JP7528431B2 - Heat storage material and method for producing the same - Google Patents
Heat storage material and method for producing the same Download PDFInfo
- Publication number
- JP7528431B2 JP7528431B2 JP2019217969A JP2019217969A JP7528431B2 JP 7528431 B2 JP7528431 B2 JP 7528431B2 JP 2019217969 A JP2019217969 A JP 2019217969A JP 2019217969 A JP2019217969 A JP 2019217969A JP 7528431 B2 JP7528431 B2 JP 7528431B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- resin
- particles
- storage material
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005338 heat storage Methods 0.000 title claims description 211
- 239000011232 storage material Substances 0.000 title claims description 104
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000002245 particle Substances 0.000 claims description 113
- 229920005989 resin Polymers 0.000 claims description 76
- 239000011347 resin Substances 0.000 claims description 76
- 239000000839 emulsion Substances 0.000 claims description 30
- 239000006185 dispersion Substances 0.000 claims description 13
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 12
- 239000011342 resin composition Substances 0.000 claims description 10
- 238000005187 foaming Methods 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 5
- 239000012736 aqueous medium Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 239000002775 capsule Substances 0.000 claims description 2
- 238000005266 casting Methods 0.000 claims 1
- 239000004088 foaming agent Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 24
- 238000012360 testing method Methods 0.000 description 18
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 239000011810 insulating material Substances 0.000 description 13
- 238000005452 bending Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 238000009413 insulation Methods 0.000 description 11
- 239000002562 thickening agent Substances 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- -1 fatty acid ester Chemical class 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003063 flame retardant Substances 0.000 description 8
- 239000006260 foam Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000004566 building material Substances 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 4
- 229920000877 Melamine resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003945 anionic surfactant Substances 0.000 description 4
- 238000004134 energy conservation Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000004014 plasticizer Substances 0.000 description 4
- 239000004800 polyvinyl chloride Substances 0.000 description 4
- 229920000915 polyvinyl chloride Polymers 0.000 description 4
- 238000005057 refrigeration Methods 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004640 Melamine resin Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000012796 inorganic flame retardant Substances 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000013518 molded foam Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000003021 water soluble solvent Substances 0.000 description 2
- RVHSTXJKKZWWDQ-UHFFFAOYSA-N 1,1,1,2-tetrabromoethane Chemical compound BrCC(Br)(Br)Br RVHSTXJKKZWWDQ-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 1
- LWFBRHSTNWMMGN-UHFFFAOYSA-N 4-phenylpyrrolidin-1-ium-2-carboxylic acid;chloride Chemical compound Cl.C1NC(C(=O)O)CC1C1=CC=CC=C1 LWFBRHSTNWMMGN-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- GEHMBYLTCISYNY-UHFFFAOYSA-N Ammonium sulfamate Chemical compound [NH4+].NS([O-])(=O)=O GEHMBYLTCISYNY-UHFFFAOYSA-N 0.000 description 1
- SRPIPOSSZYWNSW-UHFFFAOYSA-N BrC1C(C(C(C=C1)(Br)OC1(C(C(C(C=C1)Br)(Br)Br)(Br)Br)Br)(Br)Br)(Br)Br Chemical compound BrC1C(C(C(C=C1)(Br)OC1(C(C(C(C=C1)Br)(Br)Br)(Br)Br)Br)(Br)Br)(Br)Br SRPIPOSSZYWNSW-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001944 Plastisol Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229940088990 ammonium stearate Drugs 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- JPNZKPRONVOMLL-UHFFFAOYSA-N azane;octadecanoic acid Chemical compound [NH4+].CCCCCCCCCCCCCCCCCC([O-])=O JPNZKPRONVOMLL-UHFFFAOYSA-N 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- STIAPHVBRDNOAJ-UHFFFAOYSA-N carbamimidoylazanium;carbonate Chemical compound NC(N)=N.NC(N)=N.OC(O)=O STIAPHVBRDNOAJ-UHFFFAOYSA-N 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- DMSZORWOGDLWGN-UHFFFAOYSA-N ctk1a3526 Chemical compound NP(N)(N)=O DMSZORWOGDLWGN-UHFFFAOYSA-N 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- WHHGLZMJPXIBIX-UHFFFAOYSA-N decabromodiphenyl ether Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=C(Br)C(Br)=C(Br)C(Br)=C1Br WHHGLZMJPXIBIX-UHFFFAOYSA-N 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- CDMADVZSLOHIFP-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 CDMADVZSLOHIFP-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229960000789 guanidine hydrochloride Drugs 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 150000002366 halogen compounds Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- CAYGQBVSOZLICD-UHFFFAOYSA-N hexabromobenzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1Br CAYGQBVSOZLICD-UHFFFAOYSA-N 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 208000015325 multicentric Castleman disease Diseases 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004999 plastisol Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Laminated Bodies (AREA)
- Building Environments (AREA)
Description
本発明は、各種使用態様に応じた適温保持、省エネルギー化が可能な蓄熱材に関する。特に、住宅等の居住空間や自動車等の室内の適温保持に有用な蓄熱材に関する。 The present invention relates to a heat storage material that can maintain an appropriate temperature and save energy depending on various usage modes. In particular, the present invention relates to a heat storage material that is useful for maintaining an appropriate temperature in living spaces such as houses and inside automobiles.
近年、住宅やオフィス等の居住空間において省エネルギー化の要請が高まっており、住宅等に使用される建築材料にも省エネルギー化に貢献する材料が求められている。一般的には、床、天井、壁面等に断熱材を用いて冷暖房の効率化が図られているが、さらなる省エネルギー化のために各種材料の検討がなされている。また、自動車や航空機等の閉空間や、冷蔵車等の冷蔵庫内においても同様に省エネルギー化の要請が高い。 In recent years, there has been an increasing demand for energy conservation in residential spaces such as homes and offices, and there is a demand for building materials used in homes and other buildings that contribute to energy conservation. In general, efficient heating and cooling is achieved by using insulating materials on floors, ceilings, walls, etc., but various materials are being considered for further energy savings. There is also a high demand for energy conservation in closed spaces such as automobiles and airplanes, and inside refrigerators in refrigerated vehicles.
このような蓄熱性の材料として、発泡樹脂に蓄熱性粒子を含む塗液を塗布した蓄熱性発泡体や、フォーム材に蓄熱性粒子をさせた建材等が開示されている(特許文献1~2参照)。 Examples of such heat storage materials that have been disclosed include heat storage foams in which a coating liquid containing heat storage particles is applied to a foamed resin, and building materials in which heat storage particles are applied to foam materials (see Patent Documents 1 and 2).
気泡と蓄熱性粒子とを有する蓄熱性材料は、気泡と蓄熱性粒子により断熱性や蓄熱性を有するものであるが、建材等への実用化に際しては、蓄熱性や保温性、断熱性の更なる向上が求められていた。 Heat storage materials that have air bubbles and heat storage particles have insulating and heat storage properties due to the air bubbles and heat storage particles, but for practical use in building materials, etc., further improvements in heat storage, heat retention, and insulation properties are required.
本発明が解決しようとする課題は、蓄熱性粒子を含有しながらも好適な成型性を有する蓄熱材を空隙率と蓄熱性粒子の含有率を好適に調整可能な蓄熱材を提供することにあり、さらには、空隙や蓄熱性粒子を高密度で含有することが可能な蓄熱材を提供することにある。 The problem that the present invention aims to solve is to provide a heat storage material that has suitable moldability while containing heat storage particles, and in which the porosity and heat storage particle content can be suitably adjusted, and further, to provide a heat storage material that can contain voids and heat storage particles at a high density.
本発明は、蓄熱性粒子が樹脂で被覆された被覆粒子が前記樹脂にて結合してなり、前記蓄熱性粒子に前記樹脂の水性分散液を混合した際の蓄熱性粒子100質量部に対する前記樹脂の水性分散液の吸収量が70質量部以下である蓄熱材により、上記課題を解決するものである。 The present invention solves the above problems by providing a heat storage material in which heat storage particles are coated with a resin and the coated particles are bonded together by the resin, and when the heat storage particles are mixed with an aqueous dispersion of the resin, the amount of the aqueous dispersion of the resin absorbed per 100 parts by mass of the heat storage particles is 70 parts by mass or less.
本発明の蓄熱材は、蓄熱性粒子が樹脂で被覆された被覆粒子が、当該被覆粒子により結合され、当該被覆粒子間に空隙を有する構成により、成形されたフォーム材に蓄熱性粒子を保持させた構成や樹脂マトリクス中に独立気泡や蓄熱性粒子が分散した構成に比べ、蓄熱性粒子や空隙、さらにはその両者を高密度で含有することができる。また、空隙率と蓄熱性粒子の含有率の調整も容易であることから、所望の用途に応じて蓄熱性や保温性、断熱性を好適に調整できる。 The heat storage material of the present invention has a structure in which heat storage particles are coated with a resin, and the coated particles are bonded together with voids between them. This structure allows the heat storage particles, voids, or both to be contained at a high density compared to a structure in which heat storage particles are held in a molded foam material or a structure in which isolated bubbles or heat storage particles are dispersed in a resin matrix. In addition, since the void ratio and the content of heat storage particles can be easily adjusted, the heat storage, heat retention, and insulation properties can be appropriately adjusted according to the desired application.
さらに、優れた蓄熱性や保温性、断熱性を有しながらも軽量化が可能であることから、大判の形状とした際の施工性や、輸送時の取り扱い性等にも優れる。また、空隙を有さない蓄熱材に比して、蓄熱材の含有量が少なくとも好適な蓄熱性や保温性、断熱性を実現できる。さらに、各種形状への成型や加工も容易であり、蓄熱性粒子の脱落も生じにくく、柔軟性の付与も容易であることから、各種用途に好適に適用できる。 Furthermore, since it is possible to reduce the weight while still having excellent heat storage, heat retention, and insulation properties, it is also easy to install when made into a large shape and easy to handle during transportation. Also, compared to heat storage materials that do not have voids, it is possible to achieve suitable heat storage, heat retention, and insulation properties even with a low content of heat storage material. Furthermore, it can be easily molded and processed into various shapes, the heat storage particles are unlikely to fall off, and it is easy to impart flexibility, making it suitable for a variety of uses.
このような本発明の蓄熱材は、各種用途に使用でき、住宅等の居住空間の壁材や壁紙、自動車、電車、航空機、農業ハウス等の室内、さらには、冷蔵車や冷蔵設備の冷蔵庫内、航空機の庫内等の閉空間、パソコンのCPUや蓄電池などの熱を発生する電気部品に適用する材料等、各種用途において好適に省エネルギー化に貢献できる。 The heat storage material of the present invention can be used for a variety of purposes, including as wall materials and wallpaper in residential spaces such as houses, the interiors of automobiles, trains, aircraft, agricultural greenhouses, and other closed spaces such as the inside of refrigerators in refrigerated vehicles and refrigeration equipment and the inside of aircraft cabinets, and as a material for electrical components that generate heat, such as computer CPUs and storage batteries, and can contribute favorably to energy conservation in a variety of applications.
本発明の蓄熱材は、蓄熱性粒子が樹脂で被覆された被覆粒子が前記樹脂にて結合してなり、前記蓄熱性粒子に前記樹脂の水性分散液を混合した際の蓄熱性粒子100質量部に対する前記樹脂の水性分散液の吸収量が70質量部以下の蓄熱材である。 The heat storage material of the present invention is a heat storage material in which heat storage particles are coated with a resin and the coated particles are bonded with the resin, and when the heat storage particles are mixed with an aqueous dispersion of the resin, the amount of the aqueous dispersion of the resin absorbed per 100 parts by mass of the heat storage particles is 70 parts by mass or less.
[蓄熱性粒子]
本発明に使用する蓄熱性粒子は、有機系蓄熱性粒子や無機系蓄熱性粒子等、各種の公知の蓄熱性粒子を使用できる。なかでも、取扱いや成形体の成形が容易であることから、固体-液体の相変化による潜熱蓄熱材を含有する蓄熱性粒子が好ましい。
[Heat storage particles]
The heat storage particles used in the present invention may be various known heat storage particles such as organic heat storage particles, inorganic heat storage particles, etc. Among them, heat storage particles containing a latent heat storage material that undergoes a solid-liquid phase change are preferred because they are easy to handle and form into a molded product.
当該蓄熱性粒子は、相変化による溶融時の染み出し等の問題や、混入時の分散性を考慮して、有機材料等からなる外殻中にパラフィンなどの潜熱蓄熱材料を内包した、カプセル化された有機系蓄熱性粒子や、無機材料からなる無機系蓄熱性粒子を好ましく使用できる。
これら蓄熱性粒子の中でも、パラフィンや脂肪酸エステル等の有機系潜熱蓄熱材をメラミンやアクリル等の有機材料からなる外殻で被覆した蓄熱性カプセル粒子を好ましく使用できる。また、蓄熱性粒子としては、水の吸収量が少ないものを好ましく使用できる。
Taking into consideration problems such as seepage during melting due to phase change and dispersibility when mixed in, it is preferable to use encapsulated organic heat storage particles that encapsulate a latent heat storage material such as paraffin in an outer shell made of an organic material, or inorganic heat storage particles made of an inorganic material.
Among these heat storage particles, heat storage capsule particles in which an organic latent heat storage material such as paraffin or fatty acid ester is covered with an outer shell made of an organic material such as melamine or acrylic are preferably used. In addition, as the heat storage particles, those that absorb a small amount of water are preferably used.
このような蓄熱性粒子としては、例えば、メラミン樹脂からなる外殻を用いたものとして、三菱製紙社製サーモメモリーFP-16,FP-25,FP-31,FP-39、三木理研工業社製リケンレジンPMCD-15SP,25SP,32SP等が例示できる。また、シリカからなる外殻を用いたものとして、三木理研工業社製リケンレジンLA-15,LA-25,LA-32等、ポリメチルメタクリレート樹脂からなる外殻を用いたものとして、BASF社製MicronalDS5001X,5040X等、ウレタン樹脂からなる外殻を用いたものとして、JSR社製CALGRIP NJ2021,NJ2721等が例示できる。 Examples of such heat storage particles include Thermomemory FP-16, FP-25, FP-31, and FP-39 manufactured by Mitsubishi Paper Mills, which use an outer shell made of melamine resin, and Riken Resin PMCD-15SP, 25SP, and 32SP manufactured by Miki Riken Kogyo Co., Ltd. Examples of particles using an outer shell made of silica include Riken Resin LA-15, LA-25, and LA-32 manufactured by Miki Riken Kogyo Co., Ltd. Examples of particles using an outer shell made of polymethyl methacrylate resin include Micronal DS5001X and 5040X manufactured by BASF, and examples of particles using an outer shell made of urethane resin include CALGRIP NJ2021 and NJ2721 manufactured by JSR Corporation.
本発明に使用する蓄熱性粒子の粒子径は特に制限されないが、その平均粒子径が10~3000μmであることが好ましい。当該範囲の粒子を使用することで得られる蓄熱材の空隙部を好適に形成しやすく、かつ良好な成型性を実現しやすくなる。当該粒子径は、30μm以上とすることが好ましく、50μm以上とすることがより好ましく、100μm以上とすることがより好ましい。また、好適な空隙部の形成や良好な成型性と共に、好適に粒子を保持しやすいことから、蓄熱性粒子の平均粒子径を3000μm以下とすることが好ましく、2000μm以下とすることがより好ましく、1000μ以下とすることが特に好ましい。当該粒子径は、一次粒子の平均粒子径が上記範囲であることが好ましい。 The particle diameter of the heat storage particles used in the present invention is not particularly limited, but the average particle diameter is preferably 10 to 3000 μm. By using particles in this range, it is easy to form voids in the obtained heat storage material and to realize good moldability. The particle diameter is preferably 30 μm or more, more preferably 50 μm or more, and even more preferably 100 μm or more. In addition to forming suitable voids and having good moldability, the average particle diameter of the heat storage particles is preferably 3000 μm or less, more preferably 2000 μm or less, and particularly preferably 1000 μm or less, because it is easy to hold the particles in a suitable manner. It is preferable that the average particle diameter of the primary particles is in the above range.
蓄熱性粒子の平均粒子径は、平均粒径はレーザー回折式粒度分布測定装置(株式会社堀場製作所製のLA-950V2)により測定して、得られたメジアン径(累積分布の50%に相当する粒径、50%粒径)を平均粒径とする。 The average particle size of the heat storage particles is measured using a laser diffraction particle size distribution measuring device (LA-950V2 manufactured by Horiba, Ltd.), and the resulting median diameter (particle size equivalent to 50% of the cumulative distribution, 50% particle size) is taken as the average particle size.
潜熱蓄熱材は、特定の温度の融点において相変化する。すなわち、室温が融点を超えた場合は、固体から液体へ相変化し、室温が融点より下がった場合は、液体から固体へ相変化する。潜熱蓄熱材の融点は、その使用態様に応じて調整すればよく、-20℃~120℃程度の温度範囲にて固/液相転移を示すものを適宜使用できる。例えば、住宅等の居住空間や、自動車、電車、航空機、農業ハウス等の室内等の適温を維持し、省エネルギー化を図る場合には、この融点を日常生活に適した温度、具体的には10~35℃、好ましくは15~30℃に設計した潜熱蓄熱材を混入する事により、適温維持性能を発揮する事ができる。より詳細に冬季又は夏季の適温維持性能を調整する場合には、冬場の暖房効果を持続させる事を目的とすれば25~28℃程度を融点とした潜熱蓄熱材を混入する。もしくは、夏場の冷房効率を持続させる事を目的とすれば20~23℃程度を融点とした潜熱蓄熱材を混入する事ができる。両方の効果を発現するには融点設計の異なる2種類以上の潜熱蓄熱材を混入すればよい。また、冷蔵設備等の庫内の省エネルギー化を図る場合には、-10℃~5℃程度の融点の潜熱蓄熱材を使用すればよい。 A latent heat storage material undergoes a phase change at a specific melting point. That is, when the room temperature exceeds the melting point, the phase changes from solid to liquid, and when the room temperature falls below the melting point, the phase changes from liquid to solid. The melting point of the latent heat storage material can be adjusted according to the mode of use, and materials that exhibit a solid/liquid phase transition in a temperature range of about -20°C to 120°C can be used as appropriate. For example, in order to maintain an appropriate temperature in a living space such as a house, or in the interior of a car, train, airplane, agricultural house, etc., and to conserve energy, a latent heat storage material whose melting point is designed to be a temperature suitable for daily life, specifically 10 to 35°C, preferably 15 to 30°C, can be mixed to achieve the appropriate temperature maintenance performance. In order to adjust the appropriate temperature maintenance performance in winter or summer in more detail, a latent heat storage material with a melting point of about 25 to 28°C is mixed in if the purpose is to maintain the heating effect in winter. Alternatively, if the goal is to maintain cooling efficiency in the summer, latent heat storage material with a melting point of around 20 to 23°C can be mixed in. To achieve both effects, two or more types of latent heat storage material with different melting point designs can be mixed in. Also, if you want to save energy inside refrigeration equipment, etc., you can use a latent heat storage material with a melting point of around -10°C to 5°C.
[樹脂]
本発明に使用する樹脂は、上記蓄熱性粒子を被覆すると共に当該被覆粒子間を結合する樹脂である。当該樹脂が被覆粒子間を三次元網目状に結合することで、空隙部を有する蓄熱材を形成できる。
[resin]
The resin used in the present invention is a resin that coats the heat storage particles and bonds the coated particles together. The resin bonds the coated particles together in a three-dimensional network, thereby forming a heat storage material having voids.
本発明においては、使用する蓄熱性粒子に前記樹脂の水性分散液を混合した際の蓄熱性粒子100質量部に対する前記樹脂の水性分散液の吸収量が70質量部以下である樹脂を使用することで、蓄熱材中に好適に空隙を確保しやすく、また、当該樹脂により被覆された蓄熱性粒子間を当該樹脂により好適に結合でき、好適な強度の蓄熱材を得ることができる。また、蓄熱材の製造に際しても良好な塗工性を確保しやすく、好適に蓄熱材を成型しやすくなる。当該吸収量は、60質量部以下とすることがより好ましく、55質量部以下とすることがさらに好ましく、50質量部以下とすることが特に好ましい。蓄熱性粒子に対する前記樹脂の水性分散液の吸収量は、例えば、JIS K5101-13-1に準じて測定することができる。なお、前記樹脂の水性分散液としては、水45質量部中に樹脂55質量部が分散した水性分散液を使用する。 In the present invention, by using a resin that absorbs 70 parts by mass or less of the aqueous dispersion of the resin per 100 parts by mass of the heat storage particles when the aqueous dispersion of the resin is mixed with the heat storage particles used, it is easy to ensure suitable voids in the heat storage material, and the heat storage particles coated with the resin can be bonded by the resin, and a heat storage material with suitable strength can be obtained. In addition, it is easy to ensure good coating properties during the production of the heat storage material, and it is easy to mold the heat storage material. The absorption amount is more preferably 60 parts by mass or less, even more preferably 55 parts by mass or less, and particularly preferably 50 parts by mass or less. The absorption amount of the aqueous dispersion of the resin to the heat storage particles can be measured, for example, in accordance with JIS K5101-13-1. Note that, as the aqueous dispersion of the resin, an aqueous dispersion in which 55 parts by mass of resin is dispersed in 45 parts by mass of water is used.
当該樹脂の種類は特に制限されず、空隙部を有する構造を形成できる樹脂であれば特に制限なく使用できる。なかでも、蓄熱材の全体構造を好適に形成しやすく、また良好な空隙部の形成や空隙率の確保が容易であることから、機械発泡により空隙部を形成できるエマルジョン樹脂を好ましく使用できる。当該エマルジョン樹脂としては、例えば、アクリル系エマルジョン、ウレタン系エマルジョン、エチレン酢酸ビニル系エマルジョン、塩化ビニル系エマルジョン、エポキシ系エマルジョン等が例示でき、なかでも、アクリル系エマルジョンは耐熱性や断熱性に優れ、ウレタン系エマルジョンは柔軟性に優れることから、特に好ましく使用できる。 There are no particular limitations on the type of resin, and any resin that can form a structure with voids can be used without particular limitations. Among them, emulsion resins that can form voids by mechanical foaming are preferably used because they are easy to form the overall structure of the heat storage material and are easy to form good voids and ensure porosity. Examples of such emulsion resins include acrylic emulsions, urethane emulsions, ethylene vinyl acetate emulsions, vinyl chloride emulsions, and epoxy emulsions. Among them, acrylic emulsions are particularly preferred because they have excellent heat resistance and insulation, and urethane emulsions are particularly preferred because they have excellent flexibility.
エマルジョン樹脂の粒子径は、上記蓄熱性粒子の被覆や、樹脂で被覆された蓄熱性粒子間を好適に結着しやすいことから、その平均粒子径が30~1500nmであることが好ましく、50~1000nmであることが特に好ましい。エマルジョン粒子の平均粒子径は、動的光散乱法により測定される50%メジアン径、例えば、日機装(株)製マイクロトラックUPA型粒度分布測定装置により測定される体積基準での50%メジアン径を平均粒子径とすることができる。 The particle diameter of the emulsion resin is preferably 30 to 1500 nm, and particularly preferably 50 to 1000 nm, because this facilitates favorable bonding between the heat storage particles and the heat storage particles coated with the resin. The average particle diameter of the emulsion particles can be the 50% median diameter measured by dynamic light scattering, for example, the 50% median diameter on a volume basis measured by a Microtrac UPA type particle size distribution measuring device manufactured by Nikkiso Co., Ltd.
[蓄熱材]
本発明の蓄熱材は、上記蓄熱性粒子が上記樹脂で被覆された被覆粒子が当該樹脂にて結合してなる構造体である。本発明の蓄熱材は、当該構成により、成形されたフォーム材に蓄熱性粒子を保持させた構成や樹脂マトリクス中に独立気泡や蓄熱性粒子が分散した構成に比べ、蓄熱性粒子と空隙の両者を高密度で含有することができる。また、空隙率と蓄熱性粒子の含有率の調整も容易であることから、所望の用途に応じて蓄熱性や保温性、断熱性を好適に調整できる。さらに、軽量で各種形状への成型や加工も容易であり、蓄熱性粒子の脱落も生じにくく、柔軟性の付与も容易であることから、各種用途に好適に適用できる。
[Heat storage material]
The heat storage material of the present invention is a structure in which the heat storage particles are coated with the resin and the coated particles are bonded by the resin. The heat storage material of the present invention can contain both heat storage particles and voids at a high density compared to a structure in which heat storage particles are held in a molded foam material or a structure in which closed bubbles or heat storage particles are dispersed in a resin matrix. In addition, since the porosity and the content of heat storage particles can be easily adjusted, the heat storage property, heat retention property, and heat insulation property can be suitably adjusted according to the desired application. Furthermore, since it is lightweight and easy to mold and process into various shapes, the heat storage particles are unlikely to fall off, and flexibility can be easily imparted, it can be suitably applied to various applications.
本発明の蓄熱材は、蓄熱性粒子が樹脂で被覆された被覆粒子間を当該被覆樹脂が結合し、当該被覆樹脂間に空隙を有する構造である。蓄熱材の比重は0.15~0.9であることが好ましく、0.3~0.9であることが好適な温度保持性を得やすいため好ましい。また、軽量化が容易であり、好適な加工性も得やすくなる。 The heat storage material of the present invention has a structure in which heat storage particles are coated with a resin, and the coating resin bonds between the coated particles, with gaps being formed between the coated particles. The specific gravity of the heat storage material is preferably 0.15 to 0.9, and is preferably 0.3 to 0.9, as this makes it easier to obtain suitable temperature retention. In addition, it is easy to reduce the weight, and suitable processability is also easily obtained.
本発明の蓄熱材中の蓄熱性粒子の含有率は、所望の用途に応じて適宜調整できるが、好適な蓄熱性や断熱性を実現しやすいことから、15~80質量%であることが好ましく、30~50質量%であることがより好ましい。 The content of heat storage particles in the heat storage material of the present invention can be adjusted as appropriate depending on the desired application, but it is preferably 15 to 80% by mass, and more preferably 30 to 50% by mass, as this makes it easier to achieve suitable heat storage and insulation properties.
蓄熱材中の樹脂含有率は、空隙及び蓄熱性粒子の含有量の調整や、両者の含有量を向上させやすいことから、20~85質量%であることが好ましく、50~70質量%であることがより好ましい。 The resin content in the heat storage material is preferably 20 to 85% by mass, and more preferably 50 to 70% by mass, since this makes it easier to adjust the content of voids and heat storage particles and to increase the content of both.
また、好適な温度保持性や断熱性を得やすいことから、蓄熱性粒子と樹脂の含有量比が、蓄熱性粒子/樹脂で表される固形分質量比で80/20~15/85であることが好ましく、50/50~30/70であることがより好ましい。 In addition, since it is easier to obtain suitable temperature retention and heat insulation, the content ratio of the heat storage particles and the resin, expressed as the solid mass ratio of heat storage particles/resin, is preferably 80/20 to 15/85, and more preferably 50/50 to 30/70.
本発明の蓄熱材は各種形状に成型でき、取り扱いの容易なシート状への成型も容易である。また切断等の加工も容易であることから、取り扱い性に優れる。 The heat storage material of the present invention can be molded into various shapes, and can also be easily molded into sheets that are easy to handle. It is also easy to process, such as by cutting, and is therefore easy to handle.
形状や大きさは、所望の用途等に応じて適宜調整すればよいが、例えば、建築材料用のシート状とする場合には、その厚みが1mm以上であることが好ましく、2mm以上であることがより好ましい。 The shape and size may be adjusted as appropriate depending on the desired application, but for example, when used as a sheet for building materials, the thickness is preferably 1 mm or more, and more preferably 2 mm or more.
本発明の蓄熱材は、JIS K5600-5-1(1999)に準拠した耐屈曲性試験において割れの生じるマンドレル直径が25mm以下、好ましくは20mm以下、より好ましくは16mm以下とすることで、好適な柔軟性や各種材料への優れた追従性を確保できる。 The heat storage material of the present invention can ensure suitable flexibility and excellent conformability to various materials by setting the mandrel diameter at which cracks occur in a bending resistance test conforming to JIS K5600-5-1 (1999) to 25 mm or less, preferably 20 mm or less, and more preferably 16 mm or less.
また、蓄熱材のJIS L1913(2010)に規定するガーレ法に準拠して測定した剛軟度が0.1~30mNであることが好ましく、0.5~20mNであることがより好ましく、1~10mNであることが更に好ましい。剛軟度を当該範囲とすることで、好適な柔軟性や各種材料への優れた追従性を確保できる。 The bending resistance of the heat storage material measured according to the Gurley method specified in JIS L1913 (2010) is preferably 0.1 to 30 mN, more preferably 0.5 to 20 mN, and even more preferably 1 to 10 mN. By keeping the bending resistance within this range, suitable flexibility and excellent conformability to various materials can be ensured.
本発明の蓄熱材は、好ましくは引張強さを0.1MPa以上とすることで、柔軟性を有しながらも強靭な層とすることができ、加工時や搬送時等にも割れが生じにくく、好適な加工性や取扱い性、搬送適正、曲げ適性等を得やすくなるため好ましい。引張強さは0.2MPa以上であることがより好ましい。引張強さの上限は特に制限されるものではないが、15MPa以下程度であることが好ましく、10MPa以下であることがより好ましく、5MPa以下であることが特に好ましい。 The heat storage material of the present invention preferably has a tensile strength of 0.1 MPa or more, which allows for a layer that is flexible yet strong, and is less likely to crack during processing or transportation, making it easier to obtain suitable processability, handling, transportability, bending suitability, etc. It is more preferable that the tensile strength is 0.2 MPa or more. There is no particular upper limit to the tensile strength, but it is preferably about 15 MPa or less, more preferably 10 MPa or less, and particularly preferably 5 MPa or less.
また、蓄熱材の引張破断時の伸び率を好ましくは10%以上とすることで、シートの脆化を抑制でき、加工時や搬送時等に曲げや歪みが生じた場合にも、割れや欠けが生じにくいため好ましい。引張破断時の伸び率は30%以上であることがより好ましく、50%以上であることが更に好ましい。伸び率の上限は1000%以下であることが好ましく、500%以下であることがより好ましく、300%以下であることが更に好ましい。伸び率を当該範囲とすることで、強靭でありながら好適な柔軟性を実現でき、良好な加工性や取扱い性、搬送適正、各種材料への追従性等を得やすくなる。 In addition, by setting the elongation rate at tensile break of the heat storage material to 10% or more, embrittlement of the sheet can be suppressed, and cracks and chips are less likely to occur even if bending or distortion occurs during processing or transportation, etc., which is preferable. The elongation rate at tensile break is more preferably 30% or more, and even more preferably 50% or more. The upper limit of the elongation rate is preferably 1000% or less, more preferably 500% or less, and even more preferably 300% or less. By setting the elongation rate within this range, it is possible to achieve suitable flexibility while maintaining toughness, and it is easy to obtain good processability, ease of handling, transportability, and ability to follow various materials.
引張強さ、引張破断時の伸び率は、JIS K6251に準じて測定される。具体的には、蓄熱層単体をシート状に形成した蓄熱シートをダンベル状2号形に切り出し、初期の標線間距離を20mmとして2本の標線をつけた試験片を作成する。この試験片を引張り試験機に取り付け、速度200mm/minで引っ張って破断させる。この時、破断までの最大の力(N)、及び破断時の標線間距離(mm)を測定し、以下の式により引張り強さと引張り破断時の伸び率を算出する。 The tensile strength and elongation at break are measured in accordance with JIS K6251. Specifically, a heat storage sheet formed from a single heat storage layer in a sheet form is cut into a dumbbell shape No. 2, and a test specimen is created with two marks with an initial gauge distance of 20 mm. This test specimen is attached to a tensile tester and pulled to break at a speed of 200 mm/min. The maximum force (N) until break and the gauge distance (mm) at break are measured, and the tensile strength and elongation at break are calculated using the following formula.
引張強さTS(MPa)は以下の式により算出する。
TS=Fm/Wt
Fm:最大の力(N)
W:平行部分の幅(mm)
t:平行部分の厚さ(mm)
The tensile strength TS (MPa) is calculated by the following formula.
TS=Fm/Wt
Fm: Maximum force (N)
W: Width of parallel part (mm)
t: thickness of parallel part (mm)
引張り破断時の伸び率Eb(%)は以下の式により算出する。
Eb=(Lb-L0)/L0×100
Lb:破断時の標線間距離(mm)
L0:初期の標線間距離(mm)
The tensile elongation at break Eb (%) is calculated according to the following formula.
Eb=(Lb-L0)/L0×100
Lb: Gauge distance at break (mm)
L0: Initial gauge length (mm)
本発明の蓄熱材には、必要に応じて各種添加剤を含有してもよい。当該添加剤としては、例えば、難燃剤、ホルムアルデヒド等の有害物質吸着剤、着色顔料、消臭剤等を好ましく使用できる。 The heat storage material of the present invention may contain various additives as necessary. Examples of such additives that can be preferably used include flame retardants, adsorbents for harmful substances such as formaldehyde, coloring pigments, and deodorants.
[製造方法]
本発明の蓄熱材の好ましい製造方法としては、樹脂、蓄熱性粒子及び水性媒体を含有するエマルジョン樹脂組成物を機械発泡させた後、塗布や注型し、乾燥して製造する方法を使用できる。当該製造に際しては、乾燥後に必要に応じて熱や紫外線等により硬化してもよい。
[Production method]
A preferred method for producing the heat storage material of the present invention is to mechanically foam an emulsion resin composition containing a resin, heat storage particles, and an aqueous medium, and then coat or cast the composition and dry it. In the production, the composition may be cured by applying heat or ultraviolet light, if necessary, after drying.
エマルジョン樹脂組成物に使用する水性媒体としては、水を好ましく使用できる。また、水と水溶性溶剤との混合物であってもよい。水溶性溶剤としては、例えば、メチルアルコール、エチルアルコール、イソプロピルアルコール、エチルカルビトール、エチルセロソルブ、ブチルセロソルブ等のアルコール類、N-メチルピロリドン等の極性溶剤等を使用でき、1種又は2種以上を使用してもよい。 As the aqueous medium used in the emulsion resin composition, water is preferably used. It may also be a mixture of water and a water-soluble solvent. As the water-soluble solvent, for example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, ethyl carbitol, ethyl cellosolve, butyl cellosolve, etc., polar solvents such as N-methylpyrrolidone, etc., can be used, and one or more kinds may be used.
本発明の蓄熱材は、エマルジョン樹脂組成物のほか、必要に応じて、界面活性剤、増粘剤、難燃剤、架橋剤、その他の添加物を含んでいてもよい。例えば、起泡した泡の微細化や安定化のために、任意の界面活性剤を使用できる。界面活性剤としては特に制限されず、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等のいずれを用いてもよいが、起泡した泡の安定性の観点から、アニオン系界面活性剤が好ましく、特にステアリン酸アンモニウム等の脂肪酸アンモニウム系界面活性剤がより好ましい。界面活性剤は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The heat storage material of the present invention may contain, in addition to the emulsion resin composition, a surfactant, a thickener, a flame retardant, a crosslinking agent, and other additives as necessary. For example, any surfactant can be used to refine and stabilize the foamed foam. There are no particular limitations on the surfactant, and any of anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, etc. may be used. From the viewpoint of the stability of the foamed foam, anionic surfactants are preferred, and fatty acid ammonium surfactants such as ammonium stearate are particularly preferred. The surfactants may be used alone or in combination of two or more.
本発明に使用するエマルジョン樹脂組成物中には、起泡した泡の安定性や成膜性を向上させるために増粘剤を必要量含有してもよい。増粘剤としては、例えば、アクリル酸系増粘剤、ウレタン系増粘剤、ポリビニルアルコール系増粘剤等を使用できる。なかでも、アクリル酸系増粘剤、ウレタン系増粘剤を好ましく使用できる。 The emulsion resin composition used in the present invention may contain a necessary amount of a thickener to improve the stability of the foamed foam and the film-forming properties. Examples of the thickener that can be used include acrylic acid-based thickeners, urethane-based thickeners, and polyvinyl alcohol-based thickeners. Of these, acrylic acid-based thickeners and urethane-based thickeners are preferably used.
本発明のエマルジョン樹脂組成物中には、蓄熱材の難燃性を向上させるために難燃剤を必要量含有してもよい。当該難燃剤としては、特に制限されるものではなく、有機難燃剤、無機系難燃剤を適宜使用できる。有機難燃剤としては、例えば、リン系化合物、ハロゲン化合物、グアニジン化合物などがあり、具体的にはリン酸第一アンモニウム、リン酸第二アンモニウム、リン酸トリエステル、亜リン酸エステル、フォスフォニウム塩、リン酸トリアミド、塩素化パラフィン、臭化アンモニウム、デカブロモビスフェノール、テトラブロモビスフェノールA、テトラブロモエタン、デカブロモジフェニルオキサイド、ヘキサブロモフェニルオキサイド、ペンタブロモオキサイド、ヘキサブロモベンゼン、塩酸グアニジン、炭酸グアニジン、リン酸グアニル尿素等を例示できる。無機系難燃剤としては、例えば、アンチモンやアルミニウムの化合物、ホウ素化合物、アンモニウム化合物などがあり、具体的には、五酸化アンチモン、三酸化アンチモン、四ホウ酸ナトリウム十水和物(ホウ砂)、硫酸アンモニウム、スルファミン酸アンモニウム等を例示できる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The emulsion resin composition of the present invention may contain a necessary amount of a flame retardant to improve the flame retardancy of the heat storage material. The flame retardant is not particularly limited, and organic flame retardants and inorganic flame retardants can be used as appropriate. Examples of organic flame retardants include phosphorus compounds, halogen compounds, and guanidine compounds. Specific examples include primary ammonium phosphate, secondary ammonium phosphate, phosphoric acid triester, phosphorous acid ester, phosphonium salt, phosphoric acid triamide, chlorinated paraffin, ammonium bromide, decabromobisphenol, tetrabromobisphenol A, tetrabromoethane, decabromodiphenyl oxide, hexabromophenyl oxide, pentabromo oxide, hexabromobenzene, guanidine hydrochloride, guanidine carbonate, and guanylurea phosphate. Inorganic flame retardants include, for example, antimony or aluminum compounds, boron compounds, and ammonium compounds, and specific examples include antimony pentoxide, antimony trioxide, sodium tetraborate decahydrate (borax), ammonium sulfate, and ammonium sulfamate. These may be used alone or in combination of two or more.
本発明のエマルジョン樹脂組成物中には、蓄熱材の強度を向上させるために硬化剤を必要量含有してもよい。当該硬化剤としては、使用する水分散性樹脂の種類に応じて適宜選択すればよく、エポキシ系硬化剤、メラミン系硬化剤、イソシアネート系硬化剤、カルボジイミド系硬化剤、オキサゾリン系硬化剤等を例示できる。 The emulsion resin composition of the present invention may contain a required amount of a curing agent to improve the strength of the heat storage material. The curing agent may be appropriately selected depending on the type of water-dispersible resin used, and examples of the curing agent include epoxy-based curing agents, melamine-based curing agents, isocyanate-based curing agents, carbodiimide-based curing agents, and oxazoline-based curing agents.
エマルジョン樹脂組成物中のエマルジョン樹脂の含有量は、例えば、アクリル系エマルジョン樹脂を使用する場合には、水性媒体100質量部に対して、30~200質量部とすることが好ましく、50~150質量部とすることがより好ましい。当該範囲とすることで、粘度を良好な範囲に調整しやすく、また、安定な発泡性を得やすくなる。エマルジョン樹脂組成物中の蓄熱性粒子の含有量は、蓄熱材中の蓄熱性粒子/樹脂の比率が上記した比率となるように含有すればよい。 When an acrylic emulsion resin is used, the content of the emulsion resin in the emulsion resin composition is preferably 30 to 200 parts by mass, and more preferably 50 to 150 parts by mass, per 100 parts by mass of the aqueous medium. By setting the content within this range, it is easy to adjust the viscosity to a good range and also easy to obtain stable foamability. The content of the heat storage particles in the emulsion resin composition may be such that the ratio of heat storage particles to resin in the heat storage material is the above-mentioned ratio.
エマルジョン樹脂組成物中に界面活性剤を使用する場合の含有量は、好適な発泡性を得やすいことから、エマルジョン樹脂100質量部(固形分)に対して、30質量部以下とすることが好ましく、0.5~20質量部とすることがより好ましく、3~15質量部とすることがさらに好ましい。増粘剤を使用する場合には、エマルジョン樹脂100質量部(固形分)に対して、0.1~10質量部とすることが好ましく、0.5~8質量部とすることがより好ましい。 When a surfactant is used in the emulsion resin composition, the content is preferably 30 parts by mass or less, more preferably 0.5 to 20 parts by mass, and even more preferably 3 to 15 parts by mass, per 100 parts by mass (solid content) of emulsion resin, since this makes it easier to obtain suitable foaming properties. When a thickener is used, the content is preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 8 parts by mass, per 100 parts by mass (solid content) of emulsion resin.
[蓄熱積層体]
本発明の蓄熱材は、各種の機能層と積層することで蓄熱積層体とすることも好ましい。機能層との積層としては、断熱層との積層体が好ましい構成として例示できる。本発明の蓄熱材は、当該断熱層との積層により、極めて優れた温度保持性や断熱性を実現できる。当該断熱層との積層体は、例えば建築物の壁面や床面、天井面等の建築材料として使用した際に、蓄熱層の熱吸収及び熱放出が室内側と効果的になされ、室内の適温維持効果を特に好適に発揮することができる。また、室内の熱の流出を防ぐ、もしくは、外気からの熱の影響の軽減にも有効である。本発明の蓄熱積層体は、これら複合作用により、室内の温度変化を抑制し、室内を適温に保つ事ができる。また、エアコンや冷蔵設備等の空調機器を使用した場合に、その消費エネルギーを低減することもできる。これにより、好適に室内の省エネルギー化に貢献できる。
[Heat storage laminate]
The heat storage material of the present invention is preferably formed into a heat storage laminate by laminating it with various functional layers. As a preferred example of lamination with a functional layer, a laminate with a heat insulating layer can be exemplified. The heat storage material of the present invention can realize extremely excellent temperature retention and heat insulation by laminating it with the heat insulating layer. When the laminate with the heat insulating layer is used as a building material such as the wall surface, floor surface, or ceiling surface of a building, for example, the heat storage layer effectively absorbs and releases heat from the indoor side, and the effect of maintaining a suitable temperature in the room can be particularly preferably exhibited. It is also effective in preventing the outflow of heat from the room or reducing the influence of heat from the outside air. The heat storage laminate of the present invention can suppress temperature changes in the room and keep the room at a suitable temperature by these combined actions. In addition, when air conditioning equipment such as air conditioners and refrigeration equipment is used, the energy consumption can be reduced. This can contribute to energy saving in the room.
断熱層としては、熱伝導率が0.1W/m・K未満の層を好ましく使用できる。当該断熱層は、蓄熱層から外気への熱の流出を防ぎ、かつ、外気の温度影響を低減させる効果を発揮するものである。断熱層は、熱伝導率が0.1W/m・K未満の層を形成できるものであれば特に限定されず、例えば、発泡樹脂シート、断熱材料を含有する樹脂シート等の断熱シートや、押出し法ポリスチレン、ビーズ法ポリスチレン、ポリエチレンフォーム、ウレタンフォーム、フェノールフォーム等の断熱ボード等を適宜使用できる。なかでも、断熱シートは施工性を確保しやすいため好ましく、断熱材料を含有した樹脂シートである事が熱伝導率を低減できるためより好ましい。また、発泡シートは入手が容易であり、安価であるため好ましい。 As the insulating layer, a layer with a thermal conductivity of less than 0.1 W/m·K can be preferably used. This insulating layer prevents heat from escaping from the heat storage layer to the outside air and reduces the temperature effect of the outside air. The insulating layer is not particularly limited as long as it can form a layer with a thermal conductivity of less than 0.1 W/m·K. For example, insulating sheets such as foamed resin sheets and resin sheets containing insulating materials, and insulating boards such as extrusion polystyrene, bead polystyrene, polyethylene foam, urethane foam, and phenol foam can be appropriately used. Among them, insulating sheets are preferred because they are easy to install, and resin sheets containing insulating materials are more preferred because they can reduce thermal conductivity. In addition, foamed sheets are preferred because they are easy to obtain and inexpensive.
断熱層はシート状とすることで施工性を確保しやすくなるが、なかでも、円筒形マンドレル屈曲試験機(JIS K 5600)による測定値が、マンドレル直径で2~32mmであることが好ましい。 The insulation layer can be easily constructed by forming it into a sheet, but it is particularly preferable that the mandrel diameter measured using a cylindrical mandrel bending tester (JIS K 5600) be 2 to 32 mm.
断熱層に使用する断熱材料は、蓄熱積層体の断熱性を高めるものであり、例えば、多孔質シリカ、多孔質アクリル、中空ガラスビーズ、真空ビーズ、中空ファイバーなどが挙げられる。この断熱材料5は、公知のものを用いればよい。本発明では、特に、多孔質アクリルを好適として用いる事ができる。断熱材料の粒径は、限定される事はないが、1~300μm程度である事が好ましい。 The insulating material used in the insulating layer is one that enhances the insulating properties of the heat storage laminate, and examples of such materials include porous silica, porous acrylic, hollow glass beads, vacuum beads, and hollow fibers. Any known material may be used as the insulating material 5. In the present invention, porous acrylic is particularly suitable for use. The particle size of the insulating material is not limited, but is preferably about 1 to 300 μm.
断熱層として断熱材料を含有する樹脂シートを使用する場合には、断熱材料を、ベースとなる樹脂材料に混入してシート成形を行う。樹脂材料としては、前述と同様に、例えば、ポリ塩化ビニル、ポリフェニレンサルファイド、ポリプロピレン、ポリエチレン、ポリエステル、又はアクリロニトリル-ブタジエン-スチレン樹脂などが挙げられる。ポリエステルとしては、A-PET、PET-G等を使用できる。なかでも、火災時の低燃焼性の面から、自己消化性である塩化ビニル樹脂を好適に用いる事ができる。 When using a resin sheet containing a heat insulating material as the heat insulating layer, the heat insulating material is mixed into the base resin material and then sheet molding is performed. As mentioned above, examples of the resin material include polyvinyl chloride, polyphenylene sulfide, polypropylene, polyethylene, polyester, and acrylonitrile-butadiene-styrene resin. As polyester, A-PET, PET-G, etc. can be used. Among them, polyvinyl chloride resin, which is self-extinguishing, is preferably used in terms of low flammability in the event of a fire.
シートの成形方法としては、例えば、塩化ビニル樹脂と可塑剤と断熱材料を、押出し成形、カレンダー成形などの成形機を用いてシートの成形を行う。 For example, the sheet is formed by molding polyvinyl chloride resin, plasticizer, and insulating material using a molding machine such as extrusion molding or calendar molding.
断熱層中の断熱材料の含有量は、断熱層中の20質量%以上であることが好ましく、20~80質量%であることがより好ましく、30~80質量%であることが更に好ましく、40~80質量%であることが特に好ましい。断熱材の含有量を当該範囲とすることで、好適に断熱効果を発揮でき、また、断熱層を形成しやすくなる。 The content of the insulating material in the insulating layer is preferably 20% by mass or more, more preferably 20 to 80% by mass, even more preferably 30 to 80% by mass, and particularly preferably 40 to 80% by mass. By keeping the content of the insulating material within this range, the insulating effect can be optimally exhibited, and the insulating layer can be easily formed.
断熱層中には、必要に応じて、可塑剤、難燃材等の添加剤を配合してもよい。 Additives such as plasticizers and flame retardants may be added to the insulating layer as needed.
断熱層の層厚は、特に限定されないが、厚みが増す程室内の保温性が上がる。シートとしての湾曲性や施工性を保有する為には、50~3000μm程度である事が好ましい。 There are no particular limitations on the thickness of the insulating layer, but the thicker it is, the better the heat retention inside the room will be. In order to maintain the bendability and workability of the sheet, it is preferable for the thickness to be around 50 to 3,000 μm.
また、不燃紙等の不燃層と積層することで難燃性を向上させることができ、居住空間への適用に特に好適である。また、例えば、熱拡散層や断熱層と積層することで、蓄熱性をより効果的に発現することもできる。また、居住空間の内壁等へ適用するために、化粧層や装飾層を設けることもできる。 In addition, by laminating it with a non-flammable layer such as non-flammable paper, the flame retardancy can be improved, making it particularly suitable for application to living spaces. In addition, by laminating it with, for example, a thermal diffusion layer or a heat insulating layer, the heat storage properties can be more effectively expressed. In addition, a decorative layer or a decorative layer can be provided for application to the interior walls of living spaces, etc.
不燃層と積層した構成としては、本発明の蓄熱材の片面又は両面に不燃紙を積層した構成を例示できる。片面に不燃紙を積層した構成としては、本発明の蓄熱材を不燃紙に貼り合せた構成であってもよいが、不燃紙上に直接本発明の蓄熱材を形成する発泡組成物を塗布、乾燥した構成とすると形成が容易であるため好ましい。また、両面に不燃紙を有する構成としては、本発明の蓄熱材の両面に不燃紙を貼り合せた構成であってもよいが、不燃紙上に発泡組成物を塗布、乾燥した不燃紙積層蓄熱材の蓄熱材面同士を貼り合せることで容易に形成できる。 An example of a configuration in which a non-combustible layer is laminated is a configuration in which non-combustible paper is laminated on one or both sides of the heat storage material of the present invention. A configuration in which non-combustible paper is laminated on one side may be a configuration in which the heat storage material of the present invention is laminated to the non-combustible paper, but it is preferable because it is easy to form a configuration in which the foaming composition that forms the heat storage material of the present invention is directly applied to the non-combustible paper and dried. In addition, a configuration in which non-combustible paper is laminated on both sides of the heat storage material of the present invention may be a configuration in which non-combustible paper is laminated on both sides of the heat storage material of the present invention, but it can be easily formed by laminating the heat storage material surfaces of non-combustible paper laminated heat storage materials in which the foaming composition is applied to the non-combustible paper and dried.
当該不燃紙としては、不燃性を有するものであれば特に限定しないが、例えば、紙に難燃剤を塗布、含浸、内添しているものを使用できる。難燃剤としては、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、リン酸塩、ホウ酸塩、ステファミン酸塩等の塩基性化合物、ガラス繊維等が例示できる。 The fireproof paper is not particularly limited as long as it is fireproof, but for example, paper coated, impregnated, or internally loaded with a fireproof agent can be used. Examples of fireproof agents include metal hydroxides such as magnesium hydroxide and aluminum hydroxide, basic compounds such as phosphates, borates, and stephamates, and glass fibers.
熱拡散層を積層した構成として室内等の閉空間に適用した場合には、熱拡散層で室内の熱を均一化する効果を持たせるとともに、室内(住宅等の居住空間や、自動車、電車、航空機等の室内、冷蔵車の冷蔵庫内、航空機の庫内等の閉空間等)からの熱を分散して熱抵抗が少なく蓄熱層へ伝える事ができる。蓄熱層では蓄熱性粒子により室内の熱吸収及び室内への熱放出がなされ、室内の温度環境下を適温に制御できる。 When the thermal diffusion layer is applied in a laminated configuration to a closed space such as a room, the thermal diffusion layer has the effect of equalizing the heat in the room, and disperses heat from inside the room (such as the living space of a house, the interior of a car, train, airplane, etc., the inside of a refrigerator in a refrigerated car, the inside of an airplane's cabinet, etc.), allowing it to be transferred with little thermal resistance to the heat storage layer. In the heat storage layer, the heat storage particles absorb heat from inside the room and release it back into the room, allowing the temperature environment inside the room to be controlled at an appropriate temperature.
熱拡散層としては、熱伝導率が5~400W/m・Kの高い熱伝導率を有する層を好ましく使用できる。高い熱伝導率により、局所に集中した熱を拡散して蓄熱層へ伝えて熱効率を向上し、かつ室温を均一化できる。 As the thermal diffusion layer, a layer with high thermal conductivity of 5 to 400 W/m·K can be preferably used. High thermal conductivity allows locally concentrated heat to be diffused and transferred to the heat storage layer, improving thermal efficiency and making the room temperature uniform.
熱拡散層の材料としては、例えば、アルミニウム、銅、鉄、グラファイトなどが挙げられる。本発明では、特にアルミニウムを好適に用いることができる。アルミニウムが好適な理由として、放射熱の反射による断熱効果も発現することが挙げられる。特に、放射熱による暖房器具では、断熱効果により暖房効率を向上する事ができる。放射熱を主とした暖房器具としては、例えば、電気式床暖房、温水式床暖房、赤外線ヒーターなどが挙げられる。また、防災の視点からも難燃性能を向上させる事ができる。 Materials for the thermal diffusion layer include, for example, aluminum, copper, iron, and graphite. In the present invention, aluminum is particularly suitable for use. The reason why aluminum is suitable is that it also exhibits an insulating effect by reflecting radiant heat. In particular, in heating appliances that use radiant heat, the insulating effect can improve heating efficiency. Examples of heating appliances that mainly use radiant heat include electric floor heating, hot water floor heating, and infrared heaters. In addition, it can improve flame retardant performance from the perspective of disaster prevention.
熱拡散層の形態としては、上記材料のシートからなる層や、上記材料の蒸着層等の適宜な形態を使用できる。材料としてアルミニウムを使用する場合には、たとえば、アルミ箔、アルミ蒸着層などの湾曲性があるものを好ましく使用できる。 The thermal diffusion layer may be in any suitable form, such as a layer made of a sheet of the above material or a vapor-deposited layer of the above material. When aluminum is used as the material, it is preferable to use a flexible material such as aluminum foil or an aluminum vapor-deposited layer.
熱拡散層の層厚は、特に限定されないが、3~500μm程度とすることで、好適な熱拡散性や取扱い性を確保しやすくなるため好ましい。 The thickness of the thermal diffusion layer is not particularly limited, but a thickness of about 3 to 500 μm is preferable because it makes it easier to ensure suitable thermal diffusion and ease of handling.
本発明の蓄熱材は、主に建築物の内壁、天井、床などにおける内装材用途として好適に用いられるが、窓のサッシ枠の被服材や、車両等の内装材としても適用可能である。また、建築物の壁、床、天井に限らず、自動車、電車、飛行機などの室内に使用する事も可能である。また、冷蔵設備の低温保持材料や、パソコンのCPUや蓄電池など熱を発生する電気部品の低温維持材料としても使用することも可能である。また、面状発熱体等のヒーターを併用して、蓄熱による省エネルギー効果を発現しても良い。 The heat storage material of the present invention is suitable for use mainly as an interior material for the inner walls, ceilings, floors, etc. of buildings, but can also be used as a covering material for window sash frames and as an interior material for vehicles, etc. It can also be used not only in the walls, floors, and ceilings of buildings, but also in the interiors of automobiles, trains, airplanes, etc. It can also be used as a low-temperature maintaining material for refrigeration equipment and for electrical components that generate heat, such as CPUs and storage batteries in personal computers. It can also be used in combination with a heater such as a planar heating element to achieve energy saving effects through heat storage.
また、本発明の蓄熱材は、優れた柔軟性や各種材料への追従性や強靭性を確保しやすいことから、曲面や複雑な表面形状を有する材料を被覆する用途や変形が生じる用途、例えば、寝具やソファー、衣服等の用途にも好ましく適用できる。また、筒状物への巻き付けも容易であり、湾曲した長茎植物の茎や株元に巻き付けによる保温用途等にも好適に使用できる。 In addition, since the heat storage material of the present invention is easy to ensure excellent flexibility, conformability to various materials, and toughness, it can be preferably used in applications where it covers materials with curved or complex surface shapes, or where deformation occurs, such as bedding, sofas, and clothing. It can also be easily wrapped around cylindrical objects, and can be suitably used for insulation applications such as wrapping it around the stems or bases of curved, long-stalked plants.
(実施例1)
水分散アクリルエマルジョン樹脂(1)(DIC社製 DICNAL MF-342 カイ15:不揮発分55%)100質量部、アニオン界面活性剤6質量部、増粘剤3質量部、有機系潜熱蓄熱材をウレタン樹脂からなる外殻を用いてマイクロカプセル化した蓄熱性粒子(1)(平均一次粒子径150μm、融点27℃)100質量部を配合し、ディスパーにて攪拌混合し(2000rpm、3分)、機械発泡用バインダーを作成した。使用した蓄熱性粒子100質量部に対する上記水分散アクリルエマルジョン樹脂の吸収量は28質量部であった。これをPETフィルム上にアプリケーターにて塗布した後、予備乾燥として100℃のドライヤー温度で5分間加熱後、140℃のドライヤー温度で10分間熱処理して硬化させ、厚さ3.5mmの蓄熱材を形成した。この蓄熱材の比重は0.39、蓄熱材の質量は1390g/m2、蓄熱材に含有する蓄熱性粒子の質量は897g/m2であった。得られた蓄熱材を切断した断面を電子顕微鏡(キーエンス社製デジタルマイクロスコープVHX-900)で確認した。
Example 1
Water-dispersed acrylic emulsion resin (1) (DIC DICNAL MF-342 Kai 15: non-volatile content 55%) 100 parts by weight, anionic surfactant 6 parts by weight, thickener 3 parts by weight, heat storage particles (1) (average primary particle diameter 150 μm, melting point 27 ° C.) in which an organic latent heat storage material is microencapsulated using an outer shell made of a urethane resin were blended, and the mixture was stirred and mixed with a disperser (2000 rpm, 3 minutes) to prepare a mechanical foaming binder. The absorption amount of the water-dispersed acrylic emulsion resin relative to 100 parts by weight of the heat storage particles used was 28 parts by weight. This was applied to a PET film with an applicator, and then heated at a dryer temperature of 100 ° C. for 5 minutes as pre-drying, and then heat-treated at a dryer temperature of 140 ° C. for 10 minutes to harden, forming a heat storage material having a thickness of 3.5 mm. The specific gravity of this heat storage material was 0.39, the mass of the heat storage material was 1390 g/m 2 , and the mass of the heat storage particles contained in the heat storage material was 897 g/m 2. A cross section of the obtained heat storage material was examined with an electron microscope (Keyence Corporation Digital Microscope VHX-900).
(実施例2)
実施例1にて使用した蓄熱性粒子(1)100質量部にかえて、同蓄熱性粒子(1)を20質量部使用した以外は実施例1と同様にして、厚さ3.3mmの蓄熱材を形成した。この蓄熱材の比重は0.27、蓄熱材の質量は884g/m2、蓄熱材に含有する蓄熱性粒子の質量は236g/m2であった。
Example 2
A heat storage material having a thickness of 3.3 mm was formed in the same manner as in Example 1, except that 20 parts by mass of the heat storage particles (1) were used instead of 100 parts by mass of the heat storage particles (1) used in Example 1. The specific gravity of this heat storage material was 0.27, the mass of the heat storage material was 884 g/ m2 , and the mass of the heat storage particles contained in the heat storage material was 236 g/ m2 .
(実施例3)
実施例1にて使用した蓄熱性粒子(1)100質量部にかえて、有機系潜熱蓄熱材をアクリル樹脂からなる外殻を用いてマイクロカプセル化した蓄熱性粒子(2)(平均一次粒子径1mm、融点26℃)100質量部使用した以外は実施例1と同様にして、厚さ3.2mmの蓄熱材を形成した。この蓄熱材の比重は0.43、蓄熱材の質量は1354g/m2、蓄熱材に含有する蓄熱性粒子の質量は874g/m2であった。得られた蓄熱材を切断した断面を電子顕微鏡(キーエンス社製デジタルマイクロスコープVHX-900)で確認した。
Example 3
A heat storage material having a thickness of 3.2 mm was formed in the same manner as in Example 1, except that 100 parts by mass of heat storage particles (2) (average primary particle diameter 1 mm, melting point 26°C) in which an organic latent heat storage material was microencapsulated with an outer shell made of acrylic resin was used instead of 100 parts by mass of the heat storage particles (1) used in Example 1. The specific gravity of this heat storage material was 0.43, the mass of the heat storage material was 1354 g/ m2 , and the mass of the heat storage particles contained in the heat storage material was 874 g/ m2 . A cross section of the obtained heat storage material was confirmed with an electron microscope (Keyence Corporation Digital Microscope VHX-900).
(比較例1)
水分散アクリルエマルジョン樹脂(DIC社製 DICNAL MF-342 カイ15:不揮発分55%)100質量部、アニオン界面活性剤6質量部、増粘剤3質量部、潜熱蓄熱材をメラミン樹脂からなる外殻を用いてマイクロカプセル化した蓄熱性粒子(H1)(平均一次粒子径5μm、融点27℃)100質量部を配合し、ディスパーにて攪拌混合し(2000rpm、3分)、機械発泡用バインダーを作成した。作成したバインダーは流動性がなく、アプリケーターでの塗工はできなかった。
(Comparative Example 1)
100 parts by mass of water-dispersed acrylic emulsion resin (DICNAL MF-342 Kai 15, manufactured by DIC Corporation: non-volatile content 55%), 6 parts by mass of anionic surfactant, 3 parts by mass of thickener, and 100 parts by mass of heat storage particles (H1) (average primary particle size 5 μm, melting point 27° C.) in which latent heat storage material is microencapsulated with an outer shell made of melamine resin were mixed and stirred and mixed with a disper (2000 rpm, 3 minutes) to prepare a mechanical foaming binder. The prepared binder had no fluidity and could not be applied with an applicator.
(比較例2)
実施例1にて使用した蓄熱性粒子(3)100質量部にかえて、有機系潜熱蓄熱材をアクリル樹脂からなる外殻を用いてマイクロカプセル化した蓄熱性粒子(H2)(平均一次粒子径5μm、融点25℃)100質量部使用した以外は比較例1と同様にして、ディスパーにて攪拌混合し(2000rpm、3分)、機械発泡用バインダーを作成した。作成したバインダーは流動性がなく、アプリケーターでの塗工はできなかった。
(Comparative Example 2)
A mechanical foaming binder was prepared in the same manner as in Comparative Example 1, except that 100 parts by mass of heat storage particles (H2) (average primary particle size 5 μm, melting point 25° C.) in which an organic latent heat storage material was microencapsulated with an outer shell made of acrylic resin was used instead of 100 parts by mass of the heat storage particles (3) used in Example 1. The binder had no fluidity and could not be applied with an applicator.
上記実施例及び比較例の蓄熱材及び使用した蓄熱性粒子につき、以下の評価を行った。得られた結果は下表のとおりである。 The following evaluations were carried out on the heat storage materials and heat storage particles used in the above examples and comparative examples. The results are shown in the table below.
<樹脂吸収量>
蓄熱性粒子への樹脂の吸収量を、JIS K5101-13-1に準じて以下の方法にて測定した。蓄熱性粒子1gを秤量した試料をガラス板上に設置し、水分散エマルジョン樹脂をビュレットから一回に4~5滴ずつ徐々に加え、鋼製のパレットナイフで試料に練り込んだ。これを繰り返し、蓄熱性粒子と樹脂が塊状になるまで滴下を続けた。以後、1滴ずつ滴下して完全に混練するようにして繰り返し、滑らかな硬さになったところを終点とし、当該吸収量を樹脂の吸収量とし、蓄熱性粒子100質量部に対する樹脂の吸収量を算出した。
<Resin absorption amount>
The amount of resin absorbed into the heat storage particles was measured by the following method in accordance with JIS K5101-13-1. A sample of 1 g of heat storage particles was weighed and placed on a glass plate, and 4 to 5 drops of water-dispersed emulsion resin were gradually added from a burette at a time, and the resin was kneaded into the sample with a steel palette knife. This was repeated, and the dropwise addition was continued until the heat storage particles and resin became lumpy. Thereafter, the dropwise addition was repeated so as to completely mix the mixture, and the end point was the point at which the mixture became smooth and hard, and the absorption amount was taken as the amount of resin absorbed, and the amount of resin absorbed per 100 parts by mass of heat storage particles was calculated.
<蓄熱性評価試験>
実施例及び比較例にて作成したシートをペルチェ式温度変化プレートに設置した。プレートと接触した面の反対側に熱電対をセットし、プレートに設置したシートを上から断熱材で覆った。熱電対の温度変化はデータロガーで記録した。プレートの温度を35℃に設定し、30分間保持して恒温状態とした。その後、プレートの温度を35℃から15℃に1分かけて変化させたときの熱電対の温度変化を測定した。プレート温度変化開始時から、熱電対の温度が20℃に到達するまでの時間を算出し、保温性を評価した。
◎:20℃に到達するまでの時間が5分以上
○:20℃に到達するまでの時間が3分以上
×:20℃に到達するまでの時間が3分未満
<Heat storage evaluation test>
The sheets prepared in the examples and comparative examples were placed on a Peltier-type temperature change plate. A thermocouple was set on the opposite side of the surface in contact with the plate, and the sheet placed on the plate was covered with a heat insulating material from above. The temperature change of the thermocouple was recorded by a data logger. The temperature of the plate was set to 35°C and maintained for 30 minutes to maintain a constant temperature. Thereafter, the temperature change of the thermocouple was measured when the temperature of the plate was changed from 35°C to 15°C over 1 minute. The time from the start of the plate temperature change until the temperature of the thermocouple reached 20°C was calculated to evaluate the heat retention.
◎: Time required to reach 20°C is 5 minutes or more. ○: Time required to reach 20°C is 3 minutes or more. ×: Time required to reach 20°C is less than 3 minutes.
上記表から明らかなとおり、実施例1~3の本発明の蓄熱材は、良好に成型でき、好適な蓄熱性を有するものであった。一方、比較例1~2の蓄熱材は良好に成型できないものであった。 As is clear from the above table, the heat storage materials of the present invention in Examples 1 to 3 could be molded well and had suitable heat storage properties. On the other hand, the heat storage materials in Comparative Examples 1 and 2 could not be molded well.
(実施例4)
蓄熱材の厚みを3mmにした以外は実施例1と同様にして蓄熱材を形成した。この蓄熱材の比重は0.4、屈曲性試験において割れが生じるマンドレル直径は2mm、ガーレ法による剛軟度は6mN、0℃から40℃の潜熱量は109kJ/m2、引張り強さは0.3MPa、引張り破断時の伸び率は70%であった。
Example 4
A heat storage material was formed in the same manner as in Example 1, except that the thickness of the heat storage material was 3 mm. The specific gravity of this heat storage material was 0.4, the mandrel diameter at which cracks occurred in the bending test was 2 mm, the bending resistance according to the Gurley method was 6 mN, the latent heat from 0°C to 40°C was 109 kJ/ m2 , the tensile strength was 0.3 MPa, and the elongation at tensile break was 70%.
(実施例5)
蓄熱材の厚みを1.7mmにした以外は実施例1と同様にして蓄熱材を形成した。この蓄熱材の比重は0.4、屈曲性試験において割れが生じるマンドレル直径は2mm、ガーレ法による剛軟度は1mN、0℃から40℃の潜熱量は58kJ/m2、引張り強さは0.2MPa、引張り破断時の伸び率は110%であった。
Example 5
A heat storage material was formed in the same manner as in Example 1, except that the thickness of the heat storage material was 1.7 mm. The specific gravity of this heat storage material was 0.4, the mandrel diameter at which cracks occurred in the bending test was 2 mm, the bending resistance according to the Gurley method was 1 mN, the latent heat from 0°C to 40°C was 58 kJ/ m2 , the tensile strength was 0.2 MPa, and the elongation at tensile break was 110%.
上記実施例4~5にて得られた蓄熱材につき、以下の評価を行った。得られた結果を下表に示す。
<柔軟性試験>
実施例及び比較例にて作成したシートを100mm×300mmサイズにカットし、試験体を作成した。作成した試験体を長茎植物の株元に見立てた直径25mmの木製丸棒に巻きつけ、ピンチ式の固定治具で設置した際の装着性について評価した。3名の試験者が各シートにつき3回ずつ評価を行い、試験体と丸棒との隙間が最大5mm以下となるように巻きつけるのに要した作業時間を計測し、以下の基準にて評価した。
◎:20秒未満で装着できた。
〇:20秒以上1分未満で装着できた。
△:1分以上5分未満で装着できた。
×:5分作業しても最大隙間5mm以下にできなかった、又は試験体が割れた。
The following evaluations were carried out on the heat storage materials obtained in Examples 4 and 5. The results are shown in the table below.
<Flexibility test>
The sheets prepared in the examples and comparative examples were cut to a size of 100 mm x 300 mm to prepare test specimens. The prepared test specimens were wrapped around a wooden round bar with a diameter of 25 mm, which resembled the base of a long-stem plant, and the fitting property was evaluated when the test specimens were installed using a pinch-type fixing jig. Three testers evaluated each sheet three times, and the work time required to wrap the test specimens around the round bar so that the maximum gap between the test specimens and the round bar was 5 mm or less was measured and evaluated according to the following criteria.
A: Could be fitted in less than 20 seconds.
A: The device was able to be fitted in 20 seconds or more and less than 1 minute.
△: Installation was possible in 1 minute or more and less than 5 minutes.
×: The maximum gap could not be reduced to 5 mm or less even after 5 minutes of work, or the test specimen was cracked.
(比較例3)
重合度900のポリ塩化ビニル樹脂粒子(新第一塩ビ社製 ZEST PQ92)90質量部、ポリエステル系可塑剤(DIC社製 ポリサイザーW-230H:粘度220mPa・s、ゲル化終点温度136℃)70質量部、熱安定剤(大協化成工業社製 MTX-11P)1質量部、分散剤(BYK社製 Disperplast-1150)5質量部、カーボンブラックを濃度10質量%で可塑剤に混錬した着色剤(1)1.6質量部、有機系潜熱蓄熱材をウレタン樹脂からなる外殻を用いてマイクロカプセル化した蓄熱性粒子(1)(平均一次粒子径150μm、融点27℃)60質量部を配合し、プラスチゾル塗工液を作成した。これをPETフィルム上にアプリケーター塗工機にて塗布した後、150℃のドライヤー温度で8分間加熱してゲル化させ、PETフィルムを剥離して、厚さ3mmの非水分散系の蓄熱材を形成した。得られた蓄熱材の比重は1.0、屈曲性試験において割れが生じるマンドレル直径は25mm、ガーレ法による剛軟度は50mN、0℃から40℃の潜熱量は111kJ/m2、引張り強さは1.4MPa、引張り破断時の伸び率は60%であった。
(Comparative Example 3)
90 parts by mass of polyvinyl chloride resin particles having a degree of polymerization of 900 (ZEST PQ92 manufactured by Shin-Daiichi Vinyl Corporation), 70 parts by mass of polyester plasticizer (Polysizer W-230H manufactured by DIC Corporation: viscosity 220 mPa·s, gelation end temperature 136 ° C.), 1 part by mass of heat stabilizer (MTX-11P manufactured by Daikyo Kasei Kogyo Co., Ltd.), 5 parts by mass of dispersant (Disperplast-1150 manufactured by BYK Corporation), 1.6 parts by mass of colorant (1) kneaded with a plasticizer at a concentration of 10% by mass of carbon black, and 60 parts by mass of heat storage particles (1) (average primary particle diameter 150 μm, melting point 27 ° C.) microencapsulated with an organic latent heat storage material using an outer shell made of urethane resin were mixed to prepare a plastisol coating liquid. This was applied to a PET film using an applicator coater, then heated at a dryer temperature of 150°C for 8 minutes to gel, and the PET film was peeled off to form a non-aqueous dispersion-type heat storage material with a thickness of 3 mm. The specific gravity of the obtained heat storage material was 1.0, the mandrel diameter at which cracks occurred in the bending test was 25 mm, the bending resistance by the Gurley method was 50 mN, the latent heat amount from 0°C to 40°C was 111 kJ/ m2 , the tensile strength was 1.4 MPa, and the elongation at tensile break was 60%.
<温度保持性評価試験>
同等の潜熱量を有する実施例4及び比較例3にて作成した蓄熱材を5cm角にカットし、試験体を作成した。作成した試験体をペルチェ式温度変化プレートに設置し、プレートと接触した面の反対側に熱電対をセットしてプレートに設置した試験体を上から断熱材で覆った。熱電対の温度変化はデータロガーで記録した。プレートの温度を35℃に設定し、30分間保持して恒温状態とした。その後、プレートの温度を35℃から10℃に1分かけて変化させたときの熱電対の温度変化を測定した。プレート温度変化開始時から、熱電対の温度が15℃に到達するまでの時間を算出し、以下の基準にて保温性を評価した。
○:15℃に到達するまでの時間が5分以上
×:15℃に到達するまでの時間が5分未満
<Temperature retention evaluation test>
The heat storage materials prepared in Example 4 and Comparative Example 3 having the same latent heat were cut into 5 cm squares to prepare test specimens. The prepared test specimens were placed on a Peltier-type temperature change plate, and a thermocouple was set on the opposite side of the surface in contact with the plate, and the test specimens placed on the plate were covered with a heat insulating material from above. The temperature change of the thermocouple was recorded by a data logger. The temperature of the plate was set to 35°C and maintained for 30 minutes to maintain a constant temperature state. Thereafter, the temperature change of the thermocouple was measured when the temperature of the plate was changed from 35°C to 10°C over 1 minute. The time from the start of the plate temperature change until the temperature of the thermocouple reached 15°C was calculated, and the heat retention was evaluated according to the following criteria.
○: Time required to reach 15°C is 5 minutes or more ×: Time required to reach 15°C is less than 5 minutes
上記実施例及び比較例から明らかなとおり、本発明の蓄熱材は好適な柔軟性や追従性、優れた温度保持性を有するものであった。 As is clear from the above examples and comparative examples, the heat storage material of the present invention has suitable flexibility, conformability, and excellent temperature retention.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018226512 | 2018-12-03 | ||
JP2018226512 | 2018-12-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020094205A JP2020094205A (en) | 2020-06-18 |
JP7528431B2 true JP7528431B2 (en) | 2024-08-06 |
Family
ID=71084624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019217969A Active JP7528431B2 (en) | 2018-12-03 | 2019-12-02 | Heat storage material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7528431B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3189352U (en) | 2013-08-14 | 2014-03-13 | 有限会社リューデックコーポレーション | Thermal storage and regenerator composite with heat insulation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10300373A (en) * | 1997-04-24 | 1998-11-13 | Inoac Corp | Heat accumulating type foam and its manufacture |
JPH10311693A (en) * | 1997-05-15 | 1998-11-24 | San Techno:Kk | Latent heat utilizing heat storage insulating material |
-
2019
- 2019-12-02 JP JP2019217969A patent/JP7528431B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3189352U (en) | 2013-08-14 | 2014-03-13 | 有限会社リューデックコーポレーション | Thermal storage and regenerator composite with heat insulation |
Also Published As
Publication number | Publication date |
---|---|
JP2020094205A (en) | 2020-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109071848B (en) | Heat accumulation piece | |
JP6659851B2 (en) | Polymer foam board with flexible water resistant intumescent coating | |
US10968379B2 (en) | Heat-storage composition | |
JP6281197B2 (en) | Thermal storage laminate | |
EP2985139A1 (en) | Laminated body | |
JP6041078B1 (en) | Thermal storage molded body, thermal storage laminate, and method for manufacturing thermal storage molded body | |
JP2007196465A (en) | Incombustible heat storage panel | |
JP7528431B2 (en) | Heat storage material and method for producing the same | |
KR102363810B1 (en) | heat storage laminate | |
JP5086600B2 (en) | Thermal storage material composition, thermal storage body and thermal storage laminate | |
KR102612303B1 (en) | Manufacturing method of heat storage molded body, heat storage laminate, and heat storage molded body | |
JP6503192B2 (en) | Laminate | |
JP2021017796A (en) | Indoor surface construction method and heat storage laminate | |
JP5374423B2 (en) | curtain wall | |
RU2722596C1 (en) | Binding composition for producing insulating composite material and insulating composite material | |
KR20130066455A (en) | High insulation flame-retardant expanded polystyrene bead manufacturing method | |
JP5564216B2 (en) | curtain wall | |
KR101163121B1 (en) | The manufacturing incombustibility construction materials and incombustibility construction materials | |
JP2022188924A (en) | Heat storage laminate, construction member, and building | |
CN113502080A (en) | Flame-retardant coating, graphite polyphenyl flame-retardant particles, graphite polyphenyl flame-retardant plate and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20210415 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230725 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240328 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240708 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7528431 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |