[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7532012B2 - Pressure control method and pressure control device for gas pressure transmission equipment - Google Patents

Pressure control method and pressure control device for gas pressure transmission equipment Download PDF

Info

Publication number
JP7532012B2
JP7532012B2 JP2019041663A JP2019041663A JP7532012B2 JP 7532012 B2 JP7532012 B2 JP 7532012B2 JP 2019041663 A JP2019041663 A JP 2019041663A JP 2019041663 A JP2019041663 A JP 2019041663A JP 7532012 B2 JP7532012 B2 JP 7532012B2
Authority
JP
Japan
Prior art keywords
pressure
gas
set value
pressure control
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019041663A
Other languages
Japanese (ja)
Other versions
JP2020143641A (en
Inventor
容次 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019041663A priority Critical patent/JP7532012B2/en
Publication of JP2020143641A publication Critical patent/JP2020143641A/en
Application granted granted Critical
Publication of JP7532012B2 publication Critical patent/JP7532012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、ガス圧送設備の圧縮機が圧縮したガスの圧送先のガス圧力が変動する場合におけるガス圧送設備の圧力制御方法および圧力制御装置に関するものである。 The present invention relates to a pressure control method and a pressure control device for a gas compression facility when the gas pressure at the destination of the gas compressed by a compressor of the gas compression facility fluctuates.

一般的に、ガス圧送設備は、圧送先の負荷の変動によって供給ガス圧力が変化しないように圧力制御を行い、圧送先から使用先への供給ガス圧力を一定に保つ必要があることが知られており、そのための制御方法として、圧縮機のインバータ制御(特許文献1参照)や、圧縮機の台数制御(特許文献2参照)等、多くの先行技術がある。 It is generally known that gas compression equipment must perform pressure control so that the supply gas pressure does not change due to fluctuations in the load at the destination, and must maintain a constant supply gas pressure from the destination to the destination of use . There are many prior art control methods for this purpose, such as inverter control of the compressor (see Patent Document 1) and control of the number of compressors (see Patent Document 2).

また、それらの制御方法として、圧送先へのガス圧送配管からのガス供給流量の検出結果に応じた組み合わせパターンによる圧縮機の台数制御(特許文献3参照)や、圧送先へのガス供給配管の管路抵抗を算出してその結果に基づき圧力制御の目標設定値を変更する制御(特許文献4参照)、圧縮機の吐出圧力とガス圧送配管における圧力制御の目標地点での圧送ガスのプロセス圧力の差からガス圧送配管の圧力損失を算出してその結果に基づき圧力制御の目標設定値を変更する制御(特許文献5参照)等、省エネルギーを図ることができかつガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力を制御領域内に維持できるように様々な提案がなされている。 As control methods for these, various proposals have been made to save energy and maintain the process pressure of the compressed gas at the target point of pressure control in the gas compression piping within the control range, such as control of the number of compressors using a combination pattern according to the detection results of the gas supply flow rate from the gas compression piping to the destination (see Patent Document 3), control of calculating the pipeline resistance of the gas supply piping to the destination and changing the target set value of the pressure control based on the result (see Patent Document 4), and control of calculating the pressure loss in the gas compression piping from the difference between the discharge pressure of the compressor and the process pressure of the compressed gas at the target point of pressure control in the gas compression piping and changing the target set value of the pressure control based on the result (see Patent Document 5).

特開2000-320467号公報JP 2000-320467 A 特開昭58-127216号公報Japanese Unexamined Patent Publication No. 58-127216 特開平06-249151号公報Japanese Patent Application Publication No. 06-249151 特開昭61-201900号公報Japanese Patent Application Publication No. 61-201900 特開2009-013961号公報JP 2009-013961 A

ところで、圧縮機の圧力制御は通常、圧力制御の目標地点での圧送ガスのプロセス圧力が変化し、圧力制御の目標設定値と差が生じると、周知技術であるPID(比例・積分・微分)制御でモータ用インバータや吐出弁開度を制御することで圧縮機の吐出流量を増減させてガス圧送配管への吐出圧力を昇降させ、それによりプロセス圧力を制御する。例えば図6は、従来のガス圧送設備の一例を示しており、このガス圧送設備は、ガス圧送配管1の一端側に圧縮機(CMP)2と吐出弁3とを直列に具えるとともにそのガス圧送配管1の他端側の圧力制御目標地点に圧力計4を具え、その圧力計4で測定する圧送ガスのプロセス圧力P1が別途与えられた圧力制御の目標設定値(目標圧力)SPに近づくように圧力指示調節計(PIC)5が、吐出弁3の開度を制御するとともにインバータ(INV)6を介して圧縮機2の駆動モータの作動を制御する。このガス圧送設備はまた、ガス圧送配管1の他端側に流量計7と吐出弁8とを直列に具え、その流量計7で測定するガス流量に基づいて流量指示調節計(FIC)9が吐出弁8の開度を制御して、ガス圧送配管1から圧送先である混合ガスライン(MGL)10への供給ガス流量を調節し、その混合ガスライン10のガス圧力P2を圧力計11で測定するとともに、その混合ガスライン10から工場等の各使用先(USR)12へ混合ガスを供給する。 In the pressure control of a compressor, when the process pressure of the compressed gas at the target point of the pressure control changes and a difference occurs between the process pressure and the target set value of the pressure control, the motor inverter and the discharge valve opening are controlled by a well-known PID (proportional-integral-derivative) control to increase or decrease the compressor discharge flow rate and raise or lower the discharge pressure to the gas pressure transmission pipe, thereby controlling the process pressure . For example, Fig. 6 shows an example of a conventional gas pressure transmission facility, which includes a compressor (CMP) 2 and a discharge valve 3 in series at one end of a gas pressure transmission pipe 1, and a pressure gauge 4 at the pressure control target point at the other end of the gas pressure transmission pipe 1. A pressure indicating controller ( PIC) 5 controls the opening of the discharge valve 3 and controls the operation of the drive motor of the compressor 2 via an inverter (INV) 6 so that the process pressure P1 of the compressed gas measured by the pressure gauge 4 approaches a separately given target set value (target pressure) SP of the pressure control . This gas pressure transmission equipment also has a flow meter 7 and a discharge valve 8 in series on the other end of the gas pressure transmission piping 1, and a flow indicator controller (FIC) 9 controls the opening of the discharge valve 8 based on the gas flow rate measured by the flow meter 7 to adjust the supply gas flow rate from the gas pressure transmission piping 1 to a mixed gas line (MGL) 10, which is the destination of the gas pressure transmission, and measures the gas pressure P2 in the mixed gas line 10 with a pressure meter 11, and supplies the mixed gas from the mixed gas line 10 to each user (USR) 12, such as a factory.

この図6に示すようなガス圧送設備の構成の場合、特許文献4記載の制御では、圧送先である混合ガスライン10への圧送ガス流量を増やすと、圧力制御目標地点での圧送ガスのプロセス圧力P1が下がり、それに対して圧縮機2の吐出流量を増やすことでプロセス圧力P1を目標設定値SPに保つようにする。また、圧送先である混合ガスライン10への圧送ガス流量を減らすと、圧力制御目標地点での圧送ガスのプロセス圧力P1が上がり、それに対して圧縮機2の吐出流量を減らすことでプロセス圧力P1を目標設定値SPに保つようにする。 6, in the control described in Patent Document 4, when the flow rate of the compressed gas to the mixed gas line 10, which is the destination of the compressed gas, is increased, the process pressure P1 of the compressed gas at the pressure control target point decreases, and the process pressure P1 is maintained at the target set value SP by increasing the discharge flow rate of the compressor 2. Also, when the flow rate of the compressed gas to the mixed gas line 10, which is the destination of the compressed gas, is decreased, the process pressure P1 of the compressed gas at the pressure control target point increases, and the discharge flow rate of the compressor 2 is decreased to maintain the process pressure P1 at the target set value SP.

しかしながら、圧送先のガス圧力が変動する場合、圧縮機の圧力制御の目標設定値は、その圧送先のガス圧力の変動を考慮した上で、常に圧送先のガス圧力より高い値となるように設定しなければならない。このことは、圧縮機の吐出圧力と圧力制御目標地点における圧送ガスのプロセス圧力の差から圧力損失を算出して圧力制御の目標設定値を変更する特許文献5記載の制御においても同様で、基本となる目標設定値は常に圧送先のガス圧力より高い値としなければならない。よって、圧送先のガス圧力が下がっている場合でも圧縮機は必要以上にガスを昇圧していることになり、適切な省エネルギー運転を行っているとは言えない。また、圧送先へのガス流量を増減させることによって圧力制御目標地点のプロセス圧力が下降あるいは上昇してから圧縮機が吐出流量を増減させるので、圧力制御に時間を要し、応答性が良くないという問題がある。 However, when the gas pressure at the pumping destination fluctuates, the target set value of the pressure control of the compressor must always be set to a value higher than the gas pressure at the pumping destination, taking into consideration the fluctuation of the gas pressure at the pumping destination. This is also true of the control described in Patent Document 5, which calculates the pressure loss from the difference between the compressor's discharge pressure and the process pressure of the pumped gas at the pressure control target point to change the target set value of the pressure control, and the basic target set value must always be set to a value higher than the gas pressure at the pumping destination. Therefore, even if the gas pressure at the pumping destination is decreasing, the compressor is pressurizing the gas more than necessary, and it cannot be said that appropriate energy-saving operation is being performed. In addition, since the compressor increases or decreases the discharge flow rate after the process pressure at the pressure control target point decreases or increases by increasing or decreasing the gas flow rate to the pumping destination, there is a problem that pressure control takes time and response is poor.

そして、圧送先へのガス流量の検出結果に応じて圧力損失を計算し、圧力制御の目標設定値を変更する特許文献4記載の制御においては、圧力制御目標地点のプロセス圧力が最小になるようにされているが、圧送先へのガス流量の検出を圧力制御に組み込んでいるため実施面でコストがかかるという問題がある。 In the control described in Patent Document 4, in which the pressure loss is calculated in accordance with the detection results of the gas flow rate to the pumping destination and the target set value of the pressure control is changed, the process pressure at the target point of the pressure control is minimized. However, since the detection of the gas flow rate to the pumping destination is incorporated into the pressure control, there is a problem in that it is costly to implement.

さらに、特許文献4,5記載の制御方法においては何れも、配管構成が変わった場合にその都度圧力損失の算出式を見直す必要があるという問題がある。 Furthermore, the control methods described in Patent Documents 4 and 5 both have the problem that the calculation formula for pressure loss must be reviewed each time the piping configuration is changed.

それゆえ本発明は、前記従来技術の課題を有利に解決し、ガス圧送設備の圧力制御において圧縮ガスの圧送先のガス圧力が変動する場合でも省エネルギー化を図ることができ、かつ圧力制御の応答性を向上させることができるガス圧送設備の圧力制御方法および圧力制御装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a pressure control method and pressure control device for a gas pressure transmission equipment which advantageously solves the problems of the conventional technology, can achieve energy savings even when the gas pressure of the destination of the compressed gas fluctuates in pressure control of the gas pressure transmission equipment , and can improve the responsiveness of pressure control .

前記目的を達成する本発明のガス圧送設備の圧力制御方法は、
ガスを使用先に供給するガスラインのガス圧力が変動する場合における、前記ガスラインを圧送先として圧縮したガスをガス圧送配管により圧送して混入する圧縮機および吐出弁を具えるガス圧送設備の圧力制御を行うに際し、
圧縮ガスの圧送先のガス圧力の変動に応じて圧力制御の目標圧力とする目標設定値を変更し、
前記目標設定値は、前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することで求めた値に基づくものとし、
前記目標設定値に前記プロセス圧力を近づけるように、インバータを介して前記圧縮機の駆動モータの作動を制御するとともに、前記圧縮機が圧縮したガスを前記ガス圧送配管に吐出する前記吐出弁の開度を制御すること、
を特徴としている。
The pressure control method for a gas pressure-transporting facility of the present invention, which achieves the above object, comprises:
When the gas pressure in a gas line that supplies gas to a destination fluctuates, pressure control is performed in a gas pressure transmission facility that includes a compressor and a discharge valve, which pressure-transmits compressed gas through a gas pressure transmission pipe to the gas line as a destination and mixes the compressed gas into the gas pressure transmission pipe,
A target set value serving as a target pressure for pressure control is changed in response to fluctuations in the gas pressure of the destination of compressed gas delivery,
the target set value is based on a value obtained by adding an additive set value, which is a predetermined positive fixed value, to the gas pressure at the pumping destination to obtain a basic set value, and adding to the basic set value an additional set value obtained by multiplying the difference between the basic set value and the process pressure of the pumped gas at a target point of pressure control in the gas pumping piping by a multiplication coefficient value, which is a predetermined positive fixed value;
controlling operation of a drive motor of the compressor via an inverter so as to bring the process pressure close to the target set value, and controlling an opening degree of the discharge valve that discharges the gas compressed by the compressor to the gas pressure feed pipe;
It is characterized by:

また、前記目的を達成する本発明のガス圧送設備の圧力制御装置は、
ガスを使用先に供給するガスラインのガス圧力が変動する場合における、前記ガスラインを圧送先として圧縮したガスをガス圧送配管により圧送して混入する圧縮機および吐出弁を具えるガス圧送設備の圧力制御を行う圧力制御装置において、
前記圧送先のガス圧力を検出する圧送先ガス圧力検出手段と、
前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力を検出するプロセス圧力検出手段と、
前記圧送先ガス圧力検出手段が検出した前記圧送先のガス圧力の変動に応じて圧力制御の目標圧力とする目標設定値を変更し、前記目標設定値は、前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記プロセス圧力検出手段が検出した前記圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することで求めた値に基づくものとする目標設定値変更手段と、
前記目標設定値に前記プロセス圧力を近づけるように、インバータを介して前記圧縮機の駆動モータの作動を制御するとともに、前記圧縮機が圧縮したガスを前記ガス圧送配管に吐出する前記吐出弁の開度を制御する圧力制御手段と、
を具えることを特徴としている。
In addition, the present invention provides a pressure control device for a gas pressure-transfer facility that achieves the above object,
A pressure control device for controlling pressure in a gas pressure transmission facility including a compressor and a discharge valve, which pressure-transmits compressed gas through a gas pressure transmission pipe to a gas line that supplies gas to a destination and mixes the compressed gas therein when the gas pressure in the gas line fluctuates , comprising:
a gas pressure detection means for detecting a gas pressure at the destination;
a process pressure detection means for detecting a process pressure of the pressurized gas at a target point of pressure control in the gas pressure feed pipe;
a target set value changing means for changing a target set value as a target pressure for pressure control in response to fluctuations in the gas pressure of the destination detected by the destination gas pressure detecting means, the target set value being based on a value obtained by adding an additive set value, which is a predetermined positive fixed value, to the gas pressure of the destination to obtain a basic set value, and adding an additional set value, which is obtained by multiplying the difference between the basic set value and the process pressure of the gas of the destination at the target point of pressure control detected by the process pressure detecting means, by a multiplication coefficient value, which is a predetermined positive fixed value, to the basic set value;
a pressure control means for controlling the operation of a drive motor of the compressor via an inverter so as to bring the process pressure close to the target set value, and for controlling an aperture of the discharge valve for discharging the gas compressed by the compressor to the gas pressure transport pipe;
The present invention is characterized by comprising:

前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することは、以下の式(1)の計算を行うものである。
SP = (P2+α)+(((P2+α)-P1)×β)・・・(1)
ここに、
SP:圧力制御の目標設定値
P1:ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力
P2:圧送先のガス圧力
P2+α:基本設定値
((P2+α)-P1)×β:付加設定値
α:加算設定値(設定可変の正の固定値)
β:乗算係数値(設定可変の正の固定値)
である。
The addition of an additive set value, which is a predetermined positive fixed value, to the gas pressure at the destination to obtain a basic set value, and the addition of an additional set value obtained by multiplying the difference between the basic set value and the process pressure of the compressed gas at the target point of pressure control in the gas compression pipe by a multiplication coefficient value, which is a predetermined positive fixed value, to the basic set value is performed by performing the calculation of the following equation (1).
SP = (P2+α)+(((P2+α)-P1)×β)...(1)
Here,
SP: Target set value for pressure control P1: Process pressure of the compressed gas at the target point of pressure control in the gas compression pipe P2: Gas pressure at the destination P2 + α: Basic set value ((P2 + α) - P1) x β: Additional set value α: Additional set value (variable positive fixed value)
β: Multiplication coefficient value (variable positive fixed value)
It is.

本発明のガス圧送設備の圧力制御方法および圧力制御装置によれば、ガスを使用先に供給するガスラインを圧送先として、圧縮したガスをガス圧送配管によりその圧送先に圧送して混入する圧縮機および吐出弁を具えるガス圧送設備の圧力制御において、圧送先のガス圧力が変動する場合に、その圧送先のガス圧力の変動に応じて、常に圧送先のガス圧力に所定の正の固定値である加算設定値αを加算した値を圧力制御の基本設定値とし、その基本設定値に基づいて圧力制御の目標設定値を常時変更し、その変更した目標設定値にガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力を近づけるように、インバータを介して圧縮機の駆動モータの作動を制御するとともに、前記圧縮機が圧縮したガスを前記ガス圧送配管に吐出する前記吐出弁の開度を制御する圧力制御を行うことで、圧縮機による圧送ガスの昇圧を最小限にすることができるので、省エネルギー化を図ることができる。 According to the pressure control method and pressure control device for gas pressure transmission equipment of the present invention, in pressure control of a gas pressure transmission equipment having a compressor and a discharge valve that pressure -transfers compressed gas to a gas line that supplies gas to a destination of use through a gas pressure transmission piping and mixes it with the destination, when the gas pressure at the destination of the pressure transmission fluctuates, a basic setting value for pressure control is set to a value obtained by always adding an additive setting value α, which is a predetermined positive fixed value, to the gas pressure at the destination of the pressure transmission in accordance with the fluctuation of the gas pressure at the destination of the pressure transmission, and a target setting value for pressure control is constantly changed based on the basic setting value, and operation of the drive motor of the compressor is controlled via an inverter so that the process pressure of the compressed gas at the target point of the pressure control in the gas pressure transmission piping approaches the changed target setting value, and pressure control is performed to control the opening of the discharge valve that discharges the gas compressed by the compressor into the gas pressure transmission piping, thereby minimizing the increase in pressure of the compressed gas by the compressor, thereby achieving energy savings.

また、圧送先のガス圧力に所定の加算設定値αを加算した値とガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値βをかけた値を付加設定値とし、基本設定値にその付加設定値を加算した値に基づいて圧力制御の目標設定値を変更することで、圧力制御の目標地点の圧送ガスのプロセス圧力と目標設定値との差が一時的に大きくなり、その変更した目標設定値にプロセス圧力を近づけるようにガス圧送配管での圧力制御を行うので、圧力制御の応答性を向上させることができる。 In addition, an additional setting value is obtained by multiplying the difference between the value obtained by adding a predetermined additional setting value α to the gas pressure at the destination and the process pressure of the compressed gas at the target point of pressure control in the gas compression pipe, which is a predetermined positive fixed value, by multiplying the difference between the process pressure of the compressed gas at the target point of pressure control in the gas compression pipe and the target setting value, and by changing the target setting value of the pressure control based on the value obtained by adding the additional setting value to the basic setting value, the difference between the process pressure of the compressed gas at the target point of pressure control and the target setting value temporarily increases, and pressure control in the gas compression pipe is performed to bring the process pressure closer to the changed target setting value, thereby improving the responsiveness of the pressure control .

この制御においては、圧力制御の目標地点の圧送ガスのプロセス圧力>目標設定値となった場合に、より早く圧縮機による圧送ガスの昇圧を小さくすることができ、この点でも省エネルギー化を図ることができるという効果がある。また、ガス流量計を設置して圧送先への圧送ガス流量を圧力制御に取り込む必要がないのでガス圧送設備の低廉化も図ることができ、さらに、配管構成が変わった場合においてもその都度圧力損失の算出式を見直す必要がない。 In this control, when the process pressure of the compressed gas at the target point of pressure control becomes greater than the target set value, the compressor can reduce the pressure increase of the compressed gas more quickly, which also has the effect of saving energy. In addition , since there is no need to install a gas flow meter and incorporate the compressed gas flow rate to the destination into the pressure control, the gas compression equipment can be made less expensive, and even if the piping configuration is changed, there is no need to review the calculation formula for pressure loss each time.

例えば、バッチ的に発生する製鋼プロセスの吹錬中に発生する可燃性副生ガスを回収しているガスホルダー内のガスを圧縮機が圧縮して圧送先としての混合ガスラインに圧送するようなガス圧送設備の場合、圧縮機の応答性が向上することで、ガスホルダーのホルダーレベルが高くて可燃性副生ガスをガスホルダーで回収できない場合でも圧縮機がより早く多くの可燃性副生ガスを混合ガスラインに払い出すことができ、これにより可燃性副生ガスの放散量を削減する効果を期待することができる。 For example, in the case of a gas pumping system in which a compressor compresses the gas in a gas holder that collects flammable by-product gas generated during blowing in a batch-wise steelmaking process, and pumps the gas to a mixed gas line as the pumping destination , improving the responsiveness of the compressor enables the compressor to deliver more flammable by-product gas to the mixed gas line more quickly even when the holder level of the gas holder is high and the gas holder is unable to collect the flammable by-product gas, which is expected to have the effect of reducing the amount of flammable by-product gas emitted.

なお、制御におけるハンチングを防止するために、前記目標設定値の変更に不感帯を設けても良く、また、設備能力の限界を超えた値にならないようにするために、前記目標設定値の変更に上下限を設けても良い。 In order to prevent hunting in the control, a dead band may be set for the change in the target setting value, and upper and lower limits may be set for the change in the target setting value to prevent the value from exceeding the limits of the equipment capacity.

本発明の圧縮機の圧力制御方法の一実施形態を適用した、本発明の圧縮機の圧力制御装置の一実施形態を具えるガス圧送設備の構成を示す略線図である。1 is a schematic diagram showing a configuration of a gas compression facility including an embodiment of a compressor pressure control device of the present invention, to which an embodiment of a compressor pressure control method of the present invention is applied. 上記実施形態の圧力制御装置における、上記実施形態の圧力制御方法の手順を示すブロック線図である。FIG. 2 is a block diagram showing a procedure of a pressure control method of the embodiment in the pressure control device of the embodiment. 上記実施形態の圧力制御方法における時間経過に伴う目標設定値の変更の不感帯および上下限を示す特性線図である。5 is a characteristic diagram showing a dead zone and upper and lower limits of a change in a target set value over time in the pressure control method according to the embodiment. FIG. 上記実施形態の圧力制御方法への参考のための比較例における時間経過に伴う圧縮機の吐出流量、圧力制御の目標設定値、圧力制御の目標地点のプロセス圧力および混入先ガス圧力の推移を示すトレンドグラフである。1 is a trend graph showing changes over time in the compressor discharge flow rate, the target set value of pressure control, the process pressure at the target point of pressure control, and the mixed gas pressure in a comparative example for reference to the pressure control method of the above embodiment. 上記実施形態の圧力制御方法の実施例における時間経過に伴う圧縮機の吐出流量、圧力制御の目標設定値、圧力制御の目標地点のプロセス圧力および混入先ガス圧力の推移を示すトレンドグラフである。11 is a trend graph showing changes over time in the compressor discharge flow rate, the target set value of pressure control, the process pressure at the target point of pressure control, and the destination gas pressure in the example of the pressure control method of the embodiment. 従来の圧縮機の圧力制御装置を具えるガス圧送設備の構成例を示す略線図である。1 is a schematic diagram showing a configuration example of a gas pressure-transfer facility including a conventional compressor pressure control device.

以下、この発明の実施の形態を図面に基づく実施例によって詳細に説明する。ここに、図1は、本発明の圧縮機の圧力制御方法の一実施形態を適用した、本発明の圧縮機の圧力制御装置の一実施形態の構成を示す略線図であり、図1中、先の図6におけると同様の部分はそれと同一の符号にて示す。 The following describes in detail an embodiment of the present invention with reference to the drawings. Here, FIG. 1 is a schematic diagram showing the configuration of an embodiment of a compressor pressure control device of the present invention to which an embodiment of a compressor pressure control method of the present invention is applied, and in FIG. 1, parts similar to those in FIG. 6 are indicated by the same reference numerals.

すなわち、この実施形態の圧縮機の圧力制御装置を具えるこのガス圧送設備は、ガス圧送配管1の一端側に圧縮機(CMP)2と吐出弁3を直列に具えるとともにそのガス圧送配管1の他端側の圧力制御目標地点にプロセス圧力検出手段としての圧力計4を具え、その圧力計4で測定する圧送ガスのプロセス圧力P1が別途与えられた圧力制御の目標設定値(目標圧力)SPに近づくように圧力制御手段としての圧力指示調節計(PIC)5が吐出弁3の開度を制御するとともにインバータ(INV)6を介して圧縮機2の駆動モータの作動を制御する。このガス圧送設備はまた、ガス圧送配管1の他端側に流量計7と吐出弁8とを直列に具え、その流量計7で測定するガス流量に基づいて流量指示調節計(FIC)9が吐出弁8の開度を制御して、ガス圧送配管1から圧送先である混合ガスライン(MGL)10への圧送ガス流量を調節し、その混合ガスライン10のガス圧力P2を圧送先ガス圧力検出手段としての圧力計11で測定するとともに、その混合ガスライン10から工場等の各使用先(USR)12へ混合ガスを供給する。 That is, this gas pressure transfer facility equipped with the compressor pressure control device of this embodiment is equipped with a compressor (CMP) 2 and a discharge valve 3 in series at one end of a gas pressure transfer pipe 1, and is equipped with a pressure gauge 4 as process pressure detection means at a target point of pressure control at the other end of the gas pressure transfer pipe 1, and a pressure indicating regulator (PIC) 5 as pressure control means controls the opening of the discharge valve 3 so that the process pressure P1 of the compressed gas measured by the pressure gauge 4 approaches a separately given target set value (target pressure) SP for pressure control, and also controls the operation of the drive motor of the compressor 2 via an inverter (INV) 6 . This gas pressure transmission equipment also has a flow meter 7 and a discharge valve 8 in series on the other end of the gas pressure transmission piping 1, and a flow indicator controller (FIC) 9 controls the opening of the discharge valve 8 based on the gas flow rate measured by the flow meter 7 to adjust the flow rate of the pressure gas transmitted from the gas pressure transmission piping 1 to a mixed gas line (MGL) 10 which is the destination of the gas transmission. The gas pressure P2 in the mixed gas line 10 is measured by a pressure gauge 11 which serves as a destination gas pressure detection means, and the mixed gas is supplied from the mixed gas line 10 to each user (USR) 12, such as a factory.

さらに、この実施形態の圧力制御装置は、目標設定値変更手段としての通常のコンピュータ13を具え、このコンピュータ13は、中央処理ユニット(CPU)、メモリおよびハードディスクドライブ装置等の記憶手段、キーボードおよびディスプレイ装置等の入出力装置並びに、それらの入出力装置とCPUとを繋ぐ入出力インターフェースを有する通常のものであり、基本的には、あらかじめ与えられたプログラムに基づき作動して、圧力計4で測定するプロセス圧力P1および圧力計11で測定する混合先(圧送先)のガス圧力P2を入力されるとともに、加算設定値(設定可変の正の固定値)αと乗算係数値(設定可変の正の固定値)βとを入力され、それらプロセス圧力P1,混合先のガス圧力P2,加算設定値αおよび乗算係数値βに基づいて、図1に示すように、以下の式(1)により圧力制御の目標設定値SPを演算し、圧力指示調節計5に与える圧力制御の目標設定値SPをその演算で求めた値に変更する。 Furthermore, the pressure control device of this embodiment is equipped with a normal computer 13 as a target set value changing means, and this computer 13 is a normal one having a central processing unit (CPU), storage means such as a memory and a hard disk drive device, input/output devices such as a keyboard and a display device, and an input/output interface connecting these input/output devices to the CPU, and basically operates based on a pre-given program, and receives as input the process pressure P1 measured by the pressure gauge 4 and the destination (pressure-feed) gas pressure P2 measured by the pressure gauge 11, as well as an additive set value (a settable, positive fixed value) α and a multiplication coefficient value (a settable, positive fixed value) β, and calculates a pressure control target set value SP according to the following equation (1) as shown in FIG. 1 based on the process pressure P1, destination gas pressure P2, additive set value α, and multiplication coefficient value β, and changes the pressure control target set value SP to be given to the pressure indicating regulator 5 to the value determined by this calculation.

Figure 0007532012000001
ここに、
SP:圧力制御の目標設定値(kPa)
P1:ガス圧送配管1での圧力制御の目標地点の圧送ガスのプロセス圧力(kPa)
P2:混合ガスライン10(圧送先)のガス圧力(kPa)
P2+α:基本設定値
((P2+α)-P1)×β:付加設定値
α:加算設定値(設定可変の正の固定値)(kPa)
β:乗算係数値(設定可変の正の固定値)
である。
Figure 0007532012000001
Here,
SP: Target set value for pressure control (kPa)
P1: process pressure (kPa) of the compressed gas at the target point of pressure control in the gas compression pipe 1
P2: Gas pressure (kPa) of mixed gas line 10 (destination)
P2 + α: Basic setting value ((P2 + α) - P1) × β: Additional setting value α: Additional setting value (variable positive fixed value) (kPa)
β: Multiplication coefficient value (variable positive fixed value)
It is.

図1に示す構成の圧送設備の圧縮機2の圧力制御において、混入先の混合ガスライン10のガス圧力P2が変動する場合に、この実施形態の圧力制御装置によれば、そのガス圧力P2の変動に応じて、常に混入先の混合ガスライン10のガス圧力P2に加算設定値αを加算した値である基本設定値(P2+α)を圧力制御の目標設定値SPに用いて目標設定値SPを常時変更することで、圧縮機2によるガス圧送配管1内のガスの昇圧を最小限にすることができ、省エネルギー化が図れるようになる。なお、加算設定値αの値は、運用の中で調整することができるようにするため、設定可変とすることが好ましく、例えばα≧0を設定可能とすることが好ましい。 In the pressure control of the compressor 2 of the pumping equipment shown in Fig. 1, when the gas pressure P2 of the mixed gas line 10 fluctuates, the pressure control device of this embodiment uses a basic set value (P2 + α), which is a value obtained by always adding an additional set value α to the gas pressure P2 of the mixed gas line 10, as the target set value SP of the pressure control in response to the fluctuation of the gas pressure P2, and constantly changes the target set value SP, thereby minimizing the increase in pressure of the gas in the gas pumping pipe 1 by the compressor 2 and achieving energy savings. Note that the additional set value α is preferably variable so that it can be adjusted during operation, and is preferably set to, for example, α ≧ 0.

さらに、この実施形態の圧力制御装置によれば、混合ガスライン10のガス圧力P2に加算設定値αを加算した基本設定値(P2+α)と、ガス圧送配管1での圧力制御の目標地点のプロセス圧力P1との差((P2+α)-P1)に乗算係数値βをかけた値である付加設定値(((P2+α)-P1)×β)を、基本設定値(P2+α)に加えて圧力制御の目標設定値SPに用いることによって、ガス圧送配管1での圧力制御の目標地点のプロセス圧力P1と圧力制御の目標設定値SPとの差が大きくなるので、圧力制御の応答性を向上させることができる。なお、乗算係数値βの値は、運用の中で調整することができるようにするため、設定可変とすることが好まく、例えばβ≧0を設定可能とすることが好ましい。 Furthermore, according to the pressure control device of this embodiment, the additional set value (((P2+α)-P1)×β) which is the difference ((P2+α)-P1) between the basic set value (P2+α) obtained by adding the additive set value α to the gas pressure P2 in the mixed gas line 10 and the process pressure P1 at the target point of pressure control in the gas pressure delivery pipe 1 and the multiplication coefficient value β is used as the target set value SP of pressure control in addition to the basic set value (P2+α), thereby increasing the difference between the process pressure P1 at the target point of pressure control in the gas pressure delivery pipe 1 and the target set value SP of pressure control , thereby improving the responsiveness of pressure control. Note that the value of the multiplication coefficient value β is preferably variable so that it can be adjusted during operation, and it is preferable to be able to set, for example, β≧0.

図2は、上記実施形態の圧力制御装置における、上記実施形態の圧力制御方法の手順を示すブロック線図であり、この実施形態の圧力制御装置ではさらに、混合ガスライン10のガス圧力P2にαを加算した基本設定値(P2+α)と、ガス圧送配管1での圧力制御の目標地点のプロセス圧力P1との差に圧縮機2やインバータ6等の設備故障を防ぐため乗算係数値βをかけた値である付加設定値(((P2+α)-P1)×β)に、圧力計4,11の計器感度やプロセス圧力P1の細かな変動による制御ハンチングの防止を考慮して不感帯(非加算上下限設定値)のフィルタを設けるとともに、目標設定値が圧縮機2等の設備能力の限界を超えた圧力制御の目標設定値にならないように加算上下限設定値のフィルタを設け、加えて、最終出力する圧力制御の目標設定値SPにも、圧力制御の目標設定値の上下限設定値のフィルタを設けている。 FIG. 2 is a block diagram showing the procedure of the pressure control method of the above embodiment in the pressure control device of the above embodiment. The pressure control device of this embodiment further includes an additional set value ((P2+α)-P1)×β) which is a value obtained by multiplying the difference between a basic set value (P2+α) obtained by adding α to the gas pressure P2 in the mixed gas line 10 and the process pressure P1 at the target point of pressure control in the gas pressure transport piping 1 by a multiplication coefficient value β in order to prevent equipment failures of the compressor 2, inverter 6, etc., and a filter for a dead band (non-additive upper and lower limit set value) is provided in consideration of preventing control hunting due to the instrument sensitivity of the pressure gauges 4, 11 and small fluctuations in the process pressure P1. Also, a filter for an additive upper and lower limit set value is provided so that the target set value does not become a pressure control target set value that exceeds the limit of the equipment capacity of the compressor 2, etc., and in addition, a filter for an upper and lower limit set value of the pressure control target set value is provided for the final output pressure control target set value SP.

図3は、上記実施形態の圧力制御方法における横軸に示す時間経過に伴う目標設定値SPの変更の不感帯および上下限を示す特性線図であり、フィルタ通過後は非加算上下限設定値の間では不感帯となり、フィルタ通過前の変化に係らず、数値が0になる。また、フィルタ通過後は加算上下限設定値より上下では一定になり、フィルタ通過前の変化に係らず、数値がそれら加算上下限設定値になる。 Figure 3 is a characteristic diagram showing the dead zone and upper and lower limits of the change in the target set value SP over time shown on the horizontal axis in the pressure control method of the above embodiment, and after passing through the filter, there is a dead zone between the non-additive upper and lower limit set values, and the numerical value becomes 0 regardless of the change before passing through the filter. Also, after passing through the filter, it becomes constant above and below the additive upper and lower limit set values, and the numerical value becomes the additive upper and lower limit set values regardless of the change before passing through the filter.

実際に上記実施形態の圧力制御方法への参考のための比較例の圧力制御方法および上記実施形態の圧力制御方法を用いて制御した図1の圧送設備の圧縮機2の吐出流量Q、圧力制御の目標設定値SP、圧力制御の目標地点のプロセス圧力P1、およびガスの混入先の混合ガスライン10のガス圧力P2の推移の傾向を示すトレンドグラフをそれぞれ図4および図5に示す。 Figures 4 and 5 show trend graphs showing the trends of changes in the discharge flow rate Q of compressor 2 of the pumping equipment of Figure 1, the target set value SP of pressure control , the process pressure P1 at the target point of pressure control, and the gas pressure P2 of the mixed gas line 10 into which the gas is mixed, which are actually controlled using a comparative pressure control method for reference to the pressure control method of the above embodiment, and the pressure control method of the above embodiment, respectively .

図4は、α=1.5、β=0に設定した比較例のトレンドグラフである。混入先の混合ガスライン10へのガス流量を+20kNm/H増やしたタイミングが、トレンドグラフの横軸の0秒である。混入先へのガス流量が増えたことで、圧力制御の目標地点のプロセス圧力P1が下がり出し、圧力制御の目標設定値SPと圧力制御の目標地点のプロセス圧力P1に差が生じたことで、圧力制御によって圧縮機2の吐出流量Qが増加していることがわかる。この比較例の場合、圧縮機2の吐出流量Qが80kNm/Hから100kNm/Hまで増えるのに要した時間は184秒であった。また、混入先のガス圧力P2より常に1.5kPa高い値が、圧力制御の目標設定値SPとなっていることが分かる。αの値は、混入先へのガス流量を増やした場合に、圧力制御の目標地点のプロセス圧力P1の下がった値よりも混入先のガス圧力P2が低い値になるようにすることを考慮して設定する必要がある。そしてその値はできるだけ小さい方が好ましい。 4 is a trend graph of a comparative example in which α=1.5 and β=0 are set. The timing when the gas flow rate to the mixed gas line 10 of the mixing destination is increased by +20 kNm 3 /H is 0 seconds on the horizontal axis of the trend graph. As the gas flow rate to the mixing destination increases, the process pressure P1 at the target point of the pressure control starts to decrease, and a difference occurs between the target set value SP of the pressure control and the process pressure P1 at the target point of the pressure control, which shows that the discharge flow rate Q of the compressor 2 is increased by the pressure control . In the case of this comparative example, it took 184 seconds for the discharge flow rate Q of the compressor 2 to increase from 80 kNm 3 /H to 100 kNm 3 /H. It can also be seen that the target set value SP of the pressure control is always 1.5 kPa higher than the gas pressure P2 of the mixing destination. The value of α must be set so that, when the gas flow rate to the destination is increased, the gas pressure P2 at the destination is lower than the reduced value of the process pressure P1 at the target point of pressure control.The value of α is preferably as small as possible.

図5は、α=1.5、β=1.5に設定した実施例のトレンドグラフである。混入先の混合ガスライン10へのガス流量を+20kNm/H増やしたタイミングが、トレンドグラフの横軸の0秒である。混入先へのガス流量が増えたことで、圧力制御の目標地点のプロセス圧力P1が下がり出し、混入先のガス圧力P2にαを加算した基本設定値(P2+α)と、圧力制御の目標地点のプロセス圧力P1との差に乗算係数値βをかけた値を、混入先のガス圧力P2にαを加算した基本設定値(P2+α)に加算した値を、圧力制御の目標設定値SPとすることによって、圧力制御の目標設定値SPが一時的に高くなり、圧力制御の目標設定値SPと圧力制御の目標地点のプロセス圧力P1との差が図4のトレンドグラフに比べてより大きくなっていることが分かる。この実施例の場合、圧力制御により圧縮機2の吐出流量Qが80kNm/Hから100kNm/Hまで増加するのに要した時間は138秒で、図4のトレンドグラフに比べて46秒早くなっており、圧縮機2の吐出流量Qの推移の傾きからも分かるように、圧縮機2の応答性が向上した良好な圧力制御結果を得ることができた。 5 is a trend graph of an embodiment in which α=1.5 and β=1.5 are set. The timing when the gas flow rate to the mixed gas line 10 of the mixing destination is increased by +20 kNm 3 /H is 0 seconds on the horizontal axis of the trend graph. As the gas flow rate to the mixing destination increases, the process pressure P1 of the target point of the pressure control starts to decrease, and the target set value SP of the pressure control is set to the value obtained by multiplying the difference between the basic set value (P2+α) obtained by adding α to the gas pressure P2 of the mixing destination and the process pressure P1 of the target point of the pressure control by the multiplication coefficient value β. The target set value SP of the pressure control temporarily increases, and it can be seen that the difference between the target set value SP of the pressure control and the process pressure P1 of the target point of the pressure control becomes larger than that of the trend graph of FIG. 4. In this embodiment, the time required for the discharge flow rate Q of the compressor 2 to increase from 80 kNm3/H to 100 kNm3 /H through pressure control was 138 seconds, which is 46 seconds faster than the trend graph of Figure 4. As can be seen from the gradient of the change in the discharge flow rate Q of the compressor 2, good pressure control results with improved responsiveness of the compressor 2 were obtained.

また、この実施例によれば、圧力制御の目標設定値SPと圧力制御の目標地点のプロセス圧力P1にさほど差が無い場合は、混入先のガス圧力P2よりも常に1.5kPa高い値が圧力制御の目標設定値SPとなっていることが分かる。αの値は、混入先へのガス流量を増やした場合に、圧力制御の目標地点のプロセス圧力P1の下がった値よりも混入先のガス圧力P2が低い値になるようにすることを考慮して設定する必要があり、そしてその値は出来るだけ小さい方が好ましく、例えば、運用の中で混入先へのガス流量を増やした場合に、圧力制御の目標地点のプロセス圧力P1が最大で1.4kPa下がるのであれば、1.6≧α>1.4とすることが好ましい。また、βの値は、圧縮機2の応答性向上を図るためには大きい方が好ましいが、設備仕様や制御性(オーバーシュート等)を考慮して設定する必要があり、例えば、β=1.6で、インバータの速度変化レイトの上限に達したり、圧縮機の振動上昇が見受けられたりするのであれば、1.6>β≧1.4とすることが好ましい。 Also, according to this embodiment, when there is not much difference between the target set value SP of the pressure control and the process pressure P1 at the target point of the pressure control , it can be seen that the target set value SP of the pressure control is always 1.5 kPa higher than the gas pressure P2 at the mixing destination. The value of α must be set in consideration of the fact that, when the gas flow rate to the mixing destination is increased, the gas pressure P2 at the mixing destination becomes lower than the reduced value of the process pressure P1 at the target point of the pressure control , and the value is preferably as small as possible. For example, if the process pressure P1 at the target point of the pressure control decreases by a maximum of 1.4 kPa when the gas flow rate to the mixing destination is increased during operation, it is preferable to set the value of 1.6 ≧ α > 1.4. The value of β is preferably large in order to improve the responsiveness of the compressor 2, but it must be set in consideration of the equipment specifications and controllability (overshoot, etc.). For example, if the inverter speed change rate reaches its upper limit or the compressor vibration increases when β = 1.6, it is preferable to set the value of 1.6 > β ≧ 1.4.

以上、図示例に基づき説明したが、この発明は上述の例に限られるものでなく、所要に応じて特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば、上記実施形態の圧力制御方法は、圧縮機2が複数台あった場合に、上述の如くして求めた圧力制御の目標設定値SPをマスター圧力制御目標設定値とし、それを各単体の圧縮機2用の制御に分配して用いることもできる。また、圧縮機2で圧縮するガスの圧送先は、工場等の使用先12に混合ガスを供給する混合ガスライン10に限られず、他の種類の設備でもよい。 Although the above has been explained based on the illustrated example, the present invention is not limited to the above example and can be modified as necessary within the scope of the claims. For example, in the pressure control method of the above embodiment, when there are multiple compressors 2, the pressure control target set value SP obtained as described above can be used as a master pressure control target set value, which can be distributed to the control of each individual compressor 2. In addition, the destination of the gas compressed by the compressor 2 is not limited to the mixed gas line 10 that supplies mixed gas to a user 12 such as a factory, but can be other types of equipment.

かくして本発明のガス圧送設備の圧力制御方法および圧力制御装置によれば、ガス圧送設備の圧力制御において圧縮ガスの圧送先のガス圧力が変動する場合でも省エネルギー化を図ることができ、かつ圧力制御の応答性を向上させることができる。 Thus, according to the pressure control method and pressure control device for gas pressure transmission equipment of the present invention, energy can be saved in pressure control of the gas pressure transmission equipment even when the gas pressure of the destination of the compressed gas fluctuates, and the responsiveness of the pressure control can be improved.

1 ガス圧送配管
2 圧縮機(CMP)
3,8 吐出弁
4,11 圧力計
5 圧力指示調節計(PIC)
6 インバータ(INV)
7 流量計
9 流量指示調節計(FIC)
10 混合ガスライン(MGL)
12 使用先(USR)
13 コンピュータ
SP 圧力制御の目標設定値
P1 圧力制御の目標地点の圧送ガスのプロセス圧力
P2 混合ガスライン(圧送先)のガス圧力
α 加算設定値
β 乗算係数値
1 Gas pressure pipe 2 Compressor (CMP)
3, 8 Discharge valve 4, 11 Pressure gauge 5 Pressure indicating controller (PIC)
6 Inverter (INV)
7 Flowmeter 9 Flow rate indicating controller (FIC)
10 Mixed gas line (MGL)
12 Where to use (USR)
13 Computer SP Target set value of pressure control P1 Process pressure of compressed gas at the target point of pressure control P2 Gas pressure of mixed gas line (destination of compressed gas) α Addition set value β Multiplication coefficient value

Claims (5)

ガスを使用先に供給するガスラインのガス圧力が変動する場合における、前記ガスラインを圧送先として圧縮したガスをガス圧送配管により圧送して混入する圧縮機および吐出弁を具えるガス圧送設備の圧力制御を行うに際し、
圧縮ガスの圧送先のガス圧力の変動に応じて圧力制御の目標圧力とする目標設定値を変更し、
前記目標設定値は、前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することで求めた値に基づくものとし、
前記目標設定値に前記プロセス圧力を近づけるように、インバータを介して前記圧縮機の駆動モータの作動を制御するとともに、前記圧縮機が圧縮したガスを前記ガス圧送配管に吐出する前記吐出弁の開度を制御すること、
を特徴とするガス圧送設備の圧力制御方法。
When the gas pressure in a gas line that supplies gas to a user fluctuates, pressure control is performed in a gas pressure transmission facility that includes a compressor and a discharge valve, which pressure-transmits compressed gas through a gas pressure transmission pipe to the gas line as a destination and mixes the compressed gas therein,
A target set value serving as a target pressure for pressure control is changed in response to fluctuations in the gas pressure of the destination of compressed gas delivery,
the target set value is based on a value obtained by adding an additive set value, which is a predetermined positive fixed value, to the gas pressure at the pumping destination to obtain a basic set value, and adding to the basic set value an additional set value obtained by multiplying the difference between the basic set value and the process pressure of the pumped gas at a target point of pressure control in the gas pumping piping by a multiplication coefficient value, which is a predetermined positive fixed value;
controlling operation of a drive motor of the compressor via an inverter so as to bring the process pressure close to the target set value, and controlling an opening degree of the discharge valve that discharges the gas compressed by the compressor to the gas pressure feed pipe;
A pressure control method for a gas pressure transmission facility , comprising:
前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することは、以下の式(1)の計算を行うものであることを特徴とする、請求項1記載のガス圧送設備の圧力制御方法。
SP = (P2+α)+(((P2+α)-P1)×β)・・・(1)
ここに、
SP:圧力制御の目標設定値
P1:ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力
P2:圧送先のガス圧力
P2+α:基本設定値
((P2+α)-P1)×β:付加設定値
α:加算設定値(設定可変の正の固定値)
β:乗算係数値(設定可変の正の固定値)
である。
2. The pressure control method for a gas pressure transmission facility according to claim 1, wherein the step of adding an additive setting value, which is a predetermined positive fixed value, to the gas pressure at the pressure destination to obtain a basic setting value, and adding an additional setting value obtained by multiplying the difference between the basic setting value and the process pressure of the pressure transmission gas at a target point of pressure control in the gas pressure transmission piping by a multiplication coefficient value, which is a predetermined positive fixed value, to the basic setting value, is performed by performing a calculation according to the following equation (1).
SP = (P2+α)+(((P2+α)-P1)×β)...(1)
Here,
SP: Target set value for pressure control P1: Process pressure of the compressed gas at the target point of pressure control in the gas compression pipe P2: Gas pressure at the destination P2 + α: Basic set value ((P2 + α) - P1) x β: Additional set value α: Additional set value (variable positive fixed value)
β: Multiplication coefficient value (variable positive fixed value)
It is.
前記目標設定値の変更に不感帯を設けることを特徴とする、請求項1または2記載のガス圧送設備の圧力制御方法。 3. The pressure control method for a gas pressure-transport facility according to claim 1, further comprising providing a dead zone for changing the target set value. 前記目標設定値の変更に上下限を設けることを特徴とする、請求項1から3までの何れか1項記載のガス圧送設備の圧力制御方法。 4. The pressure control method for a gas pressure-transport facility according to claim 1, further comprising setting upper and lower limits for changing the target set value. ガスを使用先に供給するガスラインのガス圧力が変動する場合における、前記ガスラインを圧送先として圧縮したガスをガス圧送配管により圧送して混入する圧縮機および吐出弁を具えるガス圧送設備の圧力制御を行う圧力制御装置において、
前記圧送先のガス圧力を検出する圧送先ガス圧力検出手段と、
前記ガス圧送配管での圧力制御の目標地点の圧送ガスのプロセス圧力を検出するプロセス圧力検出手段と、
前記圧送先ガス圧力検出手段が検出した前記圧送先のガス圧力の変動に応じて圧力制御の目標圧力とする目標設定値を変更し、前記目標設定値は、前記圧送先のガス圧力に所定の正の固定値である加算設定値を加算して基本設定値を得るとともに、その基本設定値に、前記基本設定値と前記プロセス圧力検出手段が検出した前記圧力制御の目標地点の圧送ガスのプロセス圧力との差に所定の正の固定値である乗算係数値を乗算して得た付加設定値を加算することで求めた値に基づくものとする目標設定値変更手段と、
前記目標設定値に前記プロセス圧力を近づけるように、インバータを介して前記圧縮機の駆動モータの作動を制御するとともに、前記圧縮機が圧縮したガスを前記ガス圧送配管に吐出する前記吐出弁の開度を制御する圧力制御手段と、
を具えることを特徴とするガス圧送設備の圧力制御装置。
A pressure control device for controlling pressure in a gas pressure transmission facility including a compressor and a discharge valve, which pressure-transmits compressed gas through a gas pressure transmission pipe to a gas line that supplies gas to a destination and mixes the compressed gas therein when the gas pressure in the gas line fluctuates , comprising:
a gas pressure detection means for detecting a gas pressure at the destination;
a process pressure detection means for detecting a process pressure of the pressurized gas at a target point of pressure control in the gas pressure feed pipe;
a target set value changing means for changing a target set value as a target pressure for pressure control in response to fluctuations in the gas pressure of the destination detected by the destination gas pressure detecting means, the target set value being based on a value obtained by adding an additive set value, which is a predetermined positive fixed value, to the gas pressure of the destination to obtain a basic set value, and adding an additional set value, which is obtained by multiplying the difference between the basic set value and the process pressure of the gas of the destination at the target point of pressure control detected by the process pressure detecting means, by a multiplication coefficient value, which is a predetermined positive fixed value, to the basic set value;
a pressure control means for controlling the operation of a drive motor of the compressor via an inverter so as to bring the process pressure close to the target set value, and for controlling an aperture of the discharge valve for discharging the gas compressed by the compressor to the gas pressure transport pipe;
A pressure control device for a gas pressure supply facility, comprising:
JP2019041663A 2019-03-07 2019-03-07 Pressure control method and pressure control device for gas pressure transmission equipment Active JP7532012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019041663A JP7532012B2 (en) 2019-03-07 2019-03-07 Pressure control method and pressure control device for gas pressure transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019041663A JP7532012B2 (en) 2019-03-07 2019-03-07 Pressure control method and pressure control device for gas pressure transmission equipment

Publications (2)

Publication Number Publication Date
JP2020143641A JP2020143641A (en) 2020-09-10
JP7532012B2 true JP7532012B2 (en) 2024-08-13

Family

ID=72353891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019041663A Active JP7532012B2 (en) 2019-03-07 2019-03-07 Pressure control method and pressure control device for gas pressure transmission equipment

Country Status (1)

Country Link
JP (1) JP7532012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004092A1 (en) * 2022-06-29 2024-01-04 Smc株式会社 Fluid control device, fluid pressure supply apparatus, and fluid control method

Also Published As

Publication number Publication date
JP2020143641A (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US4526513A (en) Method and apparatus for control of pipeline compressors
EP1171714B1 (en) Apparatus and method for controlling a pump system
US6652240B2 (en) Method and control system for controlling multiple throttled inlet rotary screw compressors
JP7532012B2 (en) Pressure control method and pressure control device for gas pressure transmission equipment
EP3396160B1 (en) Pneumatic system operation control device and control method
US20220019182A1 (en) Multi-pump control system
JP6921039B2 (en) Unit control device and program
CN111853533B (en) Compressed air production apparatus and target pressure adjustment method
JP2009019842A (en) Water delivery control system and water delivery control method
US10132305B2 (en) Variable speed multi-pump application for providing energy saving by calculating and compensating for friction loss using speed reference
US20030221722A1 (en) Method of damping surges in a liquid system
JP3426447B2 (en) Automatic water supply
EP2935842B1 (en) High pressure turbine speed calculation from fuel system hydraulic pressures
JPH0612116B2 (en) Variable speed water supply device
JPH05118280A (en) Operation control system for variable speed water supply device
JP4047980B2 (en) Operation method of pumps connected in parallel
JP4938304B2 (en) Pump control method and water supply device
JP2555091B2 (en) Control method of multi-stage series pump station group
GB2371088A (en) A method of damping surges in a liquid system
KR102700418B1 (en) Pump Scheduling Apparatus
JPS627399B2 (en)
JP2014080880A (en) Compressed air feed system, and control method thereof
JPS5827893A (en) Method of controlling discharge pressure of pump
JP2005351221A (en) Control system for delivery of pump
JP2002005033A (en) Control method for adjustable speed water feeding unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230330

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230407

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230411

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240731

R150 Certificate of patent or registration of utility model

Ref document number: 7532012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150