[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7605366B1 - Compounding agent for diene rubber and rubber composition - Google Patents

Compounding agent for diene rubber and rubber composition Download PDF

Info

Publication number
JP7605366B1
JP7605366B1 JP2024094830A JP2024094830A JP7605366B1 JP 7605366 B1 JP7605366 B1 JP 7605366B1 JP 2024094830 A JP2024094830 A JP 2024094830A JP 2024094830 A JP2024094830 A JP 2024094830A JP 7605366 B1 JP7605366 B1 JP 7605366B1
Authority
JP
Japan
Prior art keywords
group
rubber
rubber composition
formula
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024094830A
Other languages
Japanese (ja)
Inventor
宗直 廣神
大樹 片山
恒雄 木村
真治 入船
勉 中村
雅士 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2024094830A priority Critical patent/JP7605366B1/en
Application granted granted Critical
Publication of JP7605366B1 publication Critical patent/JP7605366B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 ゴム組成物に添加した場合に、組成物の加工性や耐摩耗性能、低燃費性能を悪化させることなく、所望の硬度、引張特性を実現し得るゴム組成物を与えるジエン系ゴム用配合剤を提供すること。
【解決手段】
下記(A)成分を含むジエン系ゴム用配合剤。
(A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物

Figure 0007605366000038
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は結合箇所を表す。)
【選択図】 なし The present invention provides a compounding agent for diene rubber which, when added to a rubber composition, gives a rubber composition capable of realizing desired hardness and tensile properties without deteriorating the processability, abrasion resistance, or fuel economy of the composition.
SOLUTION
A compounding agent for diene rubber comprising the following component (A):
(A) A silanol group-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000038
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding point.)
[Selection diagram] None

Description

本発明は、ジエン系ゴム用配合剤およびゴム組成物に関する。 The present invention relates to compounding agents for diene rubber and rubber compositions.

シリカ充填タイヤは、自動車用途で優れた性能を有し、特に、耐摩耗性、転がり抵抗およびウェットグリップ性に優れている。これらの性能向上は、タイヤの低燃費性向上と密接に関連しているため、特に、溶液重合スチレン・ブタジエンゴム(S-SBR)を用いた乗用車用タイヤの業界において昨今盛んに研究されている。 Silica-filled tires have excellent performance in automotive applications, particularly in terms of wear resistance, rolling resistance, and wet grip. These performance improvements are closely related to improved fuel efficiency of tires, and therefore have been actively researched in the passenger tire industry, particularly in the passenger tire industry that uses solution-polymerized styrene-butadiene rubber (S-SBR).

シリカ充填ゴム組成物は、タイヤの転がり抵抗を低減し、ウェットグリップ性を向上させるものの、未加硫粘度が高く、多段練り等を要し、作業性に問題がある。
そのため、シリカ等の無機質充填剤を単に配合したゴム組成物においては、充填剤の分散が不足し、破壊強度および耐摩耗性が大幅に低下するといった問題が生じる。そこで、無機質充填剤のゴム中への分散性を向上させるとともに、充填剤とゴムマトリックスとを化学結合させるため、含硫黄有機ケイ素化合物が必須であった。
Although silica-filled rubber compositions reduce the rolling resistance of tires and improve wet grip performance, they have a high unvulcanized viscosity, require multi-stage kneading, and have problems with workability.
Therefore, in rubber compositions in which inorganic fillers such as silica are simply blended, the filler is not sufficiently dispersed, resulting in problems such as a significant decrease in fracture strength and abrasion resistance. Therefore, in order to improve the dispersion of the inorganic filler in the rubber and to chemically bond the filler to the rubber matrix, a sulfur-containing organosilicon compound has been essential.

ゴム用配合剤として使用される含硫黄有機ケイ素化合物としては、アルコキシシリル基とポリスルフィドシリル基を分子内に含む化合物、例えば、ビス-トリエトキシシリルプロピルテトラスルフィドやビス-トリエトキシシリルプロピルジスルフィド等が有効であることが知られている(特許文献1~4参照)。 As sulfur-containing organosilicon compounds used as rubber compounding agents, compounds containing alkoxysilyl groups and polysulfide silyl groups in the molecule, such as bis-triethoxysilylpropyl tetrasulfide and bis-triethoxysilylpropyl disulfide, are known to be effective (see Patent Documents 1 to 4).

無機充填剤であるシリカの分散性を向上させ低燃費特性を改善させるために様々なアルコキシシリル基含有化合物が開発されているが、低燃費特性は改善する一方、硬度や引張特性が向上しないといった問題点があった。そこで、加工性や低燃費特性を悪化させずに硬度や引張特性を改善する材料が求められている。 Various alkoxysilyl group-containing compounds have been developed to improve the dispersibility of silica, an inorganic filler, and to enhance fuel economy. However, while fuel economy is improved, there is a problem in that hardness and tensile properties are not improved. Therefore, there is a demand for materials that improve hardness and tensile properties without compromising processability and fuel economy.

特表2004-525230号公報Special Publication No. 2004-525230 特開2004-18511号公報JP 2004-18511 A 特開2002-145890号公報JP 2002-145890 A 特開2000-103795号公報JP 2000-103795 A

本発明は、上記事情に鑑みなされたもので、ゴム組成物に添加した場合に、組成物の加工性や耐摩耗性能、低燃費性能を悪化させることなく、所望の硬度、引張特性を実現し得るゴム組成物を与えるジエン系ゴム用配合剤、このゴム用配合剤を配合してなるゴム組成物、およびこのゴム組成物から形成されたタイヤを提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a compounding agent for diene-based rubber that, when added to a rubber composition, gives a rubber composition that can achieve the desired hardness and tensile properties without deteriorating the processability, abrasion resistance, or fuel economy of the composition, a rubber composition containing this compounding agent, and a tire formed from this rubber composition.

本発明者らは、上記課題を解決すべく鋭意検討した結果、特定のシラノール基含有有機ケイ素化合物が、ジエン系ゴム用配合剤として好適であることを見出すとともに、当該ゴム用配合剤を含むゴム組成物から得られたタイヤが、組成物の加工性や耐摩耗性能、低燃費性能を悪化させることなく、所望の硬度、引張特性を実現し得ることを見出し、本発明を完成した。 As a result of intensive research aimed at solving the above problems, the inventors have found that a specific silanol group-containing organosilicon compound is suitable as a compounding agent for diene rubber, and that tires made from rubber compositions containing said rubber compounding agent can achieve the desired hardness and tensile properties without impairing the processability, wear resistance, or fuel economy of the composition, thus completing the present invention.

すなわち、本発明は、
1. 下記(A)成分を含むジエン系ゴム用配合剤、
(A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物

Figure 0007605366000001
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は結合箇所を表す。)
2. 前記(A)成分が、下記式(2)で表される化合物を含む1のゴム用配合剤、
Figure 0007605366000002
(式中、R1は、前記と同じ意味を表し、mは、1~100の整数である。)
3. 前記(A)成分が、下記式(3)で表される化合物を含む1または2のゴム用配合剤、
Figure 0007605366000003
(式中、R1は、前記と同じ意味を表し、Xは、n価の構造を表し、mは、1~100の整数であり、nは、2~8の整数である。)
4. 前記Xが、下記式(4)、(5)または(6)で表される構造である3のゴム用配合剤、
Figure 0007605366000004
(式中、R1は、前記と同じ意味を表し、yは、1~20の整数であり、波線は、結合箇所を表す。)
5. 前記R1が、それぞれ独立に、メチル基またはフェニル基である1~4のいずれかのゴム用配合剤、
6.(A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物
Figure 0007605366000005
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は、結合箇所を表す。)
(B)ジエン系ゴム、および
(C)無機充填剤
を含むゴム組成物、
7. 前記(A)成分が、下記式(2)で表される化合物を含む6のゴム組成物、
Figure 0007605366000006
(式中、R1は、前記と同じ意味を表し、mは、1~100の整数である。)
8. 前記(A)成分が、下記式(3)で表される化合物を含む6または7のゴム組成物、
Figure 0007605366000007
(式中、R1は、前記と同じ意味を表し、Xは、n価の構造を表し、mは、1~100の整数であり、nは2~8の整数である。)
9. 前記Xが、下記式(4)、(5)または(6)で表される構造である8のゴム組成物、
Figure 0007605366000008
(式中、R1は、前記と同じ意味を表し、yは、1~20の整数であり、波線は結合箇所を表す。)
10. 前記R1が、それぞれ独立に、メチル基またはフェニル基である6~9のいずれかのゴム組成物、
11. 前記(C)無機充填剤が、シリカを含む6~10のいずれかのゴム組成物、
12. (D)ポリスルフィド基、チオエステル基およびメルカプト基から選ばれる1種以上と、アルコキシシリル基とを有する有機ケイ素化合物を含む6~10のいずれかのゴム組成物、
13. 6~12のいずれかのゴム組成物を成形してなるタイヤ
を提供する。 That is, the present invention provides
1. A compounding agent for diene rubber, comprising the following component (A):
(A) A silanol group-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000001
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding point.)
2. The rubber compounding agent according to claim 1, wherein the component (A) contains a compound represented by the following formula (2):
Figure 0007605366000002
(In the formula, R 1 has the same meaning as above, and m is an integer of 1 to 100.)
3. The rubber compounding agent according to 1 or 2, wherein the component (A) contains a compound represented by the following formula (3):
Figure 0007605366000003
(In the formula, R 1 has the same meaning as above, X represents an n-valent structure, m is an integer of 1 to 100, and n is an integer of 2 to 8.)
4. The rubber compounding agent according to 3, wherein X is a structure represented by the following formula (4), (5) or (6):
Figure 0007605366000004
(In the formula, R 1 has the same meaning as above, y is an integer of 1 to 20, and the wavy line represents a bonding site.)
5. The rubber compounding agent according to any one of 1 to 4, wherein each R 1 is independently a methyl group or a phenyl group;
6. (A) A silanol group-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000005
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding point.)
(B) a diene rubber; and (C) a rubber composition comprising an inorganic filler.
7. The rubber composition according to 6, wherein the component (A) contains a compound represented by the following formula (2):
Figure 0007605366000006
(In the formula, R 1 has the same meaning as above, and m is an integer of 1 to 100.)
8. The rubber composition according to 6 or 7, wherein the component (A) contains a compound represented by the following formula (3):
Figure 0007605366000007
(In the formula, R 1 has the same meaning as above, X represents an n-valent structure, m is an integer of 1 to 100, and n is an integer of 2 to 8.)
9. The rubber composition according to claim 8, wherein X is a structure represented by the following formula (4), (5) or (6):
Figure 0007605366000008
(In the formula, R1 has the same meaning as above, y is an integer of 1 to 20, and the wavy line represents the bonding site.)
10. The rubber composition according to any one of 6 to 9, wherein each R 1 is independently a methyl group or a phenyl group.
11. The rubber composition according to any one of 6 to 10, wherein the inorganic filler (C) contains silica.
12. Any of the rubber compositions according to 6 to 10, comprising (D) an organosilicon compound having one or more groups selected from a polysulfide group, a thioester group, and a mercapto group, and an alkoxysilyl group;
13. A tire obtained by molding the rubber composition according to any one of 6 to 12.

本発明のゴム用配合剤を配合したゴム組成物は、加工性に優れ、このゴム組成物を用いて形成されたタイヤは、耐摩耗性能、低燃費性能を悪化させることなく、所望の硬度、引張特性を実現することができる。 The rubber composition containing the rubber compounding agent of the present invention has excellent processability, and the tire formed using this rubber composition can achieve the desired hardness and tensile properties without compromising wear resistance and fuel economy.

以下、本発明について具体的に説明する。
〔ゴム用配合剤〕
本発明のゴム用配合剤は、下記(A)成分を含む。
[1](A)シラノール基含有有機ケイ素化合物
(A)成分は、下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物である。なお、式(1)中、波線は結合箇所を表す。
(A)成分中のシラノール構造由来の水酸基の含有量は、(A)成分の質量に対して0.5~30.0質量%が好ましく、0.6~20質量%がより好ましく、0.8~18質量%がより一層好ましい。
The present invention will be specifically described below.
[Rubber compounding agents]
The compounding agent for rubber of the present invention contains the following component (A).
[1] (A) Silanol Group-Containing Organosilicon Compound Component (A) is a silanol group-containing organosilicon compound having a structure represented by the following formula (1): In formula (1), the wavy lines represent bonding sites.
The content of hydroxyl groups derived from silanol structures in component (A) is preferably from 0.5 to 30.0 mass%, more preferably from 0.6 to 20 mass%, and even more preferably from 0.8 to 18 mass%, relative to the mass of component (A).

Figure 0007605366000009
Figure 0007605366000009

式(1)において、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表す。
アルキル基としては、直鎖、分岐、環状のいずれでもよく、その具体例としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、i-ブチル、tert-ブチル、ネオペンチル、n-ヘキシル、シクロヘキシル、n-ヘプチル、n-オクチル基等が挙げられるが、炭素原子数1~3のアルキル基が好ましく、メチル基がより好ましい。
アラルキル基としては、炭素原子数は7~20のアラルキル基が好ましく、その具体例としては、ベンジル基、フェニルエチル基等が挙げられる。
アリール基としては、炭素原子数6~18のアリール基が好ましく、その具体例としては、フェニル、ナフチル基等の非置換アリール基;トリル、キシリル、エチルフェニル、プロピルフェニル、ブチルフェニル、ペンチルフェニル、ヘキシルフェニル、ヘプチルフェニル、オクチルフェニル、ノニルフェニル、デシルフェニル、ウンデシルフェニル、ドデシルフェニル基等の炭素数7~18のアルキルアリール基などが挙げられるが、フェニル基が好ましい。
In formula (1), each R 1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group.
The alkyl group may be linear, branched, or cyclic. Specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, i-butyl, tert-butyl, neopentyl, n-hexyl, cyclohexyl, n-heptyl, and n-octyl groups. An alkyl group having 1 to 3 carbon atoms is preferred, and a methyl group is more preferred.
The aralkyl group is preferably an aralkyl group having 7 to 20 carbon atoms, and specific examples thereof include a benzyl group and a phenylethyl group.
The aryl group is preferably an aryl group having 6 to 18 carbon atoms, and specific examples thereof include unsubstituted aryl groups such as phenyl and naphthyl groups; and alkylaryl groups having 7 to 18 carbon atoms such as tolyl, xylyl, ethylphenyl, propylphenyl, butylphenyl, pentylphenyl, hexylphenyl, heptylphenyl, octylphenyl, nonylphenyl, decylphenyl, undecylphenyl, and dodecylphenyl groups, with a phenyl group being preferred.

(A)成分は、下記式(2)で表される化合物および/または下記式(3)で表される化合物を含むことが好ましい。 Component (A) preferably contains a compound represented by the following formula (2) and/or a compound represented by the following formula (3).

Figure 0007605366000010
Figure 0007605366000010

式(2)および(3)において、R1は、上記式(1)と同じ意味を表し、メチル基またはフェニル基が好ましい。
mは、1~100の整数であり、1~60の整数が好ましい。
nは、2~8の整数であり、2~4の整数が好ましい。
In formulae (2) and (3), R 1 has the same meaning as in formula (1) above, and is preferably a methyl group or a phenyl group.
m is an integer of 1 to 100, and preferably an integer of 1 to 60.
n is an integer of from 2 to 8, and preferably an integer of from 2 to 4.

なお、式(2)および(3)において、-R1-Si-R1-が2個以上存在する(mが2以上の)場合、それらは互いに同一でも異なっていてもよく、例えば、下記式(2’)および/または(3’)で表される化合物でもよい。 In addition, in formulas (2) and (3), when there are two or more -R 1 -Si-R 1 - (m is 2 or more), they may be the same or different and may be, for example, compounds represented by the following formulas (2') and/or (3').

Figure 0007605366000011
(式(2)中、R1は、上記と同じ意味を表すが、すべてのR1が同時に同一の基となることはなく、式(3)中、R1は、上記と同じ意味を表すが、すべてのR1が同時に同一の基となることはなく、各式において、m1およびm2は、それぞれ1以上の整数、かつ、m1+m2は、2~100の整数である。)
Figure 0007605366000011
(In formula (2), R 1 has the same meaning as above, except that all R 1s are not the same group at the same time; in formula (3), R 1 has the same meaning as above, except that all R 1s are not the same group at the same time; and in each formula, m1 and m2 each are an integer of 1 or more, and m1+m2 is an integer of 2 to 100.)

Xは、n価の構造を表し、例えば、直鎖、分岐または環状の、炭化水素骨格もしくはシロキサン骨格を含む構造が挙げられ、下記式(4)、(5)または(6)で表される構造が好ましい。 X represents an n-valent structure, for example a linear, branched or cyclic structure containing a hydrocarbon skeleton or a siloxane skeleton, and a structure represented by the following formula (4), (5) or (6) is preferred.

Figure 0007605366000012
(式中、R1は、上記と同じ意味を表し、波線は、結合箇所を表す。)
Figure 0007605366000012
(In the formula, R 1 has the same meaning as above, and the wavy line represents the bonding site.)

式(4)において、yは、1~20の整数であり、1~10の整数が好ましく、1~5の整数がより好ましい。 In formula (4), y is an integer from 1 to 20, preferably an integer from 1 to 10, and more preferably an integer from 1 to 5.

(A)成分のシラノール基含有有機ケイ素化合物の具体例としては、下記式で表されるもの等が挙げられるが、これらに限定されない。なお、式中、Meは、メチル基を表す(以下、同様)。 Specific examples of the silanol group-containing organosilicon compound of component (A) include, but are not limited to, those represented by the following formula. In the formula, Me represents a methyl group (the same applies below).

Figure 0007605366000013
(式中、m、m1およびm2は、上記と同じ意味を表す。)
Figure 0007605366000013
(In the formula, m, m1 and m2 have the same meanings as above.)

なお、(A)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The component (A) may be used alone or in combination of two or more types.

上述した本発明の(A)シラノール基含有有機ケイ素化合物を含む組成物は、それ自体ゴム用配合剤として使用することができるが、当該組成物と少なくとも1種の粉体とを混合したものをゴム用配合剤として使用してもよい。
粉体の具体例としては、カーボンブラック、タルク、炭酸カルシウム、ステアリン酸、シリカ、水酸化アルミニウム、アルミナ、水酸化マグネシウム等が挙げられる。
これらの中でも、補強性の観点からシリカおよび水酸化アルミニウムが好ましく、シリカがより好ましい。
The composition containing the silanol group-containing organosilicon compound (A) of the present invention described above can be used as a compounding agent for rubber by itself, but a mixture of the composition and at least one type of powder may also be used as a compounding agent for rubber.
Specific examples of the powder include carbon black, talc, calcium carbonate, stearic acid, silica, aluminum hydroxide, alumina, and magnesium hydroxide.
Among these, silica and aluminum hydroxide are preferred from the viewpoint of reinforcing properties, and silica is more preferred.

なお、本発明のゴム用配合剤は、脂肪酸、脂肪酸塩、ポリエチレン、ポリプロピレン、ポリオキシアルキレン、ポリエステル、ポリウレタン、ポリスチレン、ポリブタジエン、ポリイソプレン、天然ゴム、スチレン-ブタジエン共重合体等の有機ポリマーやゴムと混合されたものでもよく、加硫剤、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、充填剤、可塑剤などのタイヤ用、その他の一般ゴム用に通常用いられる各種添加剤が配合されたものでもよい。
また、その形態としては、液体状でも固体状でもよく、さらに有機溶剤に希釈したものでもよく、またエマルジョン化したものでもよい。
The rubber compounding agent of the present invention may be a mixture with an organic polymer or rubber, such as a fatty acid, a fatty acid salt, polyethylene, polypropylene, polyoxyalkylene, polyester, polyurethane, polystyrene, polybutadiene, polyisoprene, natural rubber, or a styrene-butadiene copolymer, or may be a mixture with various additives that are commonly used for tires or other general rubbers, such as a vulcanizing agent, a crosslinking agent, a vulcanization accelerator, a crosslinking accelerator, various oils, an antiaging agent, a filler, or a plasticizer.
The form of the agent may be liquid or solid, and may further be diluted in an organic solvent or may be made into an emulsion.

〔ゴム組成物〕
本発明のゴム組成物は、上述した(A)成分、(B)ジエン系ゴム、および(C)無機充填剤を含むものである。
本発明のゴム組成物における(A)成分の配合量は、得られるゴムの物性や、発揮される効果の程度と経済性とのバランス等を考慮すると、後に詳述する(B)成分100質量部に対し、0.1~20質量部が好ましく、0.5~10質量部がより好ましい。
[Rubber composition]
The rubber composition of the present invention contains the above-mentioned component (A), a diene rubber (B), and an inorganic filler (C).
The amount of component (A) in the rubber composition of the present invention is preferably 0.1 to 20 parts by mass, and more preferably 0.5 to 10 parts by mass, per 100 parts by mass of component (B), which will be described in detail later, in consideration of the physical properties of the resulting rubber, the degree of effect exerted, and the balance between economic efficiency.

[2](B)ジエン系ゴム
(B)成分のジエン系ゴムとしては、従来、各種ゴム組成物に一般的に用いられている任意のゴムを用いることができ、その具体例としては、天然ゴム等の各種イソプレンゴム(IR)、各種スチレン-ブタジエン共重合体ゴム(SBR)、各種ポリブタジエンゴム(BR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)等のジエン系ゴムなどが挙げられ、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、ジエン系ゴム以外に、ブチルゴム(IIR)、エチレン-プロピレン共重合体ゴム(EPR,EPDM)等の非ジエン系ゴムなどを併用してもよい。
[2] (B) Diene Rubber As the diene rubber of component (B), any rubber that has been generally used in various rubber compositions can be used. Specific examples thereof include diene rubbers such as various isoprene rubbers (IR) such as natural rubber, various styrene-butadiene copolymer rubbers (SBR), various polybutadiene rubbers (BR), and acrylonitrile-butadiene copolymer rubbers (NBR). These may be used alone or in combination of two or more.
In addition to the diene rubber, non-diene rubbers such as butyl rubber (IIR) and ethylene-propylene copolymer rubber (EPR, EPDM) may be used in combination.

[3](C)無機充填剤
(C)成分の無機充填剤としては、例えば、シリカ、カーボンブラック、水酸化アルミニウム、アルミナ(酸化アルミニウム)、炭酸カルシウム、タルク、クレーなどタイヤ工業において一般的に使用されるものが挙げられ、これらは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
これらの中でも、本発明のゴム組成物は、シリカおよびカーボンブラックを含むことが好ましい。
[3] (C) Inorganic Filler Examples of the inorganic filler of component (C) include those commonly used in the tire industry, such as silica, carbon black, aluminum hydroxide, alumina (aluminum oxide), calcium carbonate, talc, and clay. These may be used alone or in combination of two or more.
Of these, the rubber composition of the present invention preferably contains silica and carbon black.

カーボンブラックとしては、例えば、GPF、FEF、HAF、ISAF、SAFなど、タイヤ工業において一般的なものが挙げられる。
シリカとしては、例えば、乾式法により調製されたシリカ(無水シリカ)、湿式法により調製されたシリカ(含水シリカ)など、タイヤ工業において一般的なものが挙げられ、中でもシラノール基が多いという理由から、湿式法により調製されたシリカが好ましい。
特に、シリカは、窒素吸着比表面積(N2SA)70m2/g以上のものが好ましく、100m2/g以上のものがより好ましい。なお、N2SAの上限は、特に限定されるものではないが、取り扱い易さ等の観点から、500m2/g以下が好ましく、400m2/g以下がより好ましい。
Examples of carbon black include those commonly used in the tire industry, such as GPF, FEF, HAF, ISAF, and SAF.
Examples of silica include silica prepared by a dry method (anhydrous silica) and silica prepared by a wet method (hydrated silica), which are commonly used in the tire industry. Among these, silica prepared by a wet method is preferred because it contains a large number of silanol groups.
In particular, the silica preferably has a nitrogen adsorption specific surface area ( N2SA ) of 70 m2 /g or more, more preferably 100 m2 /g or more. The upper limit of N2SA is not particularly limited, but from the viewpoint of ease of handling, it is preferably 500 m2 /g or less, more preferably 400 m2 /g or less.

本発明のゴム組成物における(C)成分の配合量は、分散性、低燃費性および成形加工性等の観点から、(B)成分100質量部に対して5~200質量部が好ましく、10~150質量部がより好ましく、20~130質量部がより一層好ましい。 The amount of component (C) in the rubber composition of the present invention is preferably 5 to 200 parts by mass, more preferably 10 to 150 parts by mass, and even more preferably 20 to 130 parts by mass, per 100 parts by mass of component (B), from the viewpoints of dispersibility, fuel economy, molding processability, and the like.

[4](D)シランカップリング剤
本発明のゴム用配合剤には、上記成分に加えて、(D)ポリスルフィド基、チオエステル基およびメルカプト基から選ばれる1種以上と、アルコキシシリル基とを有するシランカップリング剤を用いることができる。(D)成分としては、このような官能基を有する化合物であれば特に限定されず、例えば、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシランカップリング剤を用いることができる。
[4] (D) Silane coupling agent In addition to the above components, the rubber compounding agent of the present invention can use (D) a silane coupling agent having at least one selected from a polysulfide group, a thioester group, and a mercapto group, and an alkoxysilyl group. The (D) component is not particularly limited as long as it is a compound having such a functional group, and for example, any conventionally known silane coupling agent that is compounded in a rubber composition for use in tires and the like can be used.

上記シランカップリング剤の具体例としては、ビス-(3-ビストリエトキシシリルプロピル)-テトラスルフィド、ビス-(3-ビストリエトキシシリルプロピル)-ジスルフィド等のポリスルフィド系有機ケイ素化合物;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプト系有機ケイ素化合物;3-オクタノイルチオプロピルトリエトキシシラン、3-プロピオニルチオプロピルトリメトキシシラン等のチオエステル系有機ケイ素化合物などが挙げられる。
また、上記硫黄原子を有する有機ケイ素化合物と、ポリエーテル基を含有するアルコールとの反応物や、これらの有機ケイ素化合物の加水分解縮合物、これらの有機ケイ素化合物とアルコキシシリル基を有するその他の有機ケイ素化合物との共加水分解縮合物などを用いることもできる。
なお、(D)成分は、1種を単独で用いてもよく、2種以上を併用してもよい。
Specific examples of the silane coupling agent include polysulfide-based organosilicon compounds such as bis-(3-bistriethoxysilylpropyl)-tetrasulfide and bis-(3-bistriethoxysilylpropyl)-disulfide; mercapto-based organosilicon compounds such as 3-mercaptopropyltrimethoxysilane and 3-mercaptopropyltriethoxysilane; and thioester-based organosilicon compounds such as 3-octanoylthiopropyltriethoxysilane and 3-propionylthiopropyltrimethoxysilane.
Also usable are reaction products of the above-mentioned organosilicon compounds having sulfur atoms with alcohols containing polyether groups, hydrolysis condensation products of these organosilicon compounds, and co-hydrolysis condensation products of these organosilicon compounds with other organosilicon compounds having alkoxysilyl groups.
The component (D) may be used alone or in combination of two or more types.

本発明のゴム組成物が(D)成分を含む場合、その配合量は、(B)成分100質量部に対して1~30質量部が好ましく、2~20質量部がより好ましい。 When the rubber composition of the present invention contains component (D), the blending amount is preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass, per 100 parts by mass of component (B).

なお、本発明のゴム組成物には、上記(A)~(D)の各成分に加えて、硫黄、架橋剤、加硫促進剤、架橋促進剤、各種オイル、老化防止剤、可塑剤、各種レジン、ワックス、酸化亜鉛等のタイヤ用、その他ゴム用に一般的に配合されている各種添加剤を配合することができる。これら添加剤の配合量は、本発明の目的に反しない限り、従来の一般的な配合量とすることができる。 In addition to the above components (A) to (D), the rubber composition of the present invention may contain various additives that are generally used in tires and other rubbers, such as sulfur, crosslinking agents, vulcanization accelerators, crosslinking accelerators, various oils, antioxidants, plasticizers, various resins, wax, and zinc oxide. The amounts of these additives may be conventional amounts, as long as they do not violate the objectives of the present invention.

硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。これらの硫黄は、例えば、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等から入手可能な製品を使用できる。 Examples of sulfur include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur, which are commonly used in the rubber industry. These may be used alone or in combination of two or more. For these sulfurs, products available from, for example, Tsurumi Chemical Industry Co., Ltd., Karuizawa Sulfur Co., Ltd., Shikoku Chemical Industry Co., Ltd., Flexis Corporation, Nippon Kanzuri Kogyo Co., Ltd., Hosoi Chemical Industry Co., Ltd., etc. can be used.

硫黄を配合する場合、その配合量は、(B)成分100質量部に対して、0.1~5.0質量部が好ましく、0.3~3.0質量部がより好ましく、0.5~2.0質量部がより一層好ましい。上記範囲内であると、引張特性と耐摩耗性能のバランスが良好となる。 When sulfur is added, the amount of sulfur added is preferably 0.1 to 5.0 parts by mass, more preferably 0.3 to 3.0 parts by mass, and even more preferably 0.5 to 2.0 parts by mass, per 100 parts by mass of component (B). Within the above range, a good balance between tensile properties and abrasion resistance is achieved.

〔ゴム製品(タイヤ)〕
上述した本発明のゴム組成物は、上述した(A)~(C)成分、並び必要に応じて用いられる(D)成分およびその他の成分を一般的な方法で組成物とし、これを加硫または架橋することで、例えば、タイヤ等のゴム製品の製造に使用することができる。特に、タイヤを製造する場合、本発明のゴム組成物がトレッドに用いられることが好ましい。
本発明のゴム組成物を用いて得られるタイヤは、転がり抵抗の低減に加え、耐摩耗性が向上することから、所望の低燃費性を実現できる。
なお、タイヤの構造は、従来公知の構造とすることができ、その製法も、従来公知の製法を採用すればよい。また、気体入りのタイヤの場合、タイヤ内に充填する気体として、通常、空気や、酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
[Rubber products (tires)]
The rubber composition of the present invention described above can be used for producing rubber products such as tires by preparing a composition from the above-mentioned components (A) to (C) and the optional component (D) and other components in a general manner, and vulcanizing or crosslinking the composition. In particular, when producing tires, it is preferable that the rubber composition of the present invention is used in the tread.
A tire obtained by using the rubber composition of the present invention has reduced rolling resistance and improved wear resistance, and therefore can achieve the desired low fuel consumption.
The structure of the tire may be a conventionally known structure, and the manufacturing method may be a conventionally known manufacturing method. In the case of a gas-filled tire, the gas filled in the tire may be air or air with an adjusted oxygen partial pressure, or an inert gas such as nitrogen, argon, or helium.

以下、実施例および比較例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

[実施例1-1~1-9、比較例1-1]
4Lのインターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて、表1記載の天然ゴムを60秒間混練した。
次いで、表1記載のカーボンブラック、シリカ、シラノール含有化合物、ステアリン酸、老化防止剤、レジン、およびワックスを加え、内温を150℃まで上昇させ、排出した。その後、ロールを用いて延伸した。得られたゴム組成物を、再度インターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて内温が145℃になるまで混練し、排出した後、ロールを用いて延伸した。これに表1記載の酸化亜鉛、加硫促進剤および硫黄を加えて混練し、ゴム組成物を得た。
[Examples 1-1 to 1-9, Comparative Example 1-1]
The natural rubber shown in Table 1 was kneaded for 60 seconds using a 4 L internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.).
Next, carbon black, silica, a silanol-containing compound, stearic acid, an antioxidant, a resin, and a wax shown in Table 1 were added, the internal temperature was raised to 150°C, and the mixture was discharged. Thereafter, the mixture was stretched using a roll. The obtained rubber composition was again kneaded using an internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.) until the internal temperature reached 145°C, discharged, and then stretched using a roll. Zinc oxide, a vulcanization accelerator, and sulfur shown in Table 1 were added thereto and kneaded to obtain a rubber composition.

天然ゴム:RSS#3
カーボンブラック:シースト9H(東海カーボン(株)製)
シリカ:ニプシルAQ(東ソー・シリカ(株)製)
スルフィドシラン:KBE-846(信越化学工業(株)製、ビス(トリエトキシシリルプロピル)テトラスルフィド)
Natural rubber: RSS#3
Carbon black: Seast 9H (manufactured by Tokai Carbon Co., Ltd.)
Silica: Nipsil AQ (manufactured by Tosoh Silica Corporation)
Sulfide silane: KBE-846 (Shin-Etsu Chemical Co., Ltd., bis(triethoxysilylpropyl)tetrasulfide)

(A-1):下記式で表される化合物(水酸基含有量10.0質量%)

Figure 0007605366000014
(A-1): Compound represented by the following formula (hydroxyl group content: 10.0% by mass)
Figure 0007605366000014

(A-2):下記式で表される化合物(水酸基含有量2.2質量%)

Figure 0007605366000015
(A-2): Compound represented by the following formula (hydroxyl group content: 2.2% by mass)
Figure 0007605366000015

(A-3):下記式で表される化合物(水酸基含有量1.1質量%)

Figure 0007605366000016
(A-3): Compound represented by the following formula (hydroxyl group content: 1.1% by mass)
Figure 0007605366000016

(A-4):下記式で表される化合物(水酸基含有量0.8質量%)

Figure 0007605366000017
(A-4): Compound represented by the following formula (hydroxyl group content: 0.8% by mass)
Figure 0007605366000017

(A-5):下記式で表される化合物(水酸基含有量5.9質量%)

Figure 0007605366000018
(A-5): Compound represented by the following formula (hydroxyl group content: 5.9% by mass)
Figure 0007605366000018

(A-6):下記式で表される化合物(水酸基含有量15.7質量%)

Figure 0007605366000019
(A-6): Compound represented by the following formula (hydroxyl group content: 15.7% by mass)
Figure 0007605366000019

(A-7):下記式で表される化合物(水酸基含有量4.4質量%)

Figure 0007605366000020
(A-7): Compound represented by the following formula (hydroxyl group content: 4.4% by mass)
Figure 0007605366000020

ステアリン酸:工業用ステアリン酸(花王(株)製)
老化防止剤:ノクラック6C(大内新興化学工業(株)製)
レジン:T-REZ RA-100(ENEOS(株)製)
ワックス:オゾエース0355(日本精蝋(株)製)
酸化亜鉛:亜鉛華3号(三井金属鉱業(株)製)
加硫促進剤(a):ノクセラーDM-P(大内新興化学工業(株)製)
加硫促進剤(b):ノクセラーCZ-G(大内新興化学工業(株)製)
硫黄:5%オイル処理硫黄(細井化学工業(株)製)
Stearic acid: industrial stearic acid (Kao Corporation)
Anti-aging agent: Nocrac 6C (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Resin: T-REZ RA-100 (ENEOS Corporation)
Wax: Ozoace 0355 (manufactured by Nippon Seiro Co., Ltd.)
Zinc oxide: Zinc oxide No. 3 (manufactured by Mitsui Mining & Smelting Co., Ltd.)
Vulcanization accelerator (a): Noccela DM-P (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Vulcanization accelerator (b): Noccela CZ-G (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Sulfur: 5% oil-treated sulfur (Hosoi Chemical Industry Co., Ltd.)

上記実施例1-1~1-9、比較例1-1で得られたゴム組成物について、未加硫物性および加硫物性を下記の方法で測定した。結果を表1に併せて示す。なお、加硫物性に関しては、得られたゴム組成物をプレス成形(145℃、30分)して、加硫ゴムシート(厚み2mm)を作製した。 The unvulcanized and vulcanized properties of the rubber compositions obtained in Examples 1-1 to 1-9 and Comparative Example 1-1 above were measured by the following methods. The results are also shown in Table 1. Regarding the vulcanized properties, the obtained rubber compositions were press molded (145°C, 30 minutes) to produce vulcanized rubber sheets (thickness 2 mm).

上記実施例および比較例で得られた組成物および加硫ゴムシートについて、下記の物性を測定した。結果を併せて表1に示す。
〔未加硫物性〕
(1)ムーニー粘度
JIS K 6300-1:2013に準拠し、余熱1分、測定4分、温度130℃にて測定し、比較例1-1を100として指数で表した。指数値が小さいほど、ムーニー粘度が低く、加工性に優れている。
〔加硫物性〕
(2)硬度
JIS K 6253-3:2012に準拠してデュロメーター(タイプA)硬さを測定し、比較例1-1を100として指数で表した。指数値が大きいほど、硬度が高く優れている。
(3)引張特性
JIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、300%モジュラス(M300)[MPa]を室温にて測定した。得られた結果を、比較例1-1を100として指数で表した。指数値が大きいほど、モジュラスが高く引張特性に優れることを示す。
(4)動的粘弾性(温度分散)
粘弾性測定装置(メトラビブ社製)を使用し、引張の動歪1%、周波数55Hzの条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。tanδ(60℃)の値は、比較例1-1を100として指数で表した。tanδ(60℃)の値は、指数値が小さいほど、転がり抵抗が良好であることを示す。
(5)耐摩耗性
FPS試験機((株)上島製作所製)を用いて、サンプルスピード200m/分、荷重20N、路面温度30℃、スリップ率5%とスリップ率20%の条件で試験を行った。得られた結果を、比較例1-1を100として指数で表した。指数値が大きいほど、摩耗量が少なく、耐摩耗性に優れることを示す。
The compositions and vulcanized rubber sheets obtained in the above Examples and Comparative Examples were measured for the following physical properties. The results are also shown in Table 1.
[Unvulcanized physical properties]
(1) Mooney Viscosity Measured according to JIS K 6300-1:2013 with 1 minute residual heat, 4 minutes measurement, and at a temperature of 130°C, and expressed as an index with Comparative Example 1-1 being 100. The smaller the index value, the lower the Mooney viscosity and the better the processability.
[Vulcanization properties]
(2) Hardness The durometer (type A) hardness was measured in accordance with JIS K 6253-3:2012, and expressed as an index with Comparative Example 1-1 being 100. The larger the index value, the higher and more excellent the hardness.
(3) Tensile properties JIS No. 3 dumbbell-shaped test pieces were punched out, and a tensile test was carried out at a tensile speed of 500 mm/min in accordance with JIS K6251, and the 300% modulus (M 300 ) [MPa] was measured at room temperature. The results were expressed as an index, with Comparative Example 1-1 being set at 100. A larger index value indicates a higher modulus and better tensile properties.
(4) Dynamic viscoelasticity (temperature dispersion)
A viscoelasticity measuring device (manufactured by Metravib) was used, and measurements were performed under conditions of a tensile dynamic strain of 1% and a frequency of 55 Hz. The test piece was a sheet having a thickness of 0.2 cm and a width of 0.5 cm, and the clamping distance was 2 cm and the initial load was 1 N. The value of tan δ (60°C) was expressed as an index, with Comparative Example 1-1 being 100. The smaller the index value of tan δ (60°C), the better the rolling resistance.
(5) Abrasion resistance Tests were conducted using an FPS tester (manufactured by Ueshima Seisakusho Co., Ltd.) under conditions of a sample speed of 200 m/min, a load of 20 N, a road surface temperature of 30° C., and slip rates of 5% and 20%. The results were expressed as an index, with Comparative Example 1-1 being 100. A larger index value indicates less wear and better abrasion resistance.

Figure 0007605366000021
Figure 0007605366000021

表1に示されるように、実施例1-1~1-9で得られたゴム組成物の加硫物は、比較例1-1のゴム組成物の加硫物に比べ、耐摩耗性能を維持したまま硬度、引張特性が大幅に向上していることがわかる。 As shown in Table 1, the vulcanized products of the rubber compositions obtained in Examples 1-1 to 1-9 have significantly improved hardness and tensile properties while maintaining abrasion resistance, compared to the vulcanized product of the rubber composition in Comparative Example 1-1.

[実施例2-1~2-7,比較例2-1]
4Lのインターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて、表2記載のSBRとBRを30秒間混練した。
次いで、表2記載のオイル成分、カーボンブラック、シリカ、スルフィドシラン、シラノール化合物、ステアリン酸、老化防止剤、およびワックスを加え、内温を150℃まで上昇させ、150℃で2分間保持をかけた後、排出した。その後、ロールを用いて延伸した。得られたゴムを、再度インターナルミキサー(MIXTRON、(株)神戸製鋼所製)を用いて内温が140℃になるまで混練し、排出した後、ロールを用いて延伸した。
これに表2記載の酸化亜鉛、加硫促進剤および硫黄を加えて混練し、ゴム組成物を得た。
[Examples 2-1 to 2-7, Comparative Example 2-1]
The SBR and BR shown in Table 2 were mixed for 30 seconds using a 4 L internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.).
Next, the oil components, carbon black, silica, sulfide silane, silanol compound, stearic acid, antioxidant, and wax shown in Table 2 were added, the internal temperature was raised to 150°C, and the mixture was held at 150°C for 2 minutes, after which it was discharged. It was then stretched using a roll. The obtained rubber was again kneaded using an internal mixer (MIXTRON, manufactured by Kobe Steel, Ltd.) until the internal temperature reached 140°C, discharged, and then stretched using a roll.
To this was added zinc oxide, a vulcanization accelerator and sulfur as shown in Table 2, and the mixture was kneaded to obtain a rubber composition.

SBR:SLR-4602(トリンセオ製)
BR:BR-01(JSR(株)製)
オイル:AC-12(出光興産(株)製)
カーボンブラック:シースト3(東海カーボン(株)製)
シリカ:ニプシルAQ(東ソー・シリカ(株)製)
スルフィドシラン:KBE-846(信越化学工業(株)製、ビス(トリエトキシシリルプロピル)テトラスルフィド)
SBR: SLR-4602 (manufactured by Trinseo)
BR: BR-01 (manufactured by JSR Corporation)
Oil: AC-12 (Idemitsu Kosan Co., Ltd.)
Carbon black: Seast 3 (manufactured by Tokai Carbon Co., Ltd.)
Silica: Nipsil AQ (manufactured by Tosoh Silica Corporation)
Sulfide silane: KBE-846 (Shin-Etsu Chemical Co., Ltd., bis(triethoxysilylpropyl)tetrasulfide)

(A-1):下記式で表される化合物(水酸基含有量10.0質量%)

Figure 0007605366000022
(A-1): Compound represented by the following formula (hydroxyl group content: 10.0% by mass)
Figure 0007605366000022

(A-2):下記式で表される化合物(水酸基含有量2.2質量%)

Figure 0007605366000023
(A-2): Compound represented by the following formula (hydroxyl group content: 2.2% by mass)
Figure 0007605366000023

(A-3):下記式で表される化合物(水酸基含有量1.1質量%)

Figure 0007605366000024
(A-3): Compound represented by the following formula (hydroxyl group content: 1.1% by mass)
Figure 0007605366000024

(A-4):下記式で表される化合物(水酸基含有量0.8質量%)

Figure 0007605366000025
(A-4): Compound represented by the following formula (hydroxyl group content: 0.8% by mass)
Figure 0007605366000025

(A-5):下記式で表される化合物(水酸基含有量5.9質量%)

Figure 0007605366000026
(A-5): Compound represented by the following formula (hydroxyl group content: 5.9% by mass)
Figure 0007605366000026

(A-6):下記式で表される化合物(水酸基含有量15.7質量%)

Figure 0007605366000027
(A-6): Compound represented by the following formula (hydroxyl group content: 15.7% by mass)
Figure 0007605366000027

(A-7):下記式で表される化合物(水酸基含有量4.4質量%)

Figure 0007605366000028
(A-7): Compound represented by the following formula (hydroxyl group content: 4.4% by mass)
Figure 0007605366000028

ステアリン酸:工業用ステアリン酸(花王(株)製)
老化防止剤:ノクラック6C(大内新興化学工業(株)製)
ワックス:オゾエース0355(日本精蝋(株)製)
酸化亜鉛:亜鉛華3号(三井金属鉱業(株)製)
加硫促進剤(a):ノクセラーD(大内新興化学工業(株)製)
加硫促進剤(b):ノクセラーDM-P(大内新興化学工業(株)製)
加硫促進剤(c):ノクセラーCZ-G(大内新興化学工業(株)製)
硫黄:5%オイル処理硫黄(細井化学工業(株)製)
Stearic acid: industrial stearic acid (Kao Corporation)
Anti-aging agent: Nocrac 6C (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Wax: Ozoace 0355 (manufactured by Nippon Seiro Co., Ltd.)
Zinc oxide: Zinc oxide No. 3 (manufactured by Mitsui Mining & Smelting Co., Ltd.)
Vulcanization accelerator (a): Noccelaer D (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Vulcanization accelerator (b): Noccela DM-P (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Vulcanization accelerator (c): Noccela CZ-G (manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)
Sulfur: 5% oil-treated sulfur (Hosoi Chemical Industry Co., Ltd.)

上記実施例2-1~2-7および比較例2-1で得られたゴム組成物について、未加硫物性および加硫物性を下記の方法で測定した。結果を表2に併せて示す。なお、加硫物性に関しては、得られたゴム組成物をプレス成形(160℃、10~40分)して、加硫ゴムシート(厚み2mm)を作製した。 The unvulcanized and vulcanized properties of the rubber compositions obtained in Examples 2-1 to 2-7 and Comparative Example 2-1 above were measured by the following methods. The results are also shown in Table 2. Regarding the vulcanized properties, the obtained rubber compositions were press molded (160°C, 10 to 40 minutes) to produce vulcanized rubber sheets (thickness 2 mm).

〔未加硫物性〕
(1)ムーニー粘度
JIS K 6300-1:2013に準拠し、余熱1分、測定4分、温度130℃にて測定し、比較例2-1を100として指数で表した。指数値が小さいほど、ムーニー粘度が低く加工性に優れている。
(2)加硫特性(T90)
ロータレスレオメーターを用いて160℃の加硫速度を測定し、加硫曲線から最低トルクMLおよび最高トルクMHを求め、T90(最大トルク値の90%トルク値に到達する迄の時間(分))を求めた。比較例2-1を100として指数で表した。指数値が小さいほど、加硫速度が速く生産性に優れている。
〔加硫物性〕
(3)硬度
JIS K 6253-3:2012に準拠しデュロメーター(タイプA)硬さを測定し、比較例2-1を100として指数で表した。指数値が大きいほど、硬度が高く優れている。
(4)引張特性
JIS3号ダンベル状の試験片を打ち抜き、引張速度500mm/分での引張試験をJIS K6251に準拠して行い、300%モジュラス(M300)[MPa]を室温にて測定した。得られた結果を、比較例2-1を100として指数表示した。指数値が大きいほど、モジュラスが高く引張特性に優れることを示す。
(5)動的粘弾性(温度分散)
粘弾性測定装置(メトラビブ社製)を使用し、引張の動歪1%、周波数55Hzの条件にて測定した。なお、試験片は厚さ0.2cm、幅0.5cmのシートを用い、使用挟み間距離2cmとして初期荷重を1Nとした。
tanδ(0℃)、tanδ(60℃)の値は、比較例2-1を100として指数で表した。tanδ(0℃)の値は、指数値が大きいほどウェットグリップ性が良好であることを示す。tanδ(60℃)の値は、指数値が小さいほど転がり抵抗が良好であることを示す。
(6)耐摩耗性
FPS試験機((株)上島製作所製)を用いて、サンプルスピード200m/分、荷重20N、路面温度30℃、スリップ率5%とスリップ率20%の条件で試験を行った。得られた結果を、比較例2-1を100として指数で表した。指数値が大きいほど、摩耗量が少なく、耐摩耗性に優れることを示す
[Unvulcanized physical properties]
(1) Mooney Viscosity Measured according to JIS K 6300-1:2013 with 1 minute residual heat, 4 minutes measurement, and at a temperature of 130°C, and expressed as an index with Comparative Example 2-1 being 100. The smaller the index value, the lower the Mooney viscosity and the more excellent the processability.
(2) Vulcanization characteristics (T90)
The vulcanization rate at 160°C was measured using a rotorless rheometer, and the minimum torque ML and maximum torque MH were obtained from the vulcanization curve, and T90 (the time (min) required to reach 90% of the maximum torque) was calculated. The results were expressed as an index, with Comparative Example 2-1 being set at 100. The smaller the index value, the faster the vulcanization rate and the more excellent the productivity.
[Vulcanization properties]
(3) Hardness The durometer (type A) hardness was measured in accordance with JIS K 6253-3:2012, and expressed as an index with Comparative Example 2-1 being 100. The larger the index value, the higher and more excellent the hardness.
(4) Tensile properties JIS No. 3 dumbbell-shaped test pieces were punched out, and a tensile test was carried out at a tensile speed of 500 mm/min in accordance with JIS K6251 to measure the 300% modulus ( M300 ) [MPa] at room temperature. The results were expressed as an index, with Comparative Example 2-1 being set at 100. A larger index value indicates a higher modulus and better tensile properties.
(5) Dynamic viscoelasticity (temperature dispersion)
A viscoelasticity measuring device (manufactured by Metravib) was used to measure under conditions of a tensile dynamic strain of 1% and a frequency of 55 Hz. The test specimen was a sheet having a thickness of 0.2 cm and a width of 0.5 cm, with a clamp distance of 2 cm and an initial load of 1 N.
The values of tan δ (0°C) and tan δ (60°C) are expressed as indexes with Comparative Example 2-1 being 100. The larger the index value of tan δ (0°C), the better the wet grip performance. The smaller the index value of tan δ (60°C), the better the rolling resistance.
(6) Abrasion resistance Using an FPS tester (manufactured by Ueshima Seisakusho Co., Ltd.), tests were conducted under the conditions of a sample speed of 200 m/min, a load of 20 N, a road surface temperature of 30° C., and slip rates of 5% and 20%. The results were expressed as an index, with Comparative Example 2-1 being 100. A larger index value indicates less wear and better abrasion resistance.

Figure 0007605366000029
Figure 0007605366000029

表2に示されるように、実施例2-1~2-7のゴム組成物の加硫物は、比較例2-1のゴム組成物の加硫物に比べ、耐摩耗性能を維持したまま硬度、引張特性が大幅に向上していることがわかる。 As shown in Table 2, the vulcanizates of the rubber compositions of Examples 2-1 to 2-7 have significantly improved hardness and tensile properties while maintaining abrasion resistance, compared to the vulcanizate of the rubber composition of Comparative Example 2-1.

Claims (12)

下記(A)成分
(A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物
Figure 0007605366000030
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は結合箇所を表す。)
を含むジエン系ゴム用配合剤であって、
前記(A)成分が、下記式(3)で表されるシラノール基含有有機ケイ素化合物を含むジエン系ゴム用配合剤。
Figure 0007605366000031
〔式中、R1は、前記と同じ意味を表し、Xは、n価の構造を表し、下記式(4)、(5)または(6)で表される構造であり、
Figure 0007605366000032
(式中、R1は、前記と同じ意味を表し、yは、1~20の整数であり、波線は結合箇所を表す。)
mは、1~100の整数であり、nは、2または4の整数である。〕
Component (A) A silanol-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000030
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding point.)
A compounding agent for diene rubber comprising:
The compounding agent for diene rubber, wherein the component (A) comprises a silanol group-containing organosilicon compound represented by the following formula (3):
Figure 0007605366000031
[In the formula, R 1 has the same meaning as defined above, X represents an n-valent structure and is a structure represented by the following formula (4), (5) or (6):
Figure 0007605366000032
(In the formula, R1 has the same meaning as above, y is an integer of 1 to 20, and the wavy line represents the bonding site.)
m is an integer from 1 to 100, and n is an integer of 2 or 4.
前記R1が、それぞれ独立に、メチル基またはフェニル基である請求項1記載のゴム用配合剤。 2. The rubber compounding agent according to claim 1, wherein each R 1 is independently a methyl group or a phenyl group. (A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物
Figure 0007605366000033
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は、結合箇所を表す。)
(B)ジエン系ゴム、および
(C)無機充填剤
を含むゴム組成物であって、
前記(A)成分が、下記式(3)で表される化合物を含むゴム組成物。
Figure 0007605366000034
〔式中、R1は、前記と同じ意味を表し、Xは、n価の構造を表し、下記式(4)、(5)または(6)で表される構造であり、
Figure 0007605366000035
(式中、R1は、前記と同じ意味を表し、yは、1~20の整数であり、波線は、結合箇所を表す。)
mは、1~100の整数であり、nは、2または4の整数である。〕
(A) A silanol group-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000033
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding point.)
A rubber composition comprising (B) a diene rubber and (C) an inorganic filler,
The rubber composition, wherein the component (A) contains a compound represented by the following formula (3):
Figure 0007605366000034
[In the formula, R 1 has the same meaning as defined above, X represents an n-valent structure and is a structure represented by the following formula (4), (5) or (6):
Figure 0007605366000035
(In the formula, R 1 has the same meaning as above, y is an integer of 1 to 20, and the wavy line represents a bonding site.)
m is an integer from 1 to 100, and n is an integer of 2 or 4.
前記R1が、それぞれ独立に、メチル基またはフェニル基である請求項3項記載のゴム組成物。 4. The rubber composition according to claim 3, wherein each R1 is independently a methyl group or a phenyl group. 前記(C)無機充填剤が、シリカを含む請求項3記載のゴム組成物。 The rubber composition according to claim 3, wherein the inorganic filler (C) contains silica. (D)ポリスルフィド基、チオエステル基およびメルカプト基から選ばれる1種以上と、アルコキシシリル基とを有する有機ケイ素化合物を含む請求項3記載のゴム組成物。 The rubber composition according to claim 3, which contains (D) an organosilicon compound having at least one selected from a polysulfide group, a thioester group, and a mercapto group, and an alkoxysilyl group. 請求項3記載のゴム組成物を成形してなるタイヤ。 A tire formed from the rubber composition according to claim 3. (A)下記式(1)で表される構造を有するシラノール基含有有機ケイ素化合物
Figure 0007605366000036
(式中、R1は、それぞれ独立に、水素原子、アルキル基、アラルキル基またはアリール基を表し、波線は、結合箇所を表す。)
(B)ジエン系ゴム、および
(C)無機充填剤
を含むゴム組成物であって、
前記(A)成分が、下記式(2)で表される化合物を含むゴム組成物(ただし、ラテックス組成物を除く。)。
Figure 0007605366000037
(式中、R1は、前記と同じ意味を表し、mは、1~100の整数である。)
(A) A silanol group-containing organosilicon compound having a structure represented by the following formula (1):
Figure 0007605366000036
(In the formula, each R1 independently represents a hydrogen atom, an alkyl group, an aralkyl group, or an aryl group, and the wavy line represents a bonding site.)
A rubber composition comprising (B) a diene rubber and (C) an inorganic filler,
The component (A) is a rubber composition (excluding latex compositions) containing a compound represented by the following formula (2):
Figure 0007605366000037
(In the formula, R 1 has the same meaning as above, and m is an integer of 1 to 100.)
前記R1が、それぞれ独立に、メチル基またはフェニル基である請求項8記載のゴム組成物。 9. The rubber composition according to claim 8, wherein each R1 is independently a methyl group or a phenyl group. 前記(C)無機充填剤が、シリカを含む請求項8記載のゴム組成物。 The rubber composition according to claim 8, wherein the inorganic filler (C) contains silica. (D)ポリスルフィド基、チオエステル基およびメルカプト基から選ばれる1種以上と、アルコキシシリル基とを有する有機ケイ素化合物を含む請求項8記載のゴム組成物。 The rubber composition according to claim 8, which contains (D) an organosilicon compound having at least one selected from a polysulfide group, a thioester group, and a mercapto group, and an alkoxysilyl group. 請求項8記載のゴム組成物を成形してなるタイヤ。 A tire formed from the rubber composition according to claim 8.
JP2024094830A 2024-06-12 2024-06-12 Compounding agent for diene rubber and rubber composition Active JP7605366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024094830A JP7605366B1 (en) 2024-06-12 2024-06-12 Compounding agent for diene rubber and rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024094830A JP7605366B1 (en) 2024-06-12 2024-06-12 Compounding agent for diene rubber and rubber composition

Publications (1)

Publication Number Publication Date
JP7605366B1 true JP7605366B1 (en) 2024-12-24

Family

ID=93933833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024094830A Active JP7605366B1 (en) 2024-06-12 2024-06-12 Compounding agent for diene rubber and rubber composition

Country Status (1)

Country Link
JP (1) JP7605366B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262423A (en) 2000-10-13 2007-10-11 Soc De Technol Michelin Rubber composition containing polyfunctional organosilane as coupling agent
JP2011026502A (en) 2009-07-28 2011-02-10 Yokohama Rubber Co Ltd:The Water-based adhesive composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262423A (en) 2000-10-13 2007-10-11 Soc De Technol Michelin Rubber composition containing polyfunctional organosilane as coupling agent
JP2011026502A (en) 2009-07-28 2011-02-10 Yokohama Rubber Co Ltd:The Water-based adhesive composition

Similar Documents

Publication Publication Date Title
JP5495153B2 (en) Rubber composition and pneumatic tire using the same
EP3144341B1 (en) Method for producing rubber composition for tires, and pneumatic tire
JP2015209540A (en) Rubber composition for tire tread
JP2008163125A (en) Rubber composition and pneumatic tire using the same
JP2011032402A (en) Rubber composition and pneumatic tire
JP2007277411A (en) Rubber composition and pneumatic tire
JP6655949B2 (en) Rubber composition and pneumatic tire
JP2000239445A (en) Tread rubber composition
JP2016030815A (en) Rubber composition for tire
JP4910416B2 (en) Rubber composition for tire
JP7605366B1 (en) Compounding agent for diene rubber and rubber composition
JP3530088B2 (en) Rubber composition and method for producing the same
JP5138901B2 (en) Rubber composition and pneumatic tire
JP4447699B2 (en) Rubber composition
WO2021166396A1 (en) Organopolysiloxane, rubber composition, and tire
JP2002265676A (en) Rubber composition
JP2007291218A (en) Rubber composition and pneumatic tire
EP3925792A1 (en) Rubber composition and organosilicon compound
JP7415961B2 (en) Rubber composition containing organosilicon compound
JP7413987B2 (en) Rubber compositions and tires
JP2019182985A (en) Method of producing rubber composition for tire
JP2002338733A (en) Rubber composition
JP7073794B2 (en) Manufacturing method of rubber composition for tires
JP2023143258A (en) Rubber composition and surface-treated silica
JP2017214534A (en) Rubber composition and tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240621

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241125

R150 Certificate of patent or registration of utility model

Ref document number: 7605366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150