[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7524308B2 - Absorption tower of desulfurization equipment - Google Patents

Absorption tower of desulfurization equipment Download PDF

Info

Publication number
JP7524308B2
JP7524308B2 JP2022512536A JP2022512536A JP7524308B2 JP 7524308 B2 JP7524308 B2 JP 7524308B2 JP 2022512536 A JP2022512536 A JP 2022512536A JP 2022512536 A JP2022512536 A JP 2022512536A JP 7524308 B2 JP7524308 B2 JP 7524308B2
Authority
JP
Japan
Prior art keywords
liquid
nozzle
liquid column
spray
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022512536A
Other languages
Japanese (ja)
Other versions
JPWO2021200942A1 (en
Inventor
杏平 松川
成人 大峰
浩 石坂
祐隆 山成
淳 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPWO2021200942A1 publication Critical patent/JPWO2021200942A1/ja
Application granted granted Critical
Publication of JP7524308B2 publication Critical patent/JP7524308B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、排ガスから硫黄酸化物を除去する脱硫装置の吸収塔に関する。 The present invention relates to an absorption tower of a desulfurization device that removes sulfur oxides from exhaust gas.

例えばボイラなどの燃焼機関から排出される排ガスには、SO(硫黄酸化物)などの大気汚染物質が含まれている。排ガスに含まれるSOを低減する方法には、アルカリ水溶液や吸収剤スラリーなどの洗浄液(吸収液)でSO(亜硫酸ガス)などを吸収除去する湿式の脱硫方法がある。 For example, exhaust gas discharged from a combustion engine such as a boiler contains air pollutants such as sulfur oxides ( SOx ). Methods for reducing the amount of SOx contained in exhaust gas include wet desulfurization methods that absorb and remove SO2 (sulfur dioxide gas) using a cleaning liquid (absorption liquid) such as an alkaline aqueous solution or an absorbent slurry.

上記湿式の脱硫方法を用いる脱硫装置として、洗浄液を上方に向けて噴き上げるように噴射することで排ガスを洗浄する液柱式吸収塔が知られている(例えば特許文献1参照)。液柱式吸収塔では、液柱ノズルから噴射される洗浄液が液柱ノズルの上方に液柱を形成する。液柱を形成した後の洗浄液は、噴き上げ頂部で分散した後に降下し、液柱ノズルから噴き上げられる洗浄液と衝突して微細化する。微細化した洗浄液は、排ガスと気液接触し、排ガスに含まれる大気汚染物質を吸収する。また、排ガスに含まれる煤塵は、微細化した洗浄液によって排ガス中から除去可能である。As a desulfurization device using the above-mentioned wet desulfurization method, a liquid column type absorption tower is known that cleans exhaust gas by spraying cleaning liquid upward (see, for example, Patent Document 1). In a liquid column type absorption tower, cleaning liquid sprayed from a liquid column nozzle forms a liquid column above the liquid column nozzle. After forming the liquid column, the cleaning liquid disperses at the top of the spray and then descends, colliding with the cleaning liquid sprayed up from the liquid column nozzle and being atomized. The atomized cleaning liquid comes into gas-liquid contact with the exhaust gas and absorbs air pollutants contained in the exhaust gas. In addition, soot contained in the exhaust gas can be removed from the exhaust gas by the atomized cleaning liquid.

特開平10-128053号公報Japanese Patent Application Publication No. 10-128053

近年、硫黄酸化物や煤塵などの大気汚染物質の排出規制が強化される傾向にある。大気汚染物質の排出量は、硫黄含有率の低い低硫黄燃料や、燃焼により生じる煤塵の量が少ない低煤塵燃料のような良質燃料を使用することによって減少する。In recent years, there has been a trend toward stricter regulations on emissions of air pollutants such as sulfur oxides and particulate matter. Emissions of air pollutants can be reduced by using high-quality fuels, such as low-sulfur fuels that have a low sulfur content and low-particulate fuels that produce less particulate matter when burned.

しかし、高価な良質燃料の使用は運用コストの増大を招くため、硫黄含有率の高い高硫黄燃料や、燃焼により生じる煤塵の量が多い高煤塵燃料のような安価な燃料を使用したいという要望があり、脱硫性能及び除塵性能の向上が求められている。However, the use of expensive, high-quality fuels increases operating costs, so there is a demand to use cheaper fuels such as high-sulfur fuels with a high sulfur content or high-dust fuels that produce a lot of soot when burned, and there is a demand for improved desulfurization and dust removal performance.

そこで本発明は、脱硫性能及び除塵性能を向上させることが可能な脱硫装置の吸収塔の提供を目的とする。 Therefore, the present invention aims to provide an absorption tower of a desulfurization equipment that can improve desulfurization performance and dust removal performance.

上記目的を達成すべく、本発明の第1の態様は、排ガス中の硫黄酸化物を洗浄液で吸収して除去する脱硫装置の吸収塔であって、吸収塔本体と液柱ノズルとスプレノズルとを備える。吸収塔本体は、排ガスが下方から上方へ流通する内部空間を有する。液柱ノズルは、内部空間に設けられ、洗浄液を上方に向けて液柱状に噴射する。スプレノズルは、液柱ノズルの上方の内部空間に設けられ、洗浄液を下方に向けてコーン状に噴射する。スプレノズルは、噴霧パターンが環円形のホロコーンノズルであり、液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも上方の高さ位置に配置される。スプレノズルから噴射される洗浄液は、噴出直後に液膜状に拡がった後、落下するに従って液膜が分裂して液膜分裂液滴群となる。液柱ノズルは、スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さよりも下方の高さ位置に配置される。In order to achieve the above object, the first aspect of the present invention is an absorption tower of a desulfurization device that absorbs and removes sulfur oxides in exhaust gas with a cleaning liquid, and includes an absorption tower body, a liquid column nozzle, and a spray nozzle. The absorption tower body has an internal space through which exhaust gas flows from below to above. The liquid column nozzle is provided in the internal space and sprays the cleaning liquid in the form of a liquid column upward. The spray nozzle is provided in the internal space above the liquid column nozzle and sprays the cleaning liquid in a cone shape downward. The spray nozzle is a hollow cone nozzle with a circular spray pattern and is disposed at a height position above the maximum height of the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle. The cleaning liquid sprayed from the spray nozzle spreads in the form of a liquid film immediately after spraying, and then as it falls, the liquid film breaks up to form a liquid film split droplet group. The liquid column nozzle is disposed at a height position below the generation height of the liquid film split droplet group of the cleaning liquid sprayed from the spray nozzle.

第1の態様では、洗浄液を上方に向けて液柱状に噴射する液柱ノズルを吸収塔本体の内部空間に設け、内部空間における液柱ノズルが設けられた位置よりも上方の位置に、洗浄液を下方に向けてコーン状に噴射するスプレノズルを設けているので、液柱ノズル又はスプレノズルの何れか一方のみを備える吸収塔に比べて、洗浄液と排ガスとが気液接触し得る範囲(気液接触範囲)が排ガスの流通方向に拡大する。従って、液柱ノズル又はスプレノズルの一方のみが設けられた吸収塔に比べて、脱硫性能及び除塵性能を向上させることができる。 In the first aspect, a liquid column nozzle that sprays the cleaning liquid upward in the form of a liquid column is provided in the internal space of the absorption tower body, and a spray nozzle that sprays the cleaning liquid downward in a cone shape is provided at a position in the internal space above the position where the liquid column nozzle is provided. Therefore, compared to an absorption tower equipped with only either a liquid column nozzle or a spray nozzle, the range in which the cleaning liquid and the exhaust gas can come into gas-liquid contact (gas-liquid contact range) is expanded in the direction of exhaust gas flow. Therefore, desulfurization performance and dust removal performance can be improved compared to an absorption tower equipped with only either a liquid column nozzle or a spray nozzle.

また、スプレノズルは、噴霧パターンが環円形のホロコーンノズルであり、スプレノズルから噴射される洗浄液は、噴出直後に液膜状に拡がった後、落下するに従って液膜が分裂して液膜分裂液滴群となる。スプレノズルを、液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも上方の高さ位置に配置し、液柱ノズルを、スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さよりも下方の高さ位置に配置するので、液柱ノズルからの液滴とスプレノズルからの液滴との干渉を抑制することができ、脱硫性能及び除塵性能をさらに向上させることができる。 The spray nozzle is a hollow cone nozzle with a circular spray pattern, and the cleaning liquid sprayed from the spray nozzle spreads out as a liquid film immediately after being sprayed, and then as it falls, the liquid film breaks up to form a group of droplets due to liquid film breakup. The spray nozzle is disposed at a height position above the maximum height reached by the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle, and the liquid column nozzle is disposed at a height position below the generation height of the group of droplets due to liquid film breakup of the cleaning liquid sprayed from the spray nozzle, so that interference between the droplets from the liquid column nozzle and those from the spray nozzle can be suppressed, and desulfurization performance and dust removal performance can be further improved.

本発明の第の態様の吸収塔で、液柱ノズルは、液柱ノズルから噴射される洗浄液が形成する液柱が、スプレノズルから噴射される洗浄液の液膜と干渉しない高さ位置に配置される。 In the absorption tower of the first aspect of the present invention, the liquid column nozzle is arranged at a height position such that the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle does not interfere with the liquid film of the cleaning liquid sprayed from the spray nozzle.

の態様では、液柱ノズルから噴射される洗浄液が形成する液柱とスプレノズルから噴射される洗浄液の液膜とが干渉しないので、液柱と液膜との干渉による洗浄液の偏りに起因した脱硫性能の低下を防止することができる。 In the first aspect, there is no interference between the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle and the liquid film of the cleaning liquid sprayed from the spray nozzle, so that it is possible to prevent a decrease in desulfurization performance caused by bias of the cleaning liquid due to interference between the liquid column and the liquid film.

本発明の第の態様の吸収塔で、スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さは、液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも高く、前記液柱を形成した洗浄液は、前記液柱の最高到達高さから分裂して落下し液柱分裂液滴群となり、前記液柱分裂液滴群の粒径分布は、前記液膜分裂液滴群の粒径分布よりも大きい。 In the absorption tower of the first aspect of the present invention, the height at which the liquid film breakup droplet group of the cleaning liquid sprayed from the spray nozzle is generated is higher than the maximum reach height of the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle, the cleaning liquid which has formed the liquid column breaks up and falls from the maximum reach height of the liquid column to become a liquid column breakup droplet group, and the particle size distribution of the liquid column breakup droplet group is larger than the particle size distribution of the liquid film breakup droplet group .

の態様では、スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さが、液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも高いので、液柱ノズルからの液滴とスプレノズルからの液滴との干渉をさらに抑制することができる。 In the first aspect, the generation height of a group of liquid film breakup droplets of the cleaning liquid sprayed from the spray nozzle is higher than the maximum reach height of the liquid column formed by the cleaning liquid sprayed from the liquid column nozzle, so that interference between the droplets from the liquid column nozzle and the droplets from the spray nozzle can be further suppressed.

本発明の第の態様は、第1の態様の吸収塔であって、内部空間を横切るように略水平に延び、スプレノズルを支持するとともに、スプレノズルへ洗浄液を供給するスプレヘッダを備える。吸収塔本体は、略鉛直に起立する筒状の周壁を有する。周壁の内周面は、内部空間を区画する。周壁には、排ガスが流入する排ガス導入口が設けられる。周壁の内周面のうち排ガス導入口の上端縁以上で、且つスプレヘッダ以下の高さ範囲の少なくとも一部には、内周面から内部空間内へ突出するすり抜け防止材が設けられる。 A second aspect of the present invention is an absorption tower according to the first aspect, which includes a spray header extending substantially horizontally across the internal space, supporting the spray nozzle, and supplying a cleaning liquid to the spray nozzle. The absorption tower body has a cylindrical peripheral wall standing substantially vertically. The inner peripheral surface of the peripheral wall defines the internal space. The peripheral wall is provided with an exhaust gas inlet through which exhaust gas flows in. A slip-through prevention material protruding from the inner peripheral surface into the internal space is provided on at least a portion of the inner peripheral surface of the peripheral wall in a height range above the upper edge of the exhaust gas inlet and below the spray header.

の態様では、排ガスのすり抜けが生じ易い内部空間の外周縁部分にすり抜け防止材を設けているので、洗浄液と気液接触せずに吸収塔から排出される排ガスを減少させることができ、脱硫性能及び除塵性能をさらに向上させることができる。 In the second aspect, a slip-through prevention material is provided on the outer peripheral edge portion of the internal space where the exhaust gas is likely to slip through, so that the amount of exhaust gas discharged from the absorption tower without gas-liquid contact with the cleaning liquid can be reduced, and the desulfurization performance and dust removal performance can be further improved.

本発明によれば、脱硫性能及び除塵性能を向上させることができる。 According to the present invention, desulfurization performance and dust removal performance can be improved.

本発明の第1実施形態に係る吸収塔の概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of an absorption tower according to a first embodiment of the present invention. 液柱における液滴分布とスプレにおける液滴分布の概念図である。1 is a conceptual diagram of droplet distribution in a liquid column and droplet distribution in a spray. 液柱ノズルから噴射された液滴群の分散とスプレノズルから噴射された液滴群の分散とを模式的に示す概略図である。1A and 1B are schematic diagrams illustrating the dispersion of a droplet group jetted from a liquid column nozzle and the dispersion of a droplet group jetted from a spray nozzle; 液柱ノズルから噴射された液滴群とスプレノズルから噴射された液滴群との干渉を模式的に示す概略図であり、(a)は干渉する状態を、(b)は干渉しない状態をそれぞれ示す。1A and 1B are schematic diagrams showing interference between a droplet group sprayed from a liquid column nozzle and a droplet group sprayed from a spray nozzle, in which FIG. 1A shows a state in which they interfere, and FIG. 1B shows a state in which they do not interfere. 本発明の第2実施形態に係る吸収塔の概略構成を示す断面図である。FIG. 4 is a cross-sectional view showing a schematic configuration of an absorption tower according to a second embodiment of the present invention. すり抜け防止材の複数の形態例を示す図5のVI-VI矢視断面図である。6 is a cross-sectional view taken along the line VI-VI in FIG. 5, showing several examples of the slip-through prevention material.

(第1実施形態)
本発明の第1実施形態に係る脱硫装置の吸収塔1について、図1~図4を参照して説明する。脱硫装置は、燃焼装置(図示省略)で発生した硫黄酸化物を含む排ガスから硫黄酸化物を洗浄液(吸収液)で吸収して除去する湿式石灰石-石膏排煙脱硫装置であり、硫黄酸化物を含む排ガスが導入される吸収塔1を備える。燃焼装置は、火力発電所等のボイラの他、ディーゼルエンジン、ガスタービンエンジン又は蒸気タービンエンジンなどのエンジンなどを含む。なお、図中の白抜き矢印Fは、排ガスの流れ方向を示す。
First Embodiment
An absorption tower 1 of a desulfurization apparatus according to a first embodiment of the present invention will be described with reference to Figs. 1 to 4. The desulfurization apparatus is a wet limestone-gypsum flue gas desulfurization apparatus that removes sulfur oxides from exhaust gas containing sulfur oxides generated in a combustion apparatus (not shown) by absorbing them with a cleaning liquid (absorption liquid), and includes an absorption tower 1 into which exhaust gas containing sulfur oxides is introduced. Combustion apparatuses include boilers such as those in thermal power plants, as well as engines such as diesel engines, gas turbine engines, and steam turbine engines. The outline arrow F in the figures indicates the flow direction of the exhaust gas.

(吸収塔の構成)
図1に示すように、吸収塔1は、燃焼装置からの排ガスが導入される内部空間3を有する吸収塔本体2を備える。吸収塔本体2は、底面4と天井面5との間で略鉛直に起立する筒状の周壁6を有し、底面4と天井面5と周壁6の内周面7とにより、上下方向に延びる内部空間3が区画される。周壁6は、円筒状であってもよく、矩形筒状であってもよい。
(Configuration of Absorption Tower)
As shown in Fig. 1, the absorption tower 1 includes an absorption tower body 2 having an internal space 3 into which exhaust gas from a combustion device is introduced. The absorption tower body 2 has a cylindrical peripheral wall 6 standing approximately vertically between a bottom surface 4 and a ceiling surface 5, and an internal space 3 extending in the vertical direction is defined by the bottom surface 4, the ceiling surface 5, and an inner peripheral surface 7 of the peripheral wall 6. The peripheral wall 6 may be cylindrical or rectangular tubular.

周壁6の一側(前側)には排ガス導入口8が設けられ、排ガス導入口8には入口ダクト(排ガス導入部)9が接続される。排ガス導入口8と対向する周壁6の他側(後側)の上部には排ガス排出口10が設けられ、排ガス排出口10には出口ダクト(排ガス排出部)11が接続される。排ガス排出口10において、出口ダクト11の上面は吸収塔本体2の天井面5から連続する。入口ダクト9及び出口ダクト11は、円筒状であってもよく、矩形筒状であってもよい。燃焼装置から排出された排ガスは、入口ダクト9を介して排ガス導入口8から内部空間3に導入される。導入された排ガスは、内部空間3を下方から上方へ流通し、排ガス排出口10から出口ダクト11を介して排出される。An exhaust gas inlet 8 is provided on one side (front side) of the peripheral wall 6, and an inlet duct (exhaust gas inlet section) 9 is connected to the exhaust gas inlet 8. An exhaust gas outlet 10 is provided on the upper part of the other side (rear side) of the peripheral wall 6 opposite the exhaust gas inlet 8, and an outlet duct (exhaust gas outlet section) 11 is connected to the exhaust gas outlet 10. At the exhaust gas outlet 10, the upper surface of the outlet duct 11 is continuous with the ceiling surface 5 of the absorption tower main body 2. The inlet duct 9 and the outlet duct 11 may be cylindrical or rectangular. The exhaust gas discharged from the combustion device is introduced into the internal space 3 from the exhaust gas inlet 8 through the inlet duct 9. The introduced exhaust gas flows from the bottom to the top of the internal space 3 and is discharged from the exhaust gas outlet 10 through the outlet duct 11.

吸収塔本体2の内部空間3には、少なくとも1つ(本実施形態では複数)の液柱ノズル20を備えた液柱ヘッダ(液柱管)21と、少なくとも1つ(本実施形態では複数)のスプレノズル30を備えたスプレヘッダ(スプレ管)31とが設置される。液柱ノズル20は、排ガス導入口8の上端縁よりも上方に配置され、スプレノズル30は、液柱ノズル20の上方に配置される。すなわち、液柱ノズル20の高さ(噴射口の高さ)H1は、排ガス導入口8の上端縁の高さH3よりも高く、スプレノズル30の高さ(噴射口の高さ)H2は、液柱ノズル20の高さH1よりも高い(H3<H1<H2)。各高さは、例えば吸収塔本体2が設置される地面からの地上高である。In the internal space 3 of the absorption tower body 2, a liquid column header (liquid column tube) 21 equipped with at least one (multiple in this embodiment) liquid column nozzle 20 and a spray header (spray tube) 31 equipped with at least one (multiple in this embodiment) spray nozzle 30 are installed. The liquid column nozzle 20 is disposed above the upper edge of the exhaust gas inlet 8, and the spray nozzle 30 is disposed above the liquid column nozzle 20. That is, the height (injection port height) H1 of the liquid column nozzle 20 is higher than the height H3 of the upper edge of the exhaust gas inlet 8, and the height (injection port height) H2 of the spray nozzle 30 is higher than the height H1 of the liquid column nozzle 20 (H3 < H1 < H2). Each height is, for example, the height above ground from the ground on which the absorption tower body 2 is installed.

液柱ノズル20は、洗浄液を上方(排ガスの流れ方向と同方向)に向けて液柱状に噴射するように構成される。液柱ヘッダ21は、内部空間3を横切るように略水平に延びる。液柱ヘッダ21は、液柱ノズル20を支持するとともに、液柱ノズル20へ洗浄液を供給する。複数の液柱ノズル20の配置パターンは特に限定されないが、内部空間3のノズル配置面上に均等に配置することが好適である。The liquid column nozzle 20 is configured to spray the cleaning liquid upward (in the same direction as the exhaust gas flow direction) in the form of a liquid column. The liquid column header 21 extends approximately horizontally across the internal space 3. The liquid column header 21 supports the liquid column nozzle 20 and supplies cleaning liquid to the liquid column nozzle 20. The arrangement pattern of the multiple liquid column nozzles 20 is not particularly limited, but it is preferable to arrange them evenly on the nozzle arrangement surface of the internal space 3.

スプレノズル30は、洗浄液を下方(排ガスの流れ方向と逆方向)に向けてコーン状に噴射するように構成される。スプレヘッダ31は、内部空間3を横切るように略水平に延びる。スプレヘッダ31は、スプレノズル30を支持するとともに、スプレノズル30へ洗浄液を供給する。複数のスプレノズル30の配置パターンは特に限定されないが、内部空間3のノズル配置面上に均等に配置することが好適である。The spray nozzle 30 is configured to spray the cleaning liquid downward (opposite the flow direction of the exhaust gas) in a cone shape. The spray header 31 extends approximately horizontally across the internal space 3. The spray header 31 supports the spray nozzle 30 and supplies cleaning liquid to the spray nozzle 30. The arrangement pattern of the multiple spray nozzles 30 is not particularly limited, but it is preferable to arrange them evenly on the nozzle arrangement surface of the internal space 3.

本実施形態のスプレノズル30は、噴霧パターンが環円形(噴射形状が中空円錐状)のホロコーンノズルである。なお、スプレノズル30はホロコーンノズルに限定されず、洗浄液をコーン状に噴射するノズルであればよい。例えば、円形状に前面噴射するフルコーンノズルなどの他の単相(一流体)ノズルであってもよく、気体を混合させ洗浄液を微粒液滴にして噴霧する二相(二流体)ノズルであってもよい。The spray nozzle 30 of this embodiment is a hollow cone nozzle with a circular spray pattern (hollow cone-shaped spray shape). The spray nozzle 30 is not limited to a hollow cone nozzle, and may be any nozzle that sprays cleaning liquid in a cone shape. For example, it may be another single-phase (one-fluid) nozzle such as a full cone nozzle that sprays a circular front shape, or a two-phase (two-fluid) nozzle that mixes gas and sprays cleaning liquid in the form of fine droplets.

洗浄液としては、例えばアルカリ剤を含む液体や海水などが用いられる。アルカリ剤としては、例えばCaCO、NaOH、Ca(OH)、NaHCO、Na2COなどが用いられる。 The cleaning liquid may be, for example, a liquid containing an alkaline agent, seawater, etc. The alkaline agent may be, for example, CaCO 3 , NaOH, Ca(OH) 2 , NaHCO 3 , Na2CO 3 , etc.

液柱ノズル20から噴射された洗浄液により、液柱ノズル20の上方に液柱26が形成される。液柱26を形成した洗浄液は、上方への貫通力と重力がバランスし、最高到達位置である液柱到達部(噴き上げ頂部)27で分散した後に降下し、液柱ノズル20から噴き上げられる後続の洗浄液と衝突して微細化する。液柱到達部27から液柱26が分裂して落下してくる微細化した洗浄液の液滴群(多数の液滴)を液柱分裂液滴群28と称する。液柱分裂液滴群28は、排ガスと気液接触し、排ガスに含まれるSO(硫黄酸化物)などの大気汚染物質を吸収する。また、液柱分裂液滴群28は、排ガスに含まれる煤塵を排ガス中から除去する。 The cleaning liquid sprayed from the liquid column nozzle 20 forms a liquid column 26 above the liquid column nozzle 20. The cleaning liquid that formed the liquid column 26 is dispersed at the highest reach position, the liquid column reach part (spray top) 27, as the upward penetration force and gravity are balanced, and then descends, colliding with the succeeding cleaning liquid sprayed up from the liquid column nozzle 20 and becoming finer. The droplet group (multiple droplets) of the finer cleaning liquid that falls as the liquid column 26 splits from the liquid column reach part 27 is called the liquid column split droplet group 28. The liquid column split droplet group 28 comes into gas-liquid contact with the exhaust gas and absorbs air pollutants such as SOx (sulfur oxides) contained in the exhaust gas. The liquid column split droplet group 28 also removes soot contained in the exhaust gas from the exhaust gas.

スプレノズル30は、液柱ノズル20から噴射される洗浄液が形成する液柱26の最高到達高さ(液柱到達部27)よりも上方に配置される。すなわち、液柱到達部27の高さH4は、液柱ノズル20の高さH1よりも高く、スプレノズル30の高さH2は、液柱到達部27の高さH4よりも高い(H1<H4<H2)。The spray nozzle 30 is positioned above the maximum reach height (liquid column reach section 27) of the liquid column 26 formed by the cleaning liquid sprayed from the liquid column nozzle 20. That is, the height H4 of the liquid column reach section 27 is higher than the height H1 of the liquid column nozzle 20, and the height H2 of the spray nozzle 30 is higher than the height H4 of the liquid column reach section 27 (H1<H4<H2).

スプレノズル30から噴射された直後の洗浄液は、液膜状に広がり(中空円錐状に液膜36が広がり)、落下するにつれて液膜36は分裂し液滴となる。液膜36から分裂して微細化した洗浄液の液滴群(複数の液滴)を液膜分裂液滴群(又はスプレ分裂液滴群)37と称する。液膜分裂液滴群37は、排ガスと気液接触し、排ガスに含まれるSO(硫黄酸化物)などの大気汚染物質を吸収する。また、液膜分裂液滴群37は、排ガスに含まれる煤塵を排ガス中から除去する。 The cleaning liquid immediately after being sprayed from the spray nozzle 30 spreads in the form of a liquid film (a liquid film 36 spreads in the form of a hollow cone), and as it falls, the liquid film 36 breaks up into droplets. A group of droplets (a plurality of droplets) of the cleaning liquid that breaks up from the liquid film 36 and becomes finer is called a liquid film breakup droplet group (or a spray breakup droplet group) 37. The liquid film breakup droplet group 37 comes into gas-liquid contact with the exhaust gas and absorbs air pollutants such as SOx (sulfur oxides) contained in the exhaust gas. The liquid film breakup droplet group 37 also removes soot contained in the exhaust gas from the exhaust gas.

吸収塔本体2の内部空間3は、排ガス導入口8を介して入口ダクト9と連通する下部空間14と、排ガス排出口10を介して出口ダクト11と連通する上部空間15と、下部空間14と上部空間15の間の気液接触領域16と、下部空間14の下方の液だまり部13とに区分される。気液接触領域16は、液柱ノズル20の噴射口を下限とし、スプレノズル30の噴射口を上限とする領域(液柱ノズル20の噴射口の高さ以上で、且つスプレノズル30の噴射口の高さ以下の領域)であり、洗浄液と排ガスとの気液接触は、主に気液接触領域16で行われる。 The internal space 3 of the absorption tower body 2 is divided into a lower space 14 communicating with an inlet duct 9 via an exhaust gas inlet 8, an upper space 15 communicating with an outlet duct 11 via an exhaust gas outlet 10, a gas-liquid contact area 16 between the lower space 14 and the upper space 15, and a liquid pool 13 below the lower space 14. The gas-liquid contact area 16 is an area whose lower limit is the nozzle of the liquid column nozzle 20 and whose upper limit is the nozzle of the spray nozzle 30 (an area that is equal to or higher than the height of the nozzle of the liquid column nozzle 20 and equal to or lower than the height of the nozzle of the spray nozzle 30), and gas-liquid contact between the cleaning liquid and the exhaust gas is mainly performed in the gas-liquid contact area 16.

気液接触領域16は、液柱ノズル20が形成する液柱26の液柱到達部27の高さ以下の第1気液接触領域16Aと、液柱到達部27の高さ位置よりも上方の第2気液接触領域16Bとに区分される。すなわち、内部空間3には、上方から順に、上部空間15、第2気液接触領域16B、第1気液接触領域16A、下部空間14、及び液だまり部13が並ぶ。液柱ノズル20から噴射された洗浄液と排ガスとの気液接触は、主に第1気液接触領域16Aで行われ、スプレノズル30から噴射された洗浄液と排ガスとの気液接触は、主に第2気液接触領域16Bで行われる。The gas-liquid contact area 16 is divided into a first gas-liquid contact area 16A below the height of the liquid column reach portion 27 of the liquid column 26 formed by the liquid column nozzle 20, and a second gas-liquid contact area 16B above the height position of the liquid column reach portion 27. That is, in the internal space 3, the upper space 15, the second gas-liquid contact area 16B, the first gas-liquid contact area 16A, the lower space 14, and the liquid pool portion 13 are arranged in order from the top. Gas-liquid contact between the cleaning liquid sprayed from the liquid column nozzle 20 and the exhaust gas occurs mainly in the first gas-liquid contact area 16A, and gas-liquid contact between the cleaning liquid sprayed from the spray nozzle 30 and the exhaust gas occurs mainly in the second gas-liquid contact area 16B.

排ガス流れに同伴する微小な液滴は、吸収塔1の上部(本実施形態では出口ダクト11)に設置されたミストイリミネータ12で除去される。ミストイリミネータ12で微小な液滴が取り除かれたガス(処理ガス)は、必要に応じて吸収塔1の後流側に設置される再加熱設備(図示省略)によって昇温されて、煙突(図示省略)から排出される。なお、吸収塔本体2の上部空間15にミストイリミネータ12を設置してもよい。 Tiny liquid droplets entrained in the exhaust gas flow are removed by a mist eliminator 12 installed at the top of the absorption tower 1 (in this embodiment, the outlet duct 11). The gas (treated gas) from which the tiny liquid droplets have been removed by the mist eliminator 12 is heated as necessary by a reheating device (not shown) installed downstream of the absorption tower 1, and is discharged from a chimney (not shown). The mist eliminator 12 may also be installed in the upper space 15 of the absorption tower body 2.

吸収塔本体2の内部空間3の下部(下部空間14の下方空間)は、洗浄液を貯留する液だまり部(吸収塔タンク)13を構成する。洗浄液は、液柱ノズル20及びスプレノズル30から噴射され、排ガスと気液接触して硫黄酸化物を吸収した後、内部空間3を落下し、液だまり部13に貯留される。液だまり部13に貯留される洗浄液の液面(オーバーフロー面)は、排ガス導入口8の下端縁よりも低い位置に設定される。液だまり部13に貯留される洗浄液に、排ガスから吸収したSOにより生じた反応生成物や、反応生成物が酸化して生成された酸化生成物が含まれる場合がある。反応生成物は、例えばSOが洗浄液に吸収されることで生成される亜硫酸塩であり、酸化生成物は、例えば石膏である。酸化生成物を生成する場合、滞溜する洗浄液に空気を供給する空気供給装置(図示省略)を液だまり部13に設けてもよい。 The lower part of the internal space 3 of the absorber body 2 (the space below the lower space 14) constitutes a liquid pool (absorption tank) 13 for storing the cleaning liquid. The cleaning liquid is sprayed from the liquid column nozzle 20 and the spray nozzle 30, and after absorbing sulfur oxides by gas-liquid contact with the exhaust gas, it falls down the internal space 3 and is stored in the liquid pool 13. The liquid level (overflow level) of the cleaning liquid stored in the liquid pool 13 is set at a position lower than the lower end edge of the exhaust gas inlet 8. The cleaning liquid stored in the liquid pool 13 may contain reaction products generated by SO2 absorbed from the exhaust gas and oxidation products generated by oxidation of the reaction products. The reaction products are, for example, sulfites generated by absorption of SO2 into the cleaning liquid, and the oxidation products are, for example, gypsum. When oxidation products are generated, an air supply device (not shown) for supplying air to the stagnant cleaning liquid may be provided in the liquid pool 13.

吸収塔1は、第1洗浄液循環ライン22と、第2洗浄液循環ライン32と備える。第1洗浄液循環ライン22は、液だまり部13に貯留された洗浄液を抜き出し、液柱ヘッダ21を介して液柱ノズル20へ送液可能に構成される。第2洗浄液循環ライン32は、液だまり部13に貯留された洗浄液を抜き出し、スプレヘッダ31を介してスプレノズル30へ送液可能に構成される。なお、吸収塔1は、吸収塔本体2の外部から液だまり部13に洗浄液を導入する洗浄液導入ライン(図示省略)を備えてもよい。The absorption tower 1 is equipped with a first cleaning liquid circulation line 22 and a second cleaning liquid circulation line 32. The first cleaning liquid circulation line 22 is configured to be able to extract the cleaning liquid stored in the liquid pool 13 and send it to the liquid column nozzle 20 via the liquid column header 21. The second cleaning liquid circulation line 32 is configured to be able to extract the cleaning liquid stored in the liquid pool 13 and send it to the spray nozzle 30 via the spray header 31. The absorption tower 1 may also be equipped with a cleaning liquid introduction line (not shown) that introduces the cleaning liquid from outside the absorption tower body 2 into the liquid pool 13.

第1洗浄液循環ライン22は、液だまり部13と液柱ヘッダ21とを接続する少なくとも1つの第1循環配管23と、第1循環配管23の途中に設けられる第1循環ポンプ24と、第1循環ポンプ24の上流側の第1循環配管23を開閉可能な弁25とを含む。第1循環ポンプ24は、液だまり部13に貯留された洗浄液を抜き出し、第1循環配管23及び液柱ヘッダ21を介して液柱ノズル20へ送る。弁25は、開閉弁であってもよく、流量調整弁であってもよい。また、弁25に代えて又は加えて、第1循環ポンプ24の下流側に第1循環配管23を開閉可能な弁を設けてもよい。The first cleaning liquid circulation line 22 includes at least one first circulation pipe 23 connecting the liquid pool 13 and the liquid column header 21, a first circulation pump 24 provided in the middle of the first circulation pipe 23, and a valve 25 capable of opening and closing the first circulation pipe 23 upstream of the first circulation pump 24. The first circulation pump 24 extracts the cleaning liquid stored in the liquid pool 13 and sends it to the liquid column nozzle 20 via the first circulation pipe 23 and the liquid column header 21. The valve 25 may be an opening/closing valve or a flow rate adjustment valve. In addition, instead of or in addition to the valve 25, a valve capable of opening and closing the first circulation pipe 23 may be provided downstream of the first circulation pump 24.

第2洗浄液循環ライン32は、液だまり部13とスプレヘッダ31とを接続する少なくとも1つの第2循環配管33と、第2循環配管33の途中に設けられる第2循環ポンプ34と、第2循環ポンプ34の上流側の第2循環配管33を開閉可能な弁35とを含む。第2循環ポンプ34は、液だまり部13に貯留された洗浄液を抜き出し、第2循環配管33及びスプレヘッダ31を介してスプレノズル30へ送る。弁35は、開閉弁であってもよく、流量調整弁であってもよい。また、弁35に代えて又は加えて、第2循環ポンプ34の下流側に第2循環配管33を開閉可能な弁を設けてもよい。The second cleaning liquid circulation line 32 includes at least one second circulation pipe 33 connecting the liquid pool 13 and the spray header 31, a second circulation pump 34 provided in the middle of the second circulation pipe 33, and a valve 35 capable of opening and closing the second circulation pipe 33 upstream of the second circulation pump 34. The second circulation pump 34 extracts the cleaning liquid stored in the liquid pool 13 and sends it to the spray nozzle 30 via the second circulation pipe 33 and the spray header 31. The valve 35 may be an opening/closing valve or a flow rate adjustment valve. In addition, instead of or in addition to the valve 35, a valve capable of opening and closing the second circulation pipe 33 may be provided downstream of the second circulation pump 34.

吸収塔1の内部空間3には、液柱ノズル20による第1気液接触領域16Aと、スプレノズル30による第2気液接触領域16Bとが排ガスの流通方向に並び、第1気液接触領域16Aと第2気液接触領域16Bとによって気液接触領域16が形成される。第1気液接触領域16Aの液柱ノズル20からの液適群と、第2気液接触領域16Bのスプレノズル30からの液適群とは、以下に説明するように、粒径分布や液適の分散が異なり、第1気液接触領域16A及び第2気液接触領域16Bの両方を排ガスが通過することで、気液接触率が拡大する。In the internal space 3 of the absorption tower 1, a first gas-liquid contact area 16A formed by the liquid column nozzle 20 and a second gas-liquid contact area 16B formed by the spray nozzle 30 are arranged in the direction of exhaust gas flow, and the first gas-liquid contact area 16A and the second gas-liquid contact area 16B form a gas-liquid contact area 16. As described below, the droplet group from the liquid column nozzle 20 in the first gas-liquid contact area 16A and the droplet group from the spray nozzle 30 in the second gas-liquid contact area 16B have different particle size distributions and droplet dispersions, and the gas-liquid contact rate is increased by the exhaust gas passing through both the first gas-liquid contact area 16A and the second gas-liquid contact area 16B.

(液滴群の粒径分布の拡張)
液柱ノズル20から噴射されて分裂した液滴群の粒径分布(液柱における液滴分布)D1と、スプレノズル30から噴射された液滴群の粒径分布(スプレにおける液滴分布)D2との関係を、図2を参照して説明する。図2では、液柱における液滴分布D1を実線で示し、スプレにおける液滴分布D2を破線で示す。
(Expansion of droplet size distribution)
The relationship between the particle size distribution D1 of the droplet group sprayed and split from the liquid column nozzle 20 (droplet distribution in the liquid column) and the particle size distribution D2 of the droplet group sprayed from the spray nozzle 30 (droplet distribution in the spray) will be described with reference to Fig. 2. In Fig. 2, the droplet distribution D1 in the liquid column is shown by a solid line, and the droplet distribution D2 in the spray is shown by a dashed line.

図2は、液柱における液滴分布(粒径分布)とスプレにおける液滴分布(粒径分布)の概念図である。図2に示すように、スプレノズル30から噴射された洗浄液が分裂して発生する液滴群(図1のスプレ分裂液滴群37)は比較的小さい粒径分布D2を有し、液柱ノズル20から噴射された洗浄液が分裂して発生する液滴群(図1の液柱分裂液滴群28)は比較的大きい粒径分布D1を有する。従って、排ガスが流通する吸収塔本体2の内部空間3に、幅広い粒径分布を有する液滴群を発生させることができる。 Figure 2 is a conceptual diagram of droplet distribution (particle size distribution) in the liquid column and droplet distribution (particle size distribution) in the spray. As shown in Figure 2, the droplet group generated by the splitting of the cleaning liquid sprayed from the spray nozzle 30 (spray split droplet group 37 in Figure 1) has a relatively small particle size distribution D2, while the droplet group generated by the splitting of the cleaning liquid sprayed from the liquid column nozzle 20 (liquid column split droplet group 28 in Figure 1) has a relatively large particle size distribution D1. Therefore, a droplet group with a wide particle size distribution can be generated in the internal space 3 of the absorption tower body 2 through which the exhaust gas flows.

(液滴群の分散)
図3に示すように、スプレノズル30では液膜36の延長線上に液滴(スプレ分裂液滴群37)が生じ易く、液柱ノズル20では液柱到達部27の鉛直下方に液滴(液柱分裂液滴群28)が生じ易い。液柱分裂液滴群28の分散方向を矢印40で、スプレ分裂液滴群37の分散方向を矢印41で、それぞれ図3に示す。このように、液柱分裂液滴群28の分散方向とスプレ分裂液滴群37の分散方向とが相違するので、吸収塔本体2の内部空間3(気液接触領域16)の水平断面において、より満遍なく洗浄液の液滴群28,37を分散させることができる。
(Dispersion of droplets)
As shown in Fig. 3, with the spray nozzle 30, droplets (spray split droplet group 37) tend to form on an extension line of the liquid film 36, while with the liquid column nozzle 20, droplets (liquid column split droplet group 28) tend to form vertically below the liquid column reach portion 27. The dispersion direction of the liquid column split droplet group 28 is indicated by arrow 40, and the dispersion direction of the spray split droplet group 37 is indicated by arrow 41 in Fig. 3. Since the dispersion direction of the liquid column split droplet group 28 and the dispersion direction of the spray split droplet group 37 differ in this way, the cleaning liquid droplet groups 28, 37 can be dispersed more evenly in the horizontal cross section of the internal space 3 (gas-liquid contact region 16) of the absorption tower body 2.

(液滴群の干渉)
図4は、液柱分裂液滴群28と液膜分裂液滴群37との干渉を模式的に示す概略図である。図4の(a)は、液柱到達部27が液膜36に到達して干渉する状態を、(b)は液柱到達部27が液膜36に到達せず干渉しない状態を示す。液柱ノズル20とスプレノズル30とを組み合わせた本実施形態の吸収塔1では、液滴群同士の干渉が懸念される。干渉による懸念事項は主に以下の3つであると考えられる。
(Interference of droplet groups)
Fig. 4 is a schematic diagram showing interference between a liquid column split droplet group 28 and a liquid film split droplet group 37. Fig. 4(a) shows a state in which the liquid column reach portion 27 reaches the liquid film 36 and causes interference, and (b) shows a state in which the liquid column reach portion 27 does not reach the liquid film 36 and does not cause interference. In the absorption tower 1 of this embodiment in which the liquid column nozzle 20 and the spray nozzle 30 are combined, there is a concern about interference between the droplet groups. The following three points are thought to be the main concerns due to interference.

第1の懸念事項は、液滴の合体である。液柱分裂液滴群28とスプレ分裂液滴群37とが合体すると、液滴が粗大化し、液滴群の表面積が減少するため、気液接触する排煙脱硫装置において不利である。The first concern is droplet coalescence. When the liquid column split droplet group 28 and the spray split droplet group 37 coalesce, the droplets become coarse and the surface area of the droplet group decreases, which is disadvantageous in a flue gas desulfurization device that is in gas-liquid contact.

第2の懸念事項は、液滴同士の衝突である。液滴同士の衝突は、液柱分裂液滴群28と液膜分裂液滴群37との衝突、液柱分裂液滴群28と液膜36との衝突、及び液柱26(液柱到達部27)と液膜36との衝突を含む。例えば、液膜36との衝突は、液柱分裂液滴群28を2次微粒化して微細化することも考えられ、液滴群の微細化は気液接触に有利である。しかし、2次微粒化による微細な液滴群が内部空間3で均等に分散するとは限らず、微細な液滴群が偏ってしまうと、気液接触は却って不利になり、脱硫性能が低下する可能性がある。The second concern is the collision between droplets. Collisions between droplets include collisions between the liquid column split droplet group 28 and the liquid film split droplet group 37, collisions between the liquid column split droplet group 28 and the liquid film 36, and collisions between the liquid column 26 (liquid column reach portion 27) and the liquid film 36. For example, collisions with the liquid film 36 may cause the liquid column split droplet group 28 to be finely atomized by secondary atomization, and finer droplet groups are advantageous for gas-liquid contact. However, the fine droplet groups produced by secondary atomization are not necessarily uniformly dispersed in the internal space 3, and if the fine droplet groups are biased, gas-liquid contact may be disadvantageous and desulfurization performance may be reduced.

第3の懸念事項は、圧力損失の増大である。干渉の生じた部分は液滴群の密度が局所的に高まり、圧力損失の増大は動力増加につながる。The third concern is increased pressure loss. In areas where interference occurs, the density of the droplets increases locally, and increased pressure loss leads to increased power.

本実施形態では、上記干渉の発生を防止するため、スプレノズル30が形成する液膜36から発生する液膜分裂液滴群37の発生高さH5が、液柱ノズル20が形成する液柱26の最高到達高さである液柱到達部27の高さH4よりも高くなるように(H4<H5)、液柱ノズル20に対するスプレノズル30の高さを設定している。In this embodiment, in order to prevent the above-mentioned interference from occurring, the height of the spray nozzle 30 relative to the liquid column nozzle 20 is set so that the generation height H5 of the liquid film splitting droplet group 37 generated from the liquid film 36 formed by the spray nozzle 30 is higher than the height H4 of the liquid column reach portion 27, which is the maximum reach height of the liquid column 26 formed by the liquid column nozzle 20 (H4 < H5).

(排ガスの偏流の抑制)
液柱ノズル20のみによって洗浄液を噴射する液柱式吸収塔では、吸収塔本体の内部空間から上方に延びる垂直ダクト(出口ダクト)内にミストイリミネータを水平置きに配するタイプの場合は脱硫性能が高く、吸収塔本体の内部空間の上部から水平方向に延びる水平ダクト(出口ダクト)内にミストイリミネータを縦置きに配するタイプの場合は脱硫性能が下がる現象が見られる。このような現象は、出口ダクトが水平に延びる後者の方が内部空間から出口ダクトに向かって排ガスが斜めに流れ易い(偏流が生じ易い)ためと考えられている。これに対し、本実施形態では、内部空間3の下流側(上側)でスプレノズル30から洗浄液を噴射しているので、出口ダクト11に向かう排ガスの偏流をスプレノズル30から噴射された洗浄液によって抑制することができる。このため、脱硫性能の向上に加え、フラッティングガス流速の増加(塔断面積コンパクト化)や、除塵性能の増加も期待できる。
(Suppression of uneven flow of exhaust gas)
In a liquid column type absorber in which the cleaning liquid is sprayed only by the liquid column nozzle 20, the desulfurization performance is high in the type in which the mist eliminator is arranged horizontally in the vertical duct (outlet duct) extending upward from the internal space of the absorber body, while the desulfurization performance is decreased in the type in which the mist eliminator is arranged vertically in the horizontal duct (outlet duct) extending horizontally from the upper part of the internal space of the absorber body. This phenomenon is considered to be due to the fact that the latter type in which the outlet duct extends horizontally makes it easier for the exhaust gas to flow obliquely from the internal space toward the outlet duct (easier to cause drift). In contrast, in this embodiment, the cleaning liquid is sprayed from the spray nozzle 30 on the downstream side (upper side) of the internal space 3, so that drift of the exhaust gas toward the outlet duct 11 can be suppressed by the cleaning liquid sprayed from the spray nozzle 30. Therefore, in addition to improving the desulfurization performance, an increase in the flooding gas flow rate (compacting the tower cross-sectional area) and an increase in the dust removal performance can also be expected.

以上説明したように、本実施形態によれば、液柱式吸収塔やスプレ式吸収塔に比べて、気液接触領域16を排ガスの流通方向に拡大させること、排ガスが流通する吸収塔本体2の内部空間3に幅広い粒径分布を有する液滴群を発生させること、及び内部空間3の水平断面において液滴群の偏りを少なく抑えて分散させることが可能となるので、脱硫性能及び除塵性能を向上させることができる。As described above, according to this embodiment, compared to liquid column type absorption towers and spray type absorption towers, it is possible to expand the gas-liquid contact area 16 in the direction of exhaust gas flow, generate droplets having a wide particle size distribution in the internal space 3 of the absorption tower body 2 through which the exhaust gas flows, and disperse the droplets with minimal bias in the horizontal cross section of the internal space 3, thereby improving desulfurization performance and dust removal performance.

また、スプレノズル30が形成する液膜36から発生する液膜分裂液滴群37の発生高さH5が、液柱ノズル20が形成する液柱26の最高到達高さである液柱到達部27の高さH4よりも高くなるように、液柱ノズル20に対するスプレノズル30の高さを設定しているので、液柱ノズル20からの液滴とスプレノズル30からの液滴との干渉を抑制することができ、脱硫性能及び除塵性能をさらに向上させることができる。 In addition, the height of the spray nozzle 30 relative to the liquid column nozzle 20 is set so that the generation height H5 of the liquid film split droplet group 37 generated from the liquid film 36 formed by the spray nozzle 30 is higher than the height H4 of the liquid column reach portion 27, which is the maximum reach height of the liquid column 26 formed by the liquid column nozzle 20. This makes it possible to suppress interference between the droplets from the liquid column nozzle 20 and the droplets from the spray nozzle 30, thereby further improving the desulfurization performance and dust removal performance.

また、液柱式吸収塔に対しては、スプレノズル30及びスプレノズル30から洗浄液を噴射させるための構成(スプレヘッダ31や第2洗浄液循環ライン32等)を追加する改造工事を行うことにより、またスプレ式吸収塔に対しては、液柱ノズル20及び液柱ノズル20から洗浄液を噴射させるための構成(液柱ヘッダ21や第1洗浄液循環ライン22等)を追加する改造工事を行うことにより、脱硫性能及び除塵性能を向上させることができる。 In addition, by carrying out modification work on the liquid column type absorption tower to add a spray nozzle 30 and a configuration for spraying cleaning liquid from the spray nozzle 30 (such as a spray header 31 and a second cleaning liquid circulation line 32), and by carrying out modification work on the spray type absorption tower to add a liquid column nozzle 20 and a configuration for spraying cleaning liquid from the liquid column nozzle 20 (such as a liquid column header 21 and a first cleaning liquid circulation line 22), it is possible to improve desulfurization performance and dust removal performance.

(第2実施形態)
次に、本発明の第2実施形態について、図5及び図6を参照して説明する。本実施形態の吸収塔50は、第1実施形態の吸収塔本体2にすり抜け防止材51を設けたものであるため、第1実施形態と同様の構成については、同一の符号を付して説明を省略する。また、第1実施形態の吸収塔1が備える構成のうち本実施形態と直接関連しない構成については、図示を省略している。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to Figures 5 and 6. An absorption tower 50 of this embodiment is an absorption tower body 2 of the first embodiment provided with a slip-through prevention material 51, so that the same components as those of the first embodiment are denoted by the same reference numerals and description thereof will be omitted. Also, among the components of the absorption tower 1 of the first embodiment, components that are not directly related to this embodiment are not shown in the figures.

脱硫装置において、排ガスの脱硫は洗浄液との気液接触で行われるため、排ガスが吸収液と接触せずに吸収塔1の内部空間3を上方へとすり抜けることを極力抑える必要がある。吸収塔本体2の壁際(内周面7の近傍)や、隅となる部分(例えば周壁6が矩形筒状の場合には四隅の部分)は、排ガスのすり抜けが生じ易い部分である。本実施形態では、排ガスのすり抜けを抑制するため、排ガスのすり抜けが生じ易い内部空間3の外周縁部分に、内周面7から内部空間3内へ突出するすり抜け防止材51を設ける(図5参照)。In a desulfurization device, desulfurization of exhaust gas is performed by gas-liquid contact with the cleaning liquid, so it is necessary to minimize the possibility of the exhaust gas passing upward through the internal space 3 of the absorption tower 1 without coming into contact with the absorption liquid. The wall edges (near the inner circumferential surface 7) and corners (for example, the four corners when the peripheral wall 6 is rectangular) of the absorption tower main body 2 are areas where exhaust gas is likely to pass through. In this embodiment, in order to prevent exhaust gas from passing through, anti-slip materials 51 that protrude from the inner circumferential surface 7 into the internal space 3 are provided at the outer peripheral edge of the internal space 3 where exhaust gas is likely to pass through (see Figure 5).

すり抜け防止材51を取り付ける高さ位置は、排ガス導入口8の上端縁以上で、且つスプレヘッダ31以下の高さ範囲53の少なくとも一部である。例えば、排ガス導入口8の上端縁以上で、液柱ヘッダ21以下の高さ範囲である第1領域と、液柱ヘッダ21以上で、スプレヘッダ31以下の高さ範囲である第2領域とに分けた場合、すり抜け防止材51を、何れか一方の領域のみに設けてもよく、双方の領域に設けてもよい。また、1つの領域に複数のすり抜け防止材を設けてもよい。The height position at which the slip-through prevention material 51 is attached is above the upper edge of the exhaust gas inlet 8 and at least a part of the height range 53 below the spray header 31. For example, if the area is divided into a first area that is above the upper edge of the exhaust gas inlet 8 and in a height range below the liquid column header 21, and a second area that is above the liquid column header 21 and in a height range below the spray header 31, the slip-through prevention material 51 may be provided in only one of the areas, or in both areas. Also, multiple slip-through prevention materials may be provided in one area.

すり抜け防止材51の形状の例を図6の(a)~(d)に示す。図6の(a)~(d)は、図5のVI-VI矢視断面図であり、液柱ヘッダ21などの図示は省略している。(a)~(c)は周壁6が矩形筒状の場合、(d)は周壁6が円筒状の場合である。(a)は、周壁6の内周面7の四隅をそれぞれカバーする三角形状のすり抜け防止材51Aであり、(b)及び(d)は、周壁6の壁際(内周面7の近傍)を全周に亘ってカバーするすり抜け防止材51B,51Dであり、(c)は、(a)と(b)とを組み合わせたすり抜け防止材51Cである。 Examples of the shape of the slip-through prevention material 51 are shown in (a) to (d) of Figure 6. (a) to (d) of Figure 6 are cross-sectional views taken along the line VI-VI of Figure 5, with the liquid column header 21 and other elements omitted. (a) to (c) are views in the case where the peripheral wall 6 is rectangular tubular, and (d) is views in the case where the peripheral wall 6 is cylindrical. (a) is a triangular slip-through prevention material 51A that covers each of the four corners of the inner peripheral surface 7 of the peripheral wall 6, (b) and (d) are slip-through prevention materials 51B and 51D that cover the entire edge of the peripheral wall 6 (near the inner peripheral surface 7), and (c) is a slip-through prevention material 51C that combines (a) and (b).

本実施形態によれば、排ガスのすり抜けが生じ易い内部空間3の外周縁部分にすり抜け防止材51を設けているので、洗浄液と気液接触せずに吸収塔50から排出される排ガスを減少させることができ、脱硫性能及び除塵性能をさらに向上させることができる。According to this embodiment, anti-slip material 51 is provided on the outer peripheral edge of the internal space 3 where the exhaust gas is likely to slip through, so that the exhaust gas discharged from the absorption tower 50 can be reduced without gas-liquid contact with the cleaning liquid, thereby further improving the desulfurization and dust removal performance.

なお、本発明は、一例として説明した上述の実施形態及び変形例に限定されることはなく、上述の実施形態等以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。The present invention is not limited to the above-described embodiments and variants, which have been described as examples, and various modifications may be made depending on the design, etc., other than the above-described embodiments, etc., as long as they do not deviate from the technical concept of the present invention.

1,50:吸収塔
2:吸収塔本体
3:内部空間
8:排ガス導入口
9:入口ダクト(排ガス導入部)
10:排ガス排出口
11:出口ダクト(排ガス排出部)
12:ミストイリミネータ
13:液だまり部(吸収塔タンク)
14:下部空間
15:上部空間
16:気液接触領域
16A:第1気液接触領域
16B:第2気液接触領域
20:液柱ノズル
21:液柱ヘッダ(液柱管)
22:第1洗浄液循環ライン
23:第1循環配管
24:第1循環ポンプ
25,35:弁
26:液柱
27:液柱到達部(噴き上げ頂部)
28:液柱分裂液滴群
30:スプレノズル
31:スプレヘッダ(スプレ管)
32:第2洗浄液循環ライン
33:第2循環配管
34:第2循環ポンプ
36:液膜
37:液膜分裂液滴群(スプレ分裂液滴群)
51,51A,51B,51C,51D:すり抜け防止材
D1:液柱における液滴分布
D2:スプレにおける液滴分布
F:排ガスの流れ方向
H1:液柱ノズルの高さ
H2:スプレノズルの高さ
H3:排ガス導入口の上端縁の高さ
H4:液柱到達部の高さ(液柱の最高到達高さ)
H5:液膜分裂液滴群の発生高さ
1, 50: Absorption tower 2: Absorption tower body 3: Internal space 8: Exhaust gas inlet 9: Inlet duct (exhaust gas inlet section)
10: Exhaust gas exhaust port 11: Exit duct (exhaust gas exhaust section)
12: Mist eliminator 13: Liquid pool (absorption tower tank)
14: Lower space 15: Upper space 16: Gas-liquid contact area 16A: First gas-liquid contact area 16B: Second gas-liquid contact area 20: Liquid column nozzle 21: Liquid column header (liquid column tube)
22: First cleaning liquid circulation line 23: First circulation piping 24: First circulation pump 25, 35: Valve 26: Liquid column 27: Liquid column arrival section (spray top)
28: Liquid column split droplet group 30: Spray nozzle 31: Spray header (spray tube)
32: Second cleaning liquid circulation line 33: Second circulation pipe 34: Second circulation pump 36: Liquid film 37: Liquid film split droplet group (spray split droplet group)
51, 51A, 51B, 51C, 51D: slip-through prevention material D1: droplet distribution in liquid column D2: droplet distribution in spray F: flow direction of exhaust gas H1: height of liquid column nozzle H2: height of spray nozzle H3: height of upper edge of exhaust gas inlet H4: height of liquid column reach part (maximum reach height of liquid column)
H5: Height of droplets generated by liquid film breakup

Claims (2)

排ガス中の硫黄酸化物を洗浄液で吸収して除去する脱硫装置の吸収塔であって、
排ガスが下方から上方へ流通する内部空間を有する吸収塔本体と、
前記内部空間に設けられ、洗浄液を上方に向けて液柱状に噴射する液柱ノズルと、
前記液柱ノズルの上方の前記内部空間に設けられ、洗浄液を下方に向けてコーン状に噴射するスプレノズルと、を備え、
前記スプレノズルは、噴霧パターンが環円形のホロコーンノズルであり、前記液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも上方の高さ位置に配置され、
前記スプレノズルから噴射される洗浄液は、噴出直後に液膜状に拡がった後、落下するに従って液膜が分裂して液膜分裂液滴群となり、
前記液柱ノズルは、前記スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さよりも下方の高さ位置に配置されるとともに、
前記液柱ノズルは、前記液柱ノズルから噴射される洗浄液が形成する液柱が、前記スプレノズルから噴射される洗浄液の液膜と干渉しない高さ位置に配置され、
前記スプレノズルから噴射される洗浄液の液膜分裂液滴群の発生高さは、前記液柱ノズルから噴射される洗浄液が形成する液柱の最高到達高さよりも高く、
前記液柱を形成した洗浄液は、前記液柱の最高到達高さから分裂して落下し液柱分裂液滴群となり、
前記液柱分裂液滴群の粒径分布は、前記液膜分裂液滴群の粒径分布よりも大きい
ことを特徴とする脱硫装置の吸収塔。
An absorption tower of a desulfurization apparatus that removes sulfur oxides from exhaust gas by absorbing them with a cleaning liquid,
an absorption tower body having an internal space through which exhaust gas flows from below to above;
a liquid column nozzle provided in the internal space and configured to spray the cleaning liquid upward in the form of a liquid column;
a spray nozzle provided in the internal space above the liquid column nozzle and configured to spray the cleaning liquid downward in a cone shape;
the spray nozzle is a hollow cone nozzle having a circular spray pattern, and is disposed at a height position higher than a maximum height of a liquid column formed by the cleaning liquid sprayed from the liquid column nozzle;
The cleaning liquid sprayed from the spray nozzle spreads in the form of a liquid film immediately after being sprayed, and then the liquid film breaks up as it falls, forming a group of liquid film breakup droplets,
The liquid column nozzle is disposed at a height position lower than a height at which a liquid film breakup droplet group of the cleaning liquid sprayed from the spray nozzle is generated,
the liquid column nozzle is disposed at a height position such that a liquid column formed by the cleaning liquid sprayed from the liquid column nozzle does not interfere with a liquid film of the cleaning liquid sprayed from the spray nozzle;
a height at which a group of liquid film breakup droplets of the cleaning liquid sprayed from the spray nozzle is generated is higher than a maximum height of a liquid column formed by the cleaning liquid sprayed from the liquid column nozzle;
The cleaning liquid that has formed the liquid column splits off from the maximum height of the liquid column and falls to become a group of split droplets of the liquid column,
The particle size distribution of the liquid column breakup droplet group is larger than the particle size distribution of the liquid film breakup droplet group.
The absorption tower of a desulfurization equipment is characterized by the above.
請求項1に記載の吸収塔であって、
前記内部空間を横切るように略水平に延び、前記スプレノズルを支持するとともに、前記スプレノズルへ洗浄液を供給するスプレヘッダを備え、
前記吸収塔本体は、略鉛直に起立する筒状の周壁を有し、
前記周壁の内周面は、前記内部空間を区画し、
前記周壁には、排ガスが流入する排ガス導入口が設けられ、
前記周壁の前記内周面のうち前記排ガス導入口の上端縁以上で、且つ前記スプレヘッダ以下の高さ範囲の少なくとも一部には、前記内周面から前記内部空間内へ突出するすり抜け防止材が設けられる
ことを特徴とする脱硫装置の吸収塔。
2. The absorber tower of claim 1,
a spray header extending generally horizontally across the interior space to support the spray nozzle and supply cleaning fluid to the spray nozzle;
The absorption tower body has a cylindrical peripheral wall that stands substantially vertically,
An inner circumferential surface of the peripheral wall defines the internal space,
The peripheral wall is provided with an exhaust gas inlet through which exhaust gas flows,
an anti-slip material protruding from the inner circumferential surface into the internal space is provided on at least a portion of the inner circumferential surface of the peripheral wall in a height range above the upper edge of the exhaust gas inlet and below the spray header.
JP2022512536A 2020-03-31 2021-03-30 Absorption tower of desulfurization equipment Active JP7524308B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020063018 2020-03-31
JP2020063018 2020-03-31
PCT/JP2021/013533 WO2021200942A1 (en) 2020-03-31 2021-03-30 Absorption tower of desulphurization device

Publications (2)

Publication Number Publication Date
JPWO2021200942A1 JPWO2021200942A1 (en) 2021-10-07
JP7524308B2 true JP7524308B2 (en) 2024-07-29

Family

ID=77929012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512536A Active JP7524308B2 (en) 2020-03-31 2021-03-30 Absorption tower of desulfurization equipment

Country Status (4)

Country Link
JP (1) JP7524308B2 (en)
KR (1) KR20220148947A (en)
TW (1) TWI802860B (en)
WO (1) WO2021200942A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024945A (en) 2002-06-21 2004-01-29 Babcock Hitachi Kk Absorption tower structure in wet flue gas desulfurization apparatus suitable for prevention of gas blow
JP2005046830A (en) 2003-07-11 2005-02-24 Mitsubishi Heavy Ind Ltd Exhaust gas treating column
JP2006116378A (en) 2004-10-19 2006-05-11 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization equipment
JP2007275715A (en) 2006-04-04 2007-10-25 Babcock Hitachi Kk Wet-type flue gas desulfurization device
JP2016055244A (en) 2014-09-09 2016-04-21 三菱日立パワーシステムズ株式会社 Flue gas treatment apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165029U (en) * 1984-04-11 1985-11-01 石川島播磨重工業株式会社 spray tower
JP2506351B2 (en) * 1986-12-16 1996-06-12 バブコツク日立株式会社 Desulfurization equipment
JP3333031B2 (en) * 1994-01-21 2002-10-07 バブコック日立株式会社 Wet exhaust gas desulfurization method
JPH09299744A (en) * 1996-05-09 1997-11-25 Babcock Hitachi Kk Wet process flue gas desulfurziation equipment with acoustic wave generator and method thereof
JP3337382B2 (en) 1996-10-25 2002-10-21 三菱重工業株式会社 Exhaust gas treatment method
KR100583930B1 (en) * 2003-10-16 2006-05-26 미츠비시 쥬고교 가부시키가이샤 Exhaust gas treating tower

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004024945A (en) 2002-06-21 2004-01-29 Babcock Hitachi Kk Absorption tower structure in wet flue gas desulfurization apparatus suitable for prevention of gas blow
JP2005046830A (en) 2003-07-11 2005-02-24 Mitsubishi Heavy Ind Ltd Exhaust gas treating column
JP2006116378A (en) 2004-10-19 2006-05-11 Ishikawajima Harima Heavy Ind Co Ltd Desulfurization equipment
JP2007275715A (en) 2006-04-04 2007-10-25 Babcock Hitachi Kk Wet-type flue gas desulfurization device
JP2016055244A (en) 2014-09-09 2016-04-21 三菱日立パワーシステムズ株式会社 Flue gas treatment apparatus

Also Published As

Publication number Publication date
KR20220148947A (en) 2022-11-07
WO2021200942A1 (en) 2021-10-07
TW202142307A (en) 2021-11-16
JPWO2021200942A1 (en) 2021-10-07
TWI802860B (en) 2023-05-21

Similar Documents

Publication Publication Date Title
AU2017281505B2 (en) System and method for reducing the amount of sulfur oxides in exhaust gas
JP4845568B2 (en) Wet flue gas desulfurization equipment
KR20150123263A (en) Marine exhaust gas scrubber
KR101473285B1 (en) Wet flue gas desulfurization device
TWI494153B (en) Desulfurizer
RU2494792C2 (en) Disperser of sprayer-drier absorber
JP3073972B2 (en) Flue gas desulfurization equipment
US20090151563A1 (en) Extraction device
JP7524308B2 (en) Absorption tower of desulfurization equipment
CN205700139U (en) A kind of boiler waste gas purification demister
JP2020093192A (en) Gas-liquid mixer, and exhaust gas desulfurizer with the same
JPH07155536A (en) Wet type flue gas desulfurization apparatus
JP7390784B2 (en) Drain discharge device
JP3525369B2 (en) Spray absorption tower and flue gas desulfurization unit
JP7280699B2 (en) Modification method of liquid column type absorption tower and liquid column type absorption tower
KR100542953B1 (en) Modified inlet part for the wet scrubber
JPH10225615A (en) Wet type flue gas desulfurizer
JPH08276114A (en) Wet flue gas desulfurization device
JPH08299753A (en) Sectorial spray-type wet flue gas desulfurizer
JPH0560523U (en) Exhaust gas treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220928

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240405

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240717

R150 Certificate of patent or registration of utility model

Ref document number: 7524308

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150