛性層4を駐車場や、設備機械室、給水施設として利用できる。また、低剛性柱10が、上部構造体3における1階層以上の高さを有することによっても、低剛性層4の内部を有効利用できる。 By placing the vibration control device 5 on the exterior surface, the inside of the low-rigidity layer 4 can be effectively utilized. For example, the low-rigidity layer 4 can be used as a parking lot, a facility machine room, or a water supply facility. In addition, by having the low-rigidity column 10 have a height of one or more stories in the upper structure 3, the inside of the low-rigidity layer 4 can also be effectively utilized.

制振装置5は、シーソー部材20と、シーソー部材20に接合された第1及び第2タイロッド22,24とを含むことにより、第1及び第2タイロッド22,24によって掛け渡される各層の変位を1箇所に集中させる。シーソー部材20は水平変位を上下変位に切り替えるとともに、第1及び第2タイロッド22,24の圧縮側の影響を小さくする。すなわち、シーソー部材20の働きにより、第1及び第2タイロッド22,24の座屈防止を考慮することなく、制振装置5は、免震層として機能する低剛性層4の変形を1箇所に集中させる。また、制振装置5は、ダンパー25によって地震の振動エネルギーを吸収する。 The vibration control device 5 includes a seesaw member 20 and first and second tie rods 22, 24 joined to the seesaw member 20, and concentrates the displacement of each layer spanned by the first and second tie rods 22, 24 to one location. The seesaw member 20 switches horizontal displacement to vertical displacement and reduces the effect of the compression side of the first and second tie rods 22, 24. In other words, the vibration control device 5 concentrates the deformation of the low-rigidity layer 4, which functions as a seismic isolation layer, to one location through the action of the seesaw member 20, without considering the prevention of buckling of the first and second tie rods 22, 24. The vibration control device 5 also absorbs the vibration energy of an earthquake using the dampers 25.

低剛性層4の重量や低剛性柱10の長さを考慮することによって建物1の全体を長周期化することができ、建物1は、制振構法でありながら、免震構法なみの振動低減効果を有する。 By considering the weight of the low-rigidity layer 4 and the length of the low-rigidity column 10, the entire building 1 can be made to have a long period, and the building 1 has a vibration reduction effect equivalent to that of a seismic isolation construction method, despite being a vibration control construction method.

下部梁6には、制振装置5から大きな力が加わるため、相応の耐力が必要である。基礎構造物の基礎梁は、地下ピット等の必要性から巨大化している。このような剛強な基礎梁を下部梁6として使用することにより、構築コストの増加を抑制することができる。また、基礎梁である下部梁6は、制振装置5からの集中的な反力を適切に地盤又は杭体(図示せず)に伝達する。 The lower beam 6 is subjected to a large force from the vibration control device 5, so it needs to have a corresponding strength. The foundation beams of foundation structures are large due to the need for underground pits, etc. By using such a strong foundation beam as the lower beam 6, it is possible to suppress increases in construction costs. In addition, the lower beam 6, which is a foundation beam, appropriately transmits the concentrated reaction force from the vibration control device 5 to the ground or pile body (not shown).

図4~図6は、上記実施形態における制振装置5の変形例1~3を示す。図4及び図5に示す第1及び第2変形例に係る制振装置31,41は、シーソー部材32、42の形状において上記実施形態と異なる。図6に示す第3変形例に係る制振装置51は、第2タイロッド52がクロスターンバックル53を含む点で上記実施形態と異なる。説明に当たって、上記実施形態と共通又は類似する構成は、共通の符号を付し、説明を省略する。 Figures 4 to 6 show first to third modified examples of the vibration damping device 5 in the above embodiment. The vibration damping devices 31, 41 according to the first and second modified examples shown in Figures 4 and 5 differ from the above embodiment in the shape of the seesaw members 32, 42. The vibration damping device 51 according to the third modified example shown in Figure 6 differs from the above embodiment in that the second tie rod 52 includes a cross turnbuckle 53. In the explanation, configurations that are common or similar to those in the above embodiment are given the same reference numerals and explanations are omitted.

図4に示す制振装置31のシーソー部材32は、3つの長尺部材を互いの端部で剛結合した三角形の枠材から構成され、三角形の枠によって画定される面は、第1及び第2低剛性柱10a,10bを含むラーメン構造12(図1参照)の構面に平行である。長尺部材として、形鋼等の鋼材を用いてもよい。シーソー部材32は、設置される構面の左右方向及び上下方向に加わる地震時の力に対して剛体とみなせ、左右方向の長さ及び上下方向の長さを有すれば、他の形状及び/又は他の素材によって構成されてもよく、例えば正面視で三角形の鋼製のパネル材で形成されてもよい。三角形状のシーソー部材32は、二等辺三角形であることが好ましく、底辺が水平に配置され、1対の等辺が底辺の両端部から上方に向かって互いに近づくように配置される。 The seesaw member 32 of the vibration control device 31 shown in FIG. 4 is composed of a triangular frame material in which three long members are rigidly connected at their ends, and the surface defined by the triangular frame is parallel to the structural surface of the rigid frame structure 12 (see FIG. 1) including the first and second low-rigidity columns 10a, 10b. Steel materials such as shaped steel may be used as the long members. The seesaw member 32 can be considered as a rigid body against earthquake forces acting in the left-right and up-down directions of the structural surface on which it is installed, and may be composed of other shapes and/or other materials as long as it has a left-right length and a up-down length, for example, it may be formed of a triangular steel panel material when viewed from the front. The triangular seesaw member 32 is preferably an isosceles triangle, with the base arranged horizontally and a pair of equal sides arranged so that they approach each other upward from both ends of the base.

第1及び第2タイロッド22,24の下端部は、三角形状のシーソー部材32の上部の頂点近傍で、軸線方向回りに回転可能にシーソー部材32に接合している。この接合点は、上下方向においてピン接合体19に整合していることが好ましく、その上下方向位置は、下部梁6と上部梁8(図1参照)との間の中央よりも下部梁6に近く、かつピン接合体19の回転軸よりも上方の位置である。非地震時において、第1及び第2タイロッド22,24は、三角形状のシーソー部材32における上部の頂点から延びる辺部を構成する部材の延長線上に配置されることが好ましい。 The lower ends of the first and second tie rods 22, 24 are joined to the triangular seesaw member 32 near the apex of the upper part of the triangular seesaw member 32 so as to be rotatable around the axis. This joint point is preferably aligned with the pin joint 19 in the vertical direction, and its vertical position is closer to the lower beam 6 than the center between the lower beam 6 and the upper beam 8 (see Figure 1), and is above the rotation axis of the pin joint 19. During non-earthquakes, the first and second tie rods 22, 24 are preferably positioned on the extensions of the members that make up the sides extending from the apex of the upper part of the triangular seesaw member 32.

このような構成であっても、制振装置31は、上記実施形態の制振装置5と同様の作用効果を有する。 Even with this configuration, the vibration damping device 31 has the same effect as the vibration damping device 5 of the above embodiment.

図5に示す制振装置41は、のシーソー部材42は、制振装置41が設置される構面に直交する方向から見て、逆Y字形状をなし、形鋼等の鋼製の3本の長尺材の一端部を互いに溶接や締結具(図示せず)による締結等によって剛接合することによって形成される。 The seesaw member 42 of the vibration damping device 41 shown in FIG. 5 has an inverted Y shape when viewed from a direction perpendicular to the structural surface on which the vibration damping device 41 is installed, and is formed by rigidly joining one end of three long steel members such as structural steel members together by welding or fastening with fasteners (not shown).

ピン接合体19の回転軸は、シーソー部材42とダンパー25との互いの接合部よりも上方に位置する。 The rotation axis of the pin joint 19 is located above the joint between the seesaw member 42 and the damper 25.

シーソー部材42は、制振装置41が設置される構面における左右方向、並びに上下方向に加わる地震時の力に対して剛体とみなせ、左右方向の長さ及び上下方向の長さを有し、かつ、ピン接合体19の回転軸をシーソー部材42とダンパー25との互いの連結部よりも上方に位置させることができる形状であれば、逆Y字形状以外の形状を有してもよい。例えば、シーソー部材42は、第1変形例のシーソー部材32(図4参照)の形状に対して下辺の中央が上方に凹むように変形した形状でもよい。 The seesaw member 42 may have a shape other than an inverted Y-shape, so long as it can be regarded as a rigid body against earthquake forces acting in the left-right and up-down directions on the structural surface on which the vibration control device 41 is installed, has a left-right length and a up-down length, and is a shape that allows the rotation axis of the pin joint 19 to be positioned above the connection between the seesaw member 42 and the damper 25. For example, the seesaw member 42 may have a shape that is modified such that the center of the lower side is concave upward compared to the shape of the seesaw member 32 of the first modified example (see FIG. 4).

ピン接合体19の回転軸がシーソー部材42とダンパー25との互いの連結部よりも上方に位置することにより、ピン接合体19の回転軸と第1及び第2タイロッド22,24のシーソー部材42への接合部との間の距離が短くなる。地震時のこの接合部の変位量が同じならば、両者間の距離が短い方がシーソー部材42の回転角度が大きくなる。このため、シーソー部材42の左右方向の長さを大きくしなくとも、ダンパー25の変位量を第1実施形態より増幅できる。従って、制振装置41のエネルギー吸収効率がよくなる。 By positioning the rotation axis of the pin joint 19 above the connection between the seesaw member 42 and the damper 25, the distance between the rotation axis of the pin joint 19 and the joints of the first and second tie rods 22, 24 to the seesaw member 42 is shortened. If the displacement of this joint during an earthquake is the same, the shorter the distance between the two, the larger the rotation angle of the seesaw member 42. Therefore, the displacement of the damper 25 can be amplified more than in the first embodiment without increasing the length of the seesaw member 42 in the left-right direction. This improves the energy absorption efficiency of the vibration control device 41.

逆Y字形状のシーソー部材42は、第1変形例の三角形状のシーソー部材32に比べて逆Y字の形状が内側に凹の形状であるため、左右の凹部分のスペースを有効に活用でき、例えば、このスペースを第1及び第2タイロッド22,24に引張力を導入するためのジャッキ等の設置スペースとして利用できる。 The inverted Y-shaped seesaw member 42 has an inwardly concave inverted Y shape compared to the triangular seesaw member 32 of the first modified example, so the space in the left and right concave portions can be effectively utilized. For example, this space can be used as installation space for a jack or the like for introducing a tensile force to the first and second tie rods 22, 24.

図6に示すように、第3変形例に係る制振装置51は、第2タイロッド52がクロスターンバックル53を含む。クロスターンバックル53は、第1タイロッド22が挿通する貫通孔54を有する。第1タイロッド22が貫通孔54に挿通されることにより、第1及び第2タイロッド22,52を略同一平面上に配置できる。 As shown in FIG. 6, in the vibration damping device 51 according to the third modified example, the second tie rod 52 includes a cross turnbuckle 53. The cross turnbuckle 53 has a through hole 54 through which the first tie rod 22 is inserted. By inserting the first tie rod 22 into the through hole 54, the first and second tie rods 22, 52 can be arranged on approximately the same plane.

図7は、変形例に係る低剛性柱61を示す。低剛性柱61は、上記実施形態と同様に、外構面において、一方の端部に配置された第1低剛性柱61aと、他方の端部に配置された第2低剛性柱61bと、第1低剛性柱61a及び第2低剛性柱61bの間に配置された第3低剛性柱61cとを含む。低剛性柱61は、アンボンドプレストレストコンクリート造であることに加えて、下部梁6に接合する下端部において、その直上部分よりも細い横断面を有し、及び/又はその直上部分よりも少ない主筋13を含む。このため、低剛性柱61は、柱脚部を軸に揺動しやすくなり、曲げ剛性が更に低くなる。 Figure 7 shows a low-rigidity column 61 according to a modified example. As in the above embodiment, the low-rigidity column 61 includes a first low-rigidity column 61a arranged at one end, a second low-rigidity column 61b arranged at the other end, and a third low-rigidity column 61c arranged between the first low-rigidity column 61a and the second low-rigidity column 61b on the exterior surface. In addition to being made of unbonded prestressed concrete, the low-rigidity column 61 has a narrower cross section at its lower end, which is joined to the lower beam 6, than the portion directly above it, and/or includes fewer main reinforcements 13 than the portion directly above it. For this reason, the low-rigidity column 61 is more likely to swing around the base of the column, further reducing its bending rigidity.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。制振装置の配置を上下逆にしてもよい。すなわち、上部梁にピン接合体を介してシーソー部材を取り付け、第1及び第2タイロッドの上端部をシーソー部材に接合し、下端部を第1及び第2低剛性柱と下部梁との接合隅部に接合してもよい。制振装置は、外構面ではなく、内構面に設置してもよく、第1及び第2低剛性柱は、構面の左右端部ではなく中間部に配置された低剛性柱であってもよい。制振装置として、揺動制振機構を有する装置以外の公知の制振装置、例えば、履歴型剛性ダンパー、粘性ダンパー、ブレース型オイルダンパー等を用いてもよい。 Although the description of the specific embodiment is finished above, the present invention is not limited to the above embodiment and can be widely modified. The vibration control device may be arranged upside down. That is, a seesaw member may be attached to the upper beam via a pin joint, the upper ends of the first and second tie rods may be joined to the seesaw member, and the lower ends may be joined to the joint corners between the first and second low-rigidity columns and the lower beam. The vibration control device may be installed on the interior structural surface instead of the exterior structural surface, and the first and second low-rigidity columns may be low-rigidity columns arranged in the middle of the structural surface instead of at the left and right ends. As the vibration control device, a known vibration control device other than a device having a rocking vibration control mechanism, such as a hysteretic rigidity damper, a viscous damper, or a brace-type oil damper, may be used.

1:建物
2:下部構造体
3:上部構造体
4:低剛性層
5,31,41,51:制振装置
6:下部梁
7:上部柱
8:上部梁
10,61:低剛性柱
10a,61a:第1低剛性柱
10b,61b:第2低剛性柱
12:ラーメン構造
13:主筋
15:コンクリート部分
16:緊張材
18:拘束部材
19:ピン接合体
20,32,42:シーソー部材
21:第1接合隅部
22:第1タイロッド
23:第2接合隅部
24,52:第2タイロッド
25:ダンパー
Reference Signs List 1: Building 2: Lower structure 3: Upper structure 4: Low rigidity layer 5, 31, 41, 51: Vibration damping device 6: Lower beam 7: Upper column 8: Upper beam 10, 61: Low rigidity column 10a, 61a: First low rigidity column 10b, 61b: Second low rigidity column 12: Rigid frame structure 13: Main reinforcement 15: Concrete portion 16: Tendon 18: Restraint member 19: Pin joint 20, 32, 42: Seesaw member 21: First joint corner 22: First tie rod 23: Second joint corner 24, 52: Second tie rod 25: Damper

Claims (9)

上端に設けられた下部梁を含む下部構造体と、
複数の上部柱、及び下端に設けられて前記上部柱に接合する上部梁を含む上部構造体と、
前記下部構造体及び前記上部構造体の間に配置された低剛性層であって、前記上部柱よりも低い曲げ剛性を有し、かつ前記下部梁及び前記上部梁に接合して前記下部梁及び前記上部梁とともにラーメン構造を構成する低剛性柱を含む、該低剛性層と、
前記ラーメン構造に取り付けられ、地震時に前記ラーメン構造における前記上部梁の前記下部梁に対する変位を抑制するように構成された制振装置と、
を備え
複数の前記低剛性柱は、前記下部梁及び前記上部梁の一方に接合して第1接合隅部を形成する第1低剛性柱と、前記上部梁及び前記下部梁の前記一方に接合して第2接合隅部を形成する第2低剛性柱とを含み、
前記制振装置は、
ピン接合体を介して前記ラーメン構造を含む構面に直交する軸線方向回りに回転可能に前記下部梁及び前記上部梁の他方に取り付けられたシーソー部材と、
一端部が前記軸線方向回りに回転可能に前記シーソー部材に接合し、他端部が前記軸線方向回りに回転可能に前記第1接合隅部に接合する第1タイロッドと、
一端部が前記軸線方向回りに回転可能に前記シーソー部材に接合し、他端部が前記軸線方向回りに回転可能に前記第2接合隅部に接合する第2タイロッドと、
前記シーソー部材の前記軸線方向回りの回転を抑制するべく、前記シーソー部材、並びに前記下部梁及び前記上部梁の前記他方に取り付けられたダンパーと
を含むことを特徴とする建物。
A lower structure including a lower beam provided at an upper end;
An upper structure including a plurality of upper columns and an upper beam provided at a lower end and joined to the upper columns;
a low-rigidity layer disposed between the lower structure and the upper structure, the low-rigidity layer having a bending rigidity lower than that of the upper column and including a low-rigidity column joined to the lower beam and the upper beam to form a rigid frame structure together with the lower beam and the upper beam;
a vibration control device attached to the rigid frame structure and configured to suppress displacement of the upper beam relative to the lower beam in the rigid frame structure during an earthquake;
Equipped with
The plurality of low-rigidity columns include a first low-rigidity column joined to one of the lower beam and the upper beam to form a first joint corner, and a second low-rigidity column joined to the one of the upper beam and the lower beam to form a second joint corner,
The vibration damping device is
a seesaw member attached to the other of the lower beam and the upper beam via a pin joint so as to be rotatable about an axis perpendicular to a structural face including the rigid frame structure;
a first tie rod having one end joined to the seesaw member so as to be rotatable about the axial direction and having the other end joined to the first joint corner portion so as to be rotatable about the axial direction;
a second tie rod having one end joined to the seesaw member so as to be rotatable about the axial direction and having the other end joined to the second joint corner portion so as to be rotatable about the axial direction;
a damper attached to the seesaw member and the other of the lower beam and the upper beam to suppress rotation of the seesaw member about the axial direction;
A building comprising :
前記制振装置は、前記建物の外構面に配置されたことを特徴とする請求項に記載の建物。 The building according to claim 1 , wherein the vibration control device is disposed on an exterior surface of the building. 前記下部構造体は、基礎構造体であり、
前記下部梁及び前記上部梁の前記他方は、前記下部梁であり、
前記下部梁は、基礎梁であることを特徴とする請求項1又は2に記載の建物。
The lower structure is a foundation structure,
the other of the lower beam and the upper beam is the lower beam,
The building according to claim 1 or 2 , characterized in that the lower beam is a foundation beam.
複数の前記低剛性柱は、アンボンドプレストレストコンクリート造であることを特徴とする請求項1~の何れか一項に記載の建物。 The building according to any one of claims 1 to 3 , characterized in that the plurality of low-rigidity columns are made of unbonded prestressed concrete. 複数の前記低剛性柱における前記下部梁に接合する下端部において、その直上部分よりも細い横断面を有し、及び/又はその直上部分よりも少ない主筋を含むことを特徴とする請求項に記載の建物。 The building described in claim 4, characterized in that the lower ends of the multiple low-rigidity columns that join to the lower beam have a narrower cross-section than the portion immediately above and/or contain fewer main reinforcement bars than the portion immediately above. 複数の前記低剛性柱は、コンクリート部分の外側面に全周に渡って当接する鋼製又は繊維強化プラスチック製の拘束部材を含み、及び/又はコンクリート部分内に鋼製若しくは樹脂製の繊維を含むことを特徴とする請求項4又は5に記載の建物。 The building described in claim 4 or 5, characterized in that the multiple low-rigidity columns include a restraining member made of steel or fiber-reinforced plastic that abuts the outer surface of the concrete portion around its entire circumference, and / or includes steel or resin fibers within the concrete portion. 複数の前記上部柱は、鉄骨造であり、
複数の前記低剛性柱は、複数の前記上部柱よりも小さな横断面を有する鉄骨造であることを特徴とする請求項1~の何れか一項に記載の建物。
The upper columns are made of steel,
The building according to any one of claims 1 to 3 , characterized in that the low-rigidity columns are of steel frame construction having a smaller cross section than the upper columns.
複数の前記低剛性柱は、前記上部構造体における1階層以上の高さを有することを特徴とする請求項1~の何れか一項に記載の建物。 The building according to any one of claims 1 to 7 , characterized in that the plurality of low-rigidity columns have a height of one or more stories in the upper structure. 上端に設けられた下部梁を含む下部構造体と、A lower structure including a lower beam provided at an upper end;
複数の上部柱、及び下端に設けられて前記上部柱に接合する上部梁を含む上部構造体と、An upper structure including a plurality of upper columns and an upper beam provided at a lower end and joined to the upper columns;
前記下部構造体及び前記上部構造体の間に配置された低剛性層であって、前記上部柱よりも低い曲げ剛性を有し、かつ前記下部梁及び前記上部梁に接合して前記下部梁及び前記上部梁とともにラーメン構造を構成する低剛性柱を含む、該低剛性層と、a low-rigidity layer disposed between the lower structure and the upper structure, the low-rigidity layer having a bending rigidity lower than that of the upper column and including a low-rigidity column joined to the lower beam and the upper beam to form a rigid frame structure together with the lower beam and the upper beam;
前記ラーメン構造に取り付けられ、地震時に前記ラーメン構造における前記上部梁の前記下部梁に対する変位を抑制するように構成された制振装置と、a vibration control device attached to the rigid frame structure and configured to suppress displacement of the upper beam relative to the lower beam in the rigid frame structure during an earthquake;
を備え、Equipped with
複数の前記低剛性柱は、アンボンドプレストレストコンクリート造であり、The low stiffness columns are made of unbonded prestressed concrete,
複数の前記低剛性柱は、コンクリート部分の外側面に全周に渡って当接する鋼製又は繊維強化プラスチック製の拘束部材を含み、及び/又はコンクリート部分内に鋼製若しくは樹脂製の繊維を含むことを特徴とする建物。A building characterized in that the multiple low-rigidity columns include a restraining member made of steel or fiber-reinforced plastic that abuts the outer surface of the concrete portion around its entire circumference, and/or includes steel or resin fibers within the concrete portion.
JP2021022285A 2021-02-16 2021-02-16 Building with low stiffness floor Active JP7617763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021022285A JP7617763B2 (en) 2021-02-16 2021-02-16 Building with low stiffness floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021022285A JP7617763B2 (en) 2021-02-16 2021-02-16 Building with low stiffness floor

Publications (2)

Publication Number Publication Date
JP2022124569A JP2022124569A (en) 2022-08-26
JP7617763B2 true JP7617763B2 (en) 2025-01-20

Family

ID=82941834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021022285A Active JP7617763B2 (en) 2021-02-16 2021-02-16 Building with low stiffness floor

Country Status (1)

Country Link
JP (1) JP7617763B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303794A (en) 2000-04-19 2001-10-31 Shimizu Corp Seismic isolation building
JP2006132234A (en) 2004-11-08 2006-05-25 Takenaka Komuten Co Ltd Multistory building
JP2006316573A (en) 2005-05-16 2006-11-24 Taisei Corp Soft first story building
JP2009270281A (en) 2008-05-01 2009-11-19 Okumura Corp Super highrise building
JP5515100B2 (en) 2009-03-30 2014-06-11 国立大学法人名古屋大学 Damping device for beam column structure
JP2014136888A (en) 2013-01-16 2014-07-28 Hisahiro Hiraishi Building structure
US20180305929A1 (en) 2016-04-29 2018-10-25 Southeast University Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
JP2019019664A (en) 2017-07-19 2019-02-07 株式会社フジタ High-rise building and precast pre-stressed concrete column
JP2019039282A (en) 2017-08-29 2019-03-14 大成建設株式会社 Vibration control building with failsafe mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303794A (en) 2000-04-19 2001-10-31 Shimizu Corp Seismic isolation building
JP2006132234A (en) 2004-11-08 2006-05-25 Takenaka Komuten Co Ltd Multistory building
JP2006316573A (en) 2005-05-16 2006-11-24 Taisei Corp Soft first story building
JP2009270281A (en) 2008-05-01 2009-11-19 Okumura Corp Super highrise building
JP5515100B2 (en) 2009-03-30 2014-06-11 国立大学法人名古屋大学 Damping device for beam column structure
JP2014136888A (en) 2013-01-16 2014-07-28 Hisahiro Hiraishi Building structure
US20180305929A1 (en) 2016-04-29 2018-10-25 Southeast University Steel-fiber composite material concrete combined column, and post-earthquake repair method thereof
JP2019019664A (en) 2017-07-19 2019-02-07 株式会社フジタ High-rise building and precast pre-stressed concrete column
JP2019039282A (en) 2017-08-29 2019-03-14 大成建設株式会社 Vibration control building with failsafe mechanism

Also Published As

Publication number Publication date
JP2022124569A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP5875718B1 (en) Buildings with mixed structural frames
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
JP2010261297A (en) Damping structure using multi-layered walls
JP5132503B2 (en) Seismic structure and building
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4289286B2 (en) Building seismic control structure
JPH10140873A (en) Building damping structure
JP7617763B2 (en) Building with low stiffness floor
JP5204076B2 (en) Seismic retrofit method and seismic retrofit structure for existing buildings
JP4408181B2 (en) Seismic strength reinforcement method for bridges and piers
JP3170535B2 (en) Damping structure
JP5654060B2 (en) Damper brace and damping structure
JP2002004463A (en) Aseismatic frame structure and its designing method
JPH11229631A (en) Damping reinforcing method for outer shell of existing building
JP4837145B1 (en) Seismic retrofitting structure
JP3631965B2 (en) Bridge and seismic strength reinforcement method for bridge
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
KR102209624B1 (en) Seismic reinforcing structure
JP2005188240A (en) Vibration control structure
JPH1171934A (en) Damping structure
JP7588700B2 (en) Systems of Structures
JP2001227089A (en) Rc earthquake resistant stud
JP7361561B2 (en) Brace mounting structure, structure and brace mounting method
JP7344835B2 (en) Vibration damping device installed in the column-beam frame structure
JP2005282229A (en) Vibration-control structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20250107

R150 Certificate of patent or registration of utility model

Ref document number: 7617763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150