JP7524354B2 - Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same - Google Patents
Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same Download PDFInfo
- Publication number
- JP7524354B2 JP7524354B2 JP2022572382A JP2022572382A JP7524354B2 JP 7524354 B2 JP7524354 B2 JP 7524354B2 JP 2022572382 A JP2022572382 A JP 2022572382A JP 2022572382 A JP2022572382 A JP 2022572382A JP 7524354 B2 JP7524354 B2 JP 7524354B2
- Authority
- JP
- Japan
- Prior art keywords
- delayed fracture
- fracture resistance
- ultra
- steel
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003111 delayed effect Effects 0.000 title claims description 93
- 239000011701 zinc Substances 0.000 title claims description 75
- 229910052725 zinc Inorganic materials 0.000 title claims description 75
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims description 73
- 229910000885 Dual-phase steel Inorganic materials 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 229910000831 Steel Inorganic materials 0.000 claims description 58
- 239000010959 steel Substances 0.000 claims description 58
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 27
- 238000005496 tempering Methods 0.000 claims description 26
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 23
- 229910000734 martensite Inorganic materials 0.000 claims description 18
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 16
- 238000000137 annealing Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- 238000009749 continuous casting Methods 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 9
- 238000009713 electroplating Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- 239000008188 pellet Substances 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 238000002791 soaking Methods 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052729 chemical element Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000000758 substrate Substances 0.000 claims description 5
- 238000003723 Smelting Methods 0.000 claims description 4
- 230000001427 coherent effect Effects 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 2
- 229910000859 α-Fe Inorganic materials 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims 1
- 239000011572 manganese Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000010955 niobium Substances 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 239000010960 cold rolled steel Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- SFMJNHNUOVADRW-UHFFFAOYSA-N n-[5-[9-[4-(methanesulfonamido)phenyl]-2-oxobenzo[h][1,6]naphthyridin-1-yl]-2-methylphenyl]prop-2-enamide Chemical compound C1=C(NC(=O)C=C)C(C)=CC=C1N1C(=O)C=CC2=C1C1=CC(C=3C=CC(NS(C)(=O)=O)=CC=3)=CC=C1N=C2 SFMJNHNUOVADRW-UHFFFAOYSA-N 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009510 drug design Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 carbon nitrides Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005297 material degradation process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical group N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0242—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
- Electroplating Methods And Accessories (AREA)
- Continuous Casting (AREA)
Description
本発明は、金属材料およびその製造方法、特に亜鉛電気めっき超高張力二相鋼およびその製造方法に関する。 The present invention relates to a metallic material and a manufacturing method thereof, in particular to a zinc electroplated ultra-high tensile dual-phase steel and a manufacturing method thereof.
自動車工業において、自動車の軽量化や安全性への需要から、より高い強度を有する鋼板への需求量が増えている。二相鋼は、低い降伏強度、高い引張強度および高い初期加工硬化速度などの優れた性能を有し、自動車部品の生産において広く利用されている。現在、市販で求められる強度レベルは主に80キロや100キロ級であり、耐食性への要求から、現在の自動車工業では亜鉛めっき鋼板が多く使用されるが、この鋼板は通常遅れ破壊の問題が存在する。 In the automotive industry, the demand for stronger steel sheets is increasing due to the need for lighter cars and safety. Dual-phase stainless steel has excellent properties such as low yield strength, high tensile strength, and high initial work hardening rate, and is widely used in the production of automotive parts. Currently, the strength level required for commercial products is mainly 80kg or 100kg class, and due to the need for corrosion resistance, galvanized steel sheets are often used in the current automotive industry, but these steel sheets usually have the problem of delayed fracture.
遅れ破壊とは、一定の時間で静的応力を受けた材料において、突然的に脆性破壊が発生する現象である。この現象は、材料と環境応力の相互作用によって発生する脆化であり、水素による材質劣化のある形態である。遅れ破壊現象は、超高張力鋼の応用を支障する主要な要素であり、大まかに以下の二種類に分類される:
(1)主に外部環境から侵入した水素(外部水素)による遅れ破壊。例えば、橋梁などに使用されるボルトが、湿り空気や雨水などの環境に長期的にさらされることで発生する遅れ破壊。
Delayed fracture is a phenomenon in which a material subjected to static stress for a certain period of time suddenly undergoes brittle fracture. This phenomenon is embrittlement caused by the interaction of the material with environmental stress, and is a form of material degradation caused by hydrogen. Delayed fracture is a major factor that impedes the application of ultra-high strength steels, and is roughly classified into the following two types:
(1) Delayed fracture caused mainly by hydrogen that has entered from the external environment (external hydrogen). For example, delayed fracture occurs when bolts used in bridges are exposed to moist air, rainwater, and other environments for a long period of time.
(2)酸洗いや電気めっき処理などの製造過程で鋼中に侵入する水素(内部水素)による遅れ破壊。例えば、電気めっきボルトなどが、数時間または数日の短い時間で負荷を受けた後に発生する遅れ破壊。 (2) Delayed fracture caused by hydrogen (internal hydrogen) that penetrates into the steel during manufacturing processes such as pickling and electroplating. For example, delayed fracture occurs when an electroplated bolt is subjected to a load for a short period of time, such as a few hours or days.
前者は通常、長期的な露出過程で発生する腐食や、腐食穴での腐食反応で生成する水素の侵入によるものである;後者は、例えば酸洗い、電気めっき処理などの製造過程時に鋼中に侵入する水素が、応力作用により応力が集中するところへの集中によるものである。 The former is usually caused by corrosion that occurs during long-term exposure or by the ingress of hydrogen produced by corrosion reactions in corrosion holes; the latter is caused by hydrogen that penetrates the steel during manufacturing processes, such as pickling and electroplating, and then concentrates in areas where stress is concentrated due to stress effects.
中国特許文献(特許公開CN107148486B、開示日2019年1月8日、題名「高強度鋼板、高強度亜鉛熱めっき鋼板、高強度アルミニウム熱めっき鋼板および高強度亜鉛電気めっき鋼板、およびそれらの製造方法」)は、C:0.030%以上且つ0.250%以下、Si:0.01%以上且つ3.00%以下、Mn:2.60%以上且つ4.20%以下、P:0.001%以上且つ0.100%以下、S:0.0001%以上且つ0.0200%以下、N:0.0005%以上且つ0.0100%以下およびTi:0.005%以上且つ0.200%以下、残りがFeおよび避けなれない不純物からなる化学成分を有する、亜鉛電気めっき高張力鋼の製造方法を開示した。この鋼スラグは、1100℃以上且つ1300℃以下に加熱し、750℃以上且つ1000℃以下である仕上げ圧延出口側の温度下で熱間圧延を行い、300℃以上且つ750℃以下で卷取を行う。次に、酸洗いによって酸化皮膜を除去し、Ac1相転移点+20℃以上且つAc1相転移点+120℃以下の温度範囲内で600秒以上且つ21600秒以下保持し、30%以上の圧下率で冷間圧延を行う。そして、Ac1相転移点以上且つAc1相転移点+100℃以下の温度範囲内で20秒以上900秒以下保持し、冷却を行う。次に、亜鉛電気めっき処理を実施する。 A Chinese patent document (Patent Publication CN107148486B, disclosed on January 8, 2019, entitled "High-strength steel sheet, high-strength zinc hot-plated steel sheet, high-strength aluminum hot-plated steel sheet and high-strength zinc electroplated steel sheet, and their manufacturing methods") disclosed a method for manufacturing zinc electroplated high-tensile steel having chemical compositions of C: 0.030% or more and 0.250% or less, Si: 0.01% or more and 3.00% or less, Mn: 2.60% or more and 4.20% or less, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, N: 0.0005% or more and 0.0100% or less, Ti: 0.005% or more and 0.200% or less, with the remainder being Fe and unavoidable impurities. This steel slag is heated to 1100°C or more and 1300°C or less, hot-rolled at a finish rolling outlet temperature of 750°C or more and 1000°C or less, and wound at 300°C or more and 750°C or less. Next, the oxide film is removed by pickling, and the temperature is held within a temperature range of Ac1 phase transition point +20°C or more and Ac1 phase transition point +120°C or less for 600 seconds or more and 21600 seconds or less, and cold-rolled with a reduction of 30% or more. Then, the temperature is held within a temperature range of Ac1 phase transition point +100°C or more and Ac1 phase transition point +100°C or less for 20 seconds or more and 900 seconds or less, and cooled. Next, zinc electroplating is performed.
中国特許文献(特許公開CN106282790B、開示日2018年4月3日、題名「亜鉛電気めっき用超深絞り冷間圧延鋼板およびその生産方法」)は、C≦0.002%、Si≦0.030%、Mn:0.06%~0.15%、P≦0.015%、S≦0.010%、Als:0.030%~0.050%、Ti:0.040~0.070%、N≦0.0040%、残りがFeおよび避けなれない不純物からなる化学成分を有する、亜鉛電気めっき用超深絞り冷間圧延鋼板の製造方法を開示した。上記冷間圧延鋼板の生産方法は、以下のステップを含む:(1)溶鉄の前処理を行う;(2)転炉で製錬する;(3)合金を微調整する;(4)RH炉で精製する;(5)連続鋳造を行う;(6)熱間圧延を行う;(7)冷間圧延を行う;(8)連続焼鈍を行う;(9)テンパーを行う;本発明は、亜鉛電気めっき鋼板の表面品質を高め、亜鉛電気めっき鋼板に良好な板形を与えることができる。上記冷間圧延鋼板の力学性能は:降伏強度が120~180MPaであり、引張強度が260MPaを超えている。 A Chinese patent document (Patent Publication CN106282790B, disclosure date April 3, 2018, titled "Ultra-deep drawing cold rolled steel sheet for zinc electroplating and its production method") disclosed a method for producing ultra-deep drawing cold rolled steel sheet for zinc electroplating, having a chemical composition of C≦0.002%, Si≦0.030%, Mn: 0.06%-0.15%, P≦0.015%, S≦0.010%, Als: 0.030%-0.050%, Ti: 0.040-0.070%, N≦0.0040%, with the remainder being Fe and unavoidable impurities. The method for producing the cold rolled steel sheet includes the following steps: (1) pretreatment of molten iron; (2) smelting in a converter; (3) fine-tuning the alloy; (4) refining in an RH furnace; (5) continuous casting; (6) hot rolling; (7) cold rolling; (8) continuous annealing; (9) tempering. The present invention can improve the surface quality of the zinc electroplated steel sheet and give the zinc electroplated steel sheet a good sheet shape. The mechanical properties of the cold rolled steel sheet are: the yield strength is 120-180 MPa, and the tensile strength is over 260 MPa.
中国特許文献(特許公開CN1419607A、開示日2003年5月21日、題名「高強度二相薄鋼板と高強度二相電気めっき薄鋼板およびその製造方法」)は、0.01~0.08%C、2%以下のSi、3.0%以下のMn、0.01~0.5%V、VとCが0.5×C/12≦V/51≦3×C/12を満たし、残りがFeおよび避けなれない不純物からなる化学成分を有する、引張強度600~650MPa級の二相鋼板および製造方法を開示した。この鋼板は、1250℃に加熱し、均熱を行い、そして900℃の仕上げ圧延器輸送温度で三パスで圧延し、その後650℃×1時間の保温処理を行う。次に、70℃/sの圧縮率で薄鋼板に対し冷間圧延を行い、厚さ1.2mmの冷間圧延薄鋼板を得る。次に、850℃下で再結晶焼鈍を60秒行い、30℃/sの冷却速度で冷却した後に、電気めっき処理を行う。 A Chinese patent document (Patent Publication CN1419607A, disclosed on May 21, 2003, entitled "High-strength dual-phase steel sheet and high-strength dual-phase electroplated steel sheet and manufacturing method thereof") discloses a dual-phase steel sheet with a tensile strength of 600-650 MPa and a manufacturing method thereof, which has a chemical composition of 0.01-0.08% C, 2% or less Si, 3.0% or less Mn, 0.01-0.5% V, where V and C satisfy 0.5×C/12≦V/51≦3×C/12, and the remainder is Fe and unavoidable impurities. The steel sheet is heated to 1250°C, soaked, and rolled in three passes at a finishing mill transport temperature of 900°C, followed by a heat treatment at 650°C for 1 hour. The steel sheet is then cold-rolled at a compression rate of 70°C/s to obtain a cold-rolled steel sheet with a thickness of 1.2 mm. Next, recrystallization annealing is performed at 850°C for 60 seconds, and then the material is cooled at a cooling rate of 30°C/s before being electroplated.
このように、上述の従来特許文献による製品では、引張強度レベルがいずれも980MPa未満であり、もしくは基体が熱プレス鋼である。そのため、工業上の要求を満たすために、耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼が求められる。 As such, the products according to the above-mentioned conventional patent documents all have a tensile strength level of less than 980 MPa or the base material is hot-pressed steel. Therefore, in order to meet industrial demands, there is a need for zinc electroplated ultra-high tensile dual-phase steels that are resistant to delayed fracture.
本発明の一つの目的は、耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の提供である。遅れ破壊が発生しやすいという超高張力鋼の特徴に対し、本発明の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、合理的な成分設計を採用する。炭素、ケイ素、マンガンおよびニオブ、バナジウム、クロム、モリブデンなどのマイクロアロイの合理的な設計およびプロセス配合により、得られる鋼が優れた耐遅れ破壊性および超高強度を有する。この耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、降伏強度≧550MPa、引張強度≧980MPa、破断伸び率≧12%、初期水素含有量≦3ppm、好ましくは≦2ppmであり、プレストレスが引張強度の1.0倍以上である場合において、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。好ましい実施形態において、この耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、プレストレスが引張強度の1.2倍である場合において、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は優れた性能を有するため、工業上での要求を満たし、自動車安全構造部品の製造などに適用し、良好な汎用価値および展望がある。 One object of the present invention is to provide a zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance. In contrast to the characteristic of ultra-high tensile steels that delayed fracture is easily caused, the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance of the present invention adopts a rational component design. The steel obtained has excellent delayed fracture resistance and ultra-high strength due to the rational design and process formulation of carbon, silicon, manganese and microalloys such as niobium, vanadium, chromium, and molybdenum. This zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance has a yield strength of ≥ 550 MPa, a tensile strength of ≥ 980 MPa, a fracture elongation of ≥ 12%, an initial hydrogen content of ≤ 3 ppm, preferably ≤ 2 ppm, and does not cause delayed fracture even when immersed in 1 mol/L hydrochloric acid for 300 hours when the prestress is 1.0 times or more the tensile strength. In a preferred embodiment, this zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance does not suffer from delayed fracture even when immersed in 1 mol/L hydrochloric acid for 300 hours when the prestress is 1.2 times the tensile strength. The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention has excellent performance, meets industrial requirements, and is applicable to the manufacture of automotive safety structural parts, etc., with good general-purpose value and prospects.
上記の目的を実現するために、本発明は、耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼であって、その基体組織がフェライト+焼き戻しマルテンサイトであり、Feに加え、以下の質量パーセントで下記の化学元素を有する、耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼を提供する:
C:0.07-0.1%、Si:0.05-0.3%、Mn:2.0-2.6%、Cr:0.2-0.6%、Mo:0.1-0.25%、Al:0.02-0.05%、Nb:0.02-0.04%、V:0.06-0.2%。
In order to achieve the above object, the present invention provides a zinc electroplated ultra high strength duplex steel resistant to delayed fracture, the substrate structure of which is ferrite + tempered martensite and which contains, in addition to Fe, the following chemical elements in the following weight percentages:
C: 0.07-0.1%, Si: 0.05-0.3%, Mn: 2.0-2.6%, Cr: 0.2-0.6%, Mo: 0.1-0.25%, Al: 0.02-0.05%, Nb: 0.02-0.04%, V: 0.06-0.2%.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、その各化学元素の質量パーセントは:
C:0.07-0.1%、Si:0.05-0.3%、Mn:2.0-2.6%、Cr:0.2-0.6%、Mo:0.1-0.25%、Al:0.02-0.05%、Nb:0.02-0.04%、V:0.06-0.2%、残りがFeおよびその他の避けなれない不純物である。
Furthermore, in the zinc electroplated ultra high strength dual phase steel with delayed fracture resistance according to the present invention, the mass percentage of each chemical element therein is:
C: 0.07-0.1%, Si: 0.05-0.3%, Mn: 2.0-2.6%, Cr: 0.2-0.6%, Mo: 0.1-0.25%, Al: 0.02-0.05%, Nb: 0.02-0.04%, V: 0.06-0.2%, the balance being Fe and other unavoidable impurities.
本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、各化学元素の設計原理は以下の通りであう:
C:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Cは固溶強化元素であり、材料の高強度の基礎である。ただし、注意しなければならないが、鋼中にC含有量が高いほど、マルテンサイトが硬くなり、遅れ破壊の発生傾向が大きくなる。そのため、製品設計時に、できるだけ低炭素の設計にすべく、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Cの質量パーセントを0.07-0.1%とする。
In the zinc electroplated ultra high strength dual phase steel with delayed fracture resistance according to the present invention, the design principles of each chemical element are as follows:
C: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, C is a solid solution strengthening element and is the basis of the high strength of the material. However, it should be noted that the higher the C content in the steel, the harder the martensite becomes and the greater the tendency for delayed fracture to occur. Therefore, in order to design products with as low carbon content as possible, the mass percent of C in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention is set to 0.07-0.1%.
SiとAl:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、SiとAlは、マルテンサイトの耐焼き戻し性能を高めることができ、Fe3Cの析出および成長を抑制し、焼き戻し時に形成する主な析出物をε炭化物にすることができる。また、説明しなければならないが、Alはさらに脱酸素元素であり、鋼中で脱酸素の効果を有する。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Siの質量パーセントを0.05-0.3%とし、Alの質量パーセントを0.02-0.05%とする。 Si and Al: In the zinc electroplated ultra high strength dual phase steel with delayed fracture resistance according to the present invention, Si and Al can improve the tempering resistance of martensite, inhibit the precipitation and growth of Fe 3 C, and make the main precipitate formed during tempering epsilon carbide. It should also be mentioned that Al is also a deoxidizing element and has the effect of deoxidizing in steel. Therefore, in the zinc electroplated ultra high strength dual phase steel with delayed fracture resistance according to the present invention, the mass percentage of Si is 0.05-0.3%, and the mass percentage of Al is 0.02-0.05%.
Mn:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Mnはオーステナイトの焼入れ性を強烈に高める元素であり、より多くのマルテンサイトを形成することによって、鋼の強度を有効に高めることができる。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Mnの質量パーセントを2.0-2.6%とする。 Mn: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, Mn is an element that strongly increases the hardenability of austenite, and by forming more martensite, it is possible to effectively increase the strength of the steel. Therefore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of Mn is set to 2.0-2.6%.
Cr:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Crはマルテンサイトの耐焼き戻し能力を有効に高めることができるため、遅れ破壊の改善には十分有益である。本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Crの質量パーセントを0.2-0.6%とする。 Cr: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, Cr can effectively increase the tempering resistance of martensite, and is therefore quite beneficial in improving delayed fracture. In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of Cr is 0.2-0.6%.
Mo:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、適量のMoの添加は、拡散分布の微細析出物の形成に有利であり、分散水素の集まりに有利である。Moは鋼中で大量のMoC析出物を形成できるため、部分領域における分散水素の集まりに有利であり、鋼の遅れ破壊の改善にはとても有利である。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Moの質量パーセントを0.1-0.25%とする。 Mo: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the addition of an appropriate amount of Mo is advantageous for the formation of fine precipitates with a diffuse distribution and for the collection of dispersed hydrogen. Mo can form a large amount of MoC precipitates in the steel, which is advantageous for the collection of dispersed hydrogen in partial regions and is very advantageous for improving delayed fracture of the steel. Therefore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of Mo is set to 0.1-0.25%.
Nb:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Nbは炭素窒素化物析出元素であり、結晶粒を微小化させ、炭素窒素化物を析出させ、材料の強度を高めることができると同時に、整合の微合金析出物が分散水素の集まりに有利であるため、遅れ破壊には有利である。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Nbの質量パーセントを0.02-0.04%とする。 Nb: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, Nb is a carbon nitride precipitation element that can reduce the size of crystal grains, precipitate carbon nitrides, and increase the strength of the material, while at the same time, the coherent microalloy precipitates are favorable for the collection of dispersed hydrogen, which is advantageous in preventing delayed fracture. Therefore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of Nb is set to 0.02-0.04%.
V:本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Vは結晶粒を微細化させる効果があり、同時に整合の微合金析出物が分散水素の集まりに有利である。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Vの質量パーセントを0.06-0.2%とする。 V: In the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, V has the effect of refining crystal grains, and at the same time, the coherent microalloy precipitates are advantageous for the collection of dispersed hydrogen. Therefore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of V is set to 0.06-0.2%.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、0.0015-0.003%のBが含有される。 Furthermore, the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention contains 0.0015-0.003% B.
本発明による技術案において、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、少量のBをさらに含有してもいい。Bは強焼入れ性元素であるため、適量のBは鋼の焼入れ性を高め、マルテンサイトの形成を促進することができる。 In the technical proposal of the present invention, the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance of the present invention may further contain a small amount of B. Since B is a strong hardenable element, an appropriate amount of B can increase the hardenability of the steel and promote the formation of martensite.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、避けなれない不純物は、P、SとNを含み、その含有量は、以下の各項の少なくとも一つとする:P≦0.012%、S≦0.003%、N≦0.005%。 Furthermore, in the zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance according to the present invention, the unavoidable impurities include P, S and N, the contents of which are at least one of the following: P≦0.012%, S≦0.003%, N≦0.005%.
上述技術案では、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、P、SとNはいずれも鋼中における避けなれない不純物元素であり、鋼中でのP、SとNの含有量が低ければ低いほど良い。SはMnS介在物を形成しやすく、穴広げ率に強く影響する;Pは鋼の靱性を低減し、遅れ破壊には不利である;鋼中のN含有量が高すぎると、板スラブの表面で割れ目が生じやすく、鋼の性能に大きく影響される。したがって、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、Pの質量パーセントをP≦0.012%とし、Sの質量パーセントをS≦0.003%とし、Nの質量パーセントをN≦0.005%とする。 In the above technical proposal, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, P, S and N are all unavoidable impurity elements in steel, and the lower the content of P, S and N in steel, the better. S is prone to form MnS inclusions, which strongly affects the hole expansion ratio; P reduces the toughness of steel and is unfavorable to delayed fracture; if the N content in steel is too high, cracks are likely to occur on the surface of the plate slab, which greatly affects the performance of the steel. Therefore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the mass percentage of P is P≦0.012%, the mass percentage of S is S≦0.003%, and the mass percentage of N is N≦0.005%.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、上記焼き戻しマルテンサイトの相比例(体積比)>50%。 Furthermore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the phase proportion (volume ratio) of the tempered martensite is >50%.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、上記基体組織中に、微細の炭化物ペレットが大量に拡散析出し、上記炭化物ペレットは、MoC、VC、Nb(C,N)を含み、上記炭化物ペレットはいずれも整合形式で基体組織中に分布する。 Furthermore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, a large amount of fine carbide pellets are diffused and precipitated in the substrate structure, and the carbide pellets contain MoC, VC, and Nb (C, N), and all of the carbide pellets are distributed in a coherent manner in the substrate structure.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、上記炭化物ペレットのサイズ≦60nm。 Furthermore, in the zinc electroplated ultra-high tensile dual-phase steel having delayed fracture resistance according to the present invention, the size of the carbide pellets is ≦60 nm.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、上記焼き戻しマルテンサイトは、整合分布したε炭化物を含有する。 Furthermore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, the tempered martensite contains coherently distributed ε carbides.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、その性能が、以下の各項の少なくとも一つを満たす:降伏強度≧550MPa、引張強度≧980MPa、破断伸び率≧12%、初期水素含有量≦3ppm、プレストレスが引張強度の1.0倍以上である場合において、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。 Furthermore, in the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, its performance satisfies at least one of the following items: yield strength ≥ 550 MPa, tensile strength ≥ 980 MPa, fracture elongation ≥ 12%, initial hydrogen content ≤ 3 ppm, and when the prestress is 1.0 times or more the tensile strength, delayed fracture does not occur even when immersed in 1 mol/L hydrochloric acid for 300 hours.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼において、その性能が、以下の各項を満たす:降伏強度≧550MPa、引張強度≧980MPa、破断伸び率≧12%、初期水素含有量≦3ppm、プレストレスが引張強度の1.0倍以上である場合において、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。 Furthermore, the performance of the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention satisfies the following conditions: yield strength ≥ 550 MPa, tensile strength ≥ 980 MPa, fracture elongation ≥ 12%, initial hydrogen content ≤ 3 ppm, and when the prestress is 1.0 times or more the tensile strength, delayed fracture does not occur even when immersed in 1 mol/L hydrochloric acid for 300 hours.
さらに、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の降伏比は0.55-0.70である。 Furthermore, the yield ratio of the zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance according to the present invention is 0.55-0.70.
また、本発明のもう一つの目的は、耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の製造方法の提供である。この製造方法で作製される耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、降伏強度≧550MPa、引張強度≧980MPa、破断伸び率≧12%、初期水素含有量≦3ppm、好ましくは≦2ppmであり、プレストレスが引張強度の1.0倍以上である場合、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。 Another object of the present invention is to provide a method for producing zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance. The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance produced by this method has a yield strength of ≥ 550 MPa, a tensile strength of ≥ 980 MPa, a fracture elongation of ≥ 12%, and an initial hydrogen content of ≤ 3 ppm, preferably ≤ 2 ppm. When the prestress is 1.0 times or more the tensile strength, delayed fracture does not occur even when immersed in 1 mol/L hydrochloric acid for 300 hours.
上述の目的を実現するために、本発明は、以下のステップを含む上記耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の製造方法を提供する:
(1)製錬および連続鋳造;
(2)熱間圧延;
(3)冷間圧延;
(4)焼鈍:3-10℃/sの加熱速度で昇温し、焼鈍均熱温度を780~820℃、好ましくは790-810℃とし、焼鈍時間を40~200s、好ましくは40-160sとし、そして30~80℃/s、好ましくは35-80℃/sの速度で急速に冷却し、急速冷却の開始温度を650~730℃とする;
(5)焼き戻し:焼き戻し温度を200~280℃、好ましくは210-270℃とし、焼き戻し時間を100~400s、好ましくは120-300sとする;
(6)テンパー;
(7)電気めっき。
In order to achieve the above object, the present invention provides a method for producing the above-mentioned zinc electroplated ultra high strength dual phase steel having delayed fracture resistance, which includes the following steps:
(1) Smelting and continuous casting;
(2) hot rolling;
(3) cold rolling;
(4) Annealing: heating at a heating rate of 3-10°C/s, annealing soaking temperature of 780-820°C, preferably 790-810°C, annealing time of 40-200s, preferably 40-160s, and rapid cooling at a rate of 30-80°C/s, preferably 35-80°C/s, and the start temperature of rapid cooling is 650-730°C;
(5) Tempering: the tempering temperature is 200-280°C, preferably 210-270°C, and the tempering time is 100-400s, preferably 120-300s;
(6) Temper;
(7) Electroplating.
本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の製造方法において、連続焼鈍加熱時に、中低温焼き戻し処理を使用し、関連するプロセスパラメータを制御することにより、マルテンサイトの硬度低減に有利だけでなく、粗大ペレットマルテンサイトの析出を有効に防ぐことができるため、鋼の遅れ破壊性能にはとても有利である。 In the manufacturing method of the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, a medium-low temperature tempering process is used during continuous annealing heating, and the related process parameters are controlled, which is not only advantageous in reducing the hardness of martensite, but also effectively prevents the precipitation of coarse pellet martensite, which is very advantageous for the delayed fracture performance of the steel.
さらに、本発明による製造方法において、ステップ(1)では、連続鋳造過程における連続鋳造の引張速度を0.9-1.5m/minとする。 Furthermore, in the manufacturing method according to the present invention, in step (1), the pulling speed of the continuous casting process is set to 0.9-1.5 m/min.
上述技術案では、本発明による製造方法において、ステップ(1)の連続鋳造は大水量二次冷却モードによって行ってもいい。 In the above technical proposal, in the manufacturing method according to the present invention, the continuous casting in step (1) may be performed in a large water volume secondary cooling mode.
さらに、本発明による製造方法において、ステップ(2)では、鋳造スラブを1200~1260℃、好ましくは1210-1245℃の温度で均熱する;そして圧延を行い、仕上げ圧延温度を840~900℃とし、圧延の後に20~70℃/sの速度で冷却する;そして卷取を行い、卷取温度を580~630℃とし、卷取の後に保温処理または徐冷処理を行う。好ましくは、1-5時間で保温し、もしくは3-5℃/sの冷却速度で徐冷を行う。 Furthermore, in the manufacturing method according to the present invention, in step (2), the cast slab is soaked at a temperature of 1200-1260°C, preferably 1210-1245°C; then it is rolled, with a finish rolling temperature of 840-900°C, and cooled at a rate of 20-70°C/s after rolling; then it is wound, with a winding temperature of 580-630°C, and after winding it is kept at a high temperature or slowly cooled. Preferably, it is kept at a high temperature for 1-5 hours, or slowly cooled at a cooling rate of 3-5°C/s.
本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の製造方法において、上記ステップ(2)では、圧延負荷を安定に保つため、加熱温度を1200℃以上とし、同時に酸化燃焼損失の増大を防ぐため、加熱温度の上限を1260℃とする。したがって、最終的に、鋳造スラブを1200~1260℃の温度下で均熱する。 In the manufacturing method of zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention, in the above step (2), the heating temperature is set to 1200°C or higher to keep the rolling load stable, and at the same time, the upper limit of the heating temperature is set to 1260°C to prevent an increase in oxidation combustion loss. Therefore, the cast slab is finally soaked at a temperature of 1200 to 1260°C.
また、説明しなければならないが、ステップ(2)では、熱間圧延卷取後に保温、もしくは卷取後に徐冷を行うことは、拡散析出物の十分な析出に有利であり、各拡散分布の析出物は少量水素の吸着や分散水素の分布に有利であり、水素の集まりを防ぐため、耐遅れ破壊性には有利である。 It should also be noted that in step (2), keeping the material warm after hot rolling or slowly cooling after rolling is advantageous for sufficient precipitation of diffused precipitates, and each diffused precipitate is advantageous for absorbing a small amount of hydrogen and distributing dispersed hydrogen, and prevents hydrogen from gathering, which is advantageous for delayed fracture resistance.
さらに、本発明による製造方法において、ステップ(3)における冷間圧延圧下率を45~65%とする。 Furthermore, in the manufacturing method according to the present invention, the cold rolling reduction ratio in step (3) is set to 45 to 65%.
上述技術案では、上記ステップ(3)において、冷間圧延圧下率を45~65%とする。冷間圧延の前に、酸洗いによって鋼板表面の酸化鉄皮膜を除去してもいい。 In the above technical proposal, in step (3), the cold rolling reduction is 45-65%. Before cold rolling, the iron oxide film on the steel sheet surface may be removed by pickling.
さらに、本発明による製造方法において、ステップ(6)におけるテンパー圧下率≦0.3%とする。 Furthermore, in the manufacturing method according to the present invention, the temper reduction in step (6) is ≦0.3%.
本発明の上述技術案では、上記ステップ(6)において、鋼板のテンパー度を保つため、一定のテンパー量が必要とされるが、過大のテンパー量は鋼の降伏強度を大きく上昇させる場合がある。したがって、本発明による製造方法において、テンパー圧下率≦0.3%とする。 In the above-mentioned technical proposal of the present invention, in the above step (6), a certain amount of tempering is required to maintain the temper degree of the steel plate, but an excessive amount of tempering may significantly increase the yield strength of the steel. Therefore, in the manufacturing method according to the present invention, the tempering reduction rate is set to ≦0.3%.
本発明の上述技術案では、通常の亜鉛電気めっき法で上記ステップ(7)を実施してもいい。好ましくは、両面めっきを行い、片面のめっき層重量を10-100g/m2とする。 In the above technical solution of the present invention, the above step (7) can be carried out by a conventional zinc electroplating method, preferably by double-sided plating, with the plating layer weight on one side being 10-100g/ m2 .
本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼およびその製造方法は、従来技術と比較して、以下の利点及び有益な効果を有する:
本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、合理的な成分設計を採用する。炭素、ケイ素、マンガンおよびニオブ、バナジウム、クロム、モリブデンなどの微合金の合理的な設計およびプロセス配合により、得られる鋼が優れた耐遅れ破壊性および超高強度を有する。この耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、降伏強度≧550MPa、引張強度≧980MPa、破断伸び率≧12%、初期水素含有量≦3ppmであり、プレストレスが引張強度の1.0倍以上である場合において、1mol/Lの塩酸に300時間浸しても、遅れ破壊が発生しない。本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は優れた性能を有するため、工業上での要求を満たし、自動車安全構造部品の製造などに適用し、良好な汎用価値および展望がある。
The zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and the manufacturing method thereof according to the present invention have the following advantages and beneficial effects compared with the prior art:
The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention adopts a rational composition design. The rational design and process formulation of carbon, silicon, manganese and microalloys such as niobium, vanadium, chromium, and molybdenum allows the resulting steel to have excellent delayed fracture resistance and ultra-high strength. The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance has a yield strength of ≥ 550 MPa, a tensile strength of ≥ 980 MPa, a fracture elongation of ≥ 12%, and an initial hydrogen content of ≤ 3 ppm. When the prestress is ≥ 1.0 times the tensile strength, delayed fracture does not occur even after immersion in 1 mol/L hydrochloric acid for 300 hours. The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance according to the present invention has excellent performance, meets industrial requirements, and is applicable to the manufacture of automobile safety structural parts, etc., and has good general value and prospects.
本発明の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、合理的な成分設計および連続鋳造プロセスを使用するため、鋼板内部、特にその表面にTiNがなく、鋼板内部における水素の集まりの低減に有利であり、鋼の遅れ破壊性能の向上に有利である。 The zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance of the present invention uses a rational composition design and continuous casting process, so there is no TiN inside the steel sheet, especially on its surface, which is advantageous in reducing the accumulation of hydrogen inside the steel sheet and improving the delayed fracture performance of the steel.
本発明による製造方法は、高温均熱+中温焼き戻しの組み合わせを使用している。連続焼鈍加熱時に、高温均熱により、多くのオーステナイト転化が発生し、その後の急速冷却時より多くのマルテンサイトが得られるため、最終的に焼き戻し前より高い強度が得られる;中低温焼き戻し処理を使用し、関連のプロセスパラメータを制御することで、マルテンサイトの硬度低減に有利だけでなく、粗大ペレットマルテンサイトの析出を有効に防ぐことができるため、材料の降伏比が適宜であり、また鋼の遅れ破壊性能にもとても有利である。焼き戻し時に、使用する焼き戻し温度が低すぎると、マルテンサイトの硬度低減に不利である;焼き戻し温度が高すぎると、マルテンサイトが分解し、最終強度が980MPa未満になる。本発明の高温均熱+中温焼き戻しの組み合わせを使用することで、作製される耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼に、優れた耐遅れ破壊性および低い初期水素含有量の特性を有効に持たせることができる。 The manufacturing method according to the present invention uses a combination of high-temperature soaking + medium-temperature tempering. During continuous annealing and heating, high-temperature soaking causes a lot of austenite conversion, and then during rapid cooling, more martensite is obtained, so that the final strength is higher than before tempering; using medium-low-temperature tempering treatment and controlling the related process parameters is not only advantageous to reducing the hardness of martensite, but also effectively prevents the precipitation of coarse pellet martensite, so that the yield ratio of the material is appropriate and is also very advantageous to the delayed fracture performance of the steel. During tempering, if the tempering temperature used is too low, it is disadvantageous to reducing the hardness of martensite; if the tempering temperature is too high, martensite will decompose and the final strength will be less than 980 MPa. By using the combination of high-temperature soaking + medium-temperature tempering of the present invention, the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance produced can effectively have the properties of excellent delayed fracture resistance and low initial hydrogen content.
以下では、具体的な実施例に基づき、本発明による耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼およびその製造方法をさらに詳しく説明するが、その説明は本発明の技術案を限定するものではない。 The following provides a more detailed explanation of the zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and the manufacturing method thereof according to the present invention based on specific examples, but the explanation does not limit the technical solution of the present invention.
実施例1-6および比較例1-14
表1は、実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼および比較例1-14の鋼に対応する鋼種における各化学元素の質量パーセントを示す。
Examples 1-6 and Comparative Examples 1-14
Table 1 shows the mass percentages of each chemical element in the steel grades corresponding to the zinc electroplated ultra-high strength dual-phase steels having delayed fracture resistance of Examples 1-6 and the steels of Comparative Examples 1-14.
本発明による実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼および比較例1-14の鋼は、いずれも以下のステップで作製された:
(1)製錬と連続鋳造:連続鋳造過程において、連続鋳造の引張速度を0.9-1.5m/minとし、大水量二次冷却モードで連続鋳造を行った;
(2)熱間圧延:鋳造スラブを1200~1260℃の温度で均熱した;その後圧延を行い、仕上げ圧延温度を840~900℃とし、圧延後に20~70℃/sの速度で冷却した;その後卷取を行い、卷取温度を580~630℃とし、卷取後に保温カバーで1-5時間保温した;
(3)冷間圧延:冷間圧延圧下率を45~65%とした;
(4)焼鈍:3-10℃/sの加熱速度で昇温し、焼鈍均熱温度を780~820℃とし、焼鈍時間を40~200sとし、そして30~80℃/sの速度で急速に冷却し、急速冷却の開始温度を650~730℃とした;
(5)焼き戻し:焼き戻し温度を200~280℃とし、焼き戻し時間を100~400sとした;
(6)テンパー:テンパー圧下率≦0.3%とした;
(7)両面亜鉛電気めっき、片面のめっき層重量が10-100g/m2であった。
The zinc electroplated ultra-high strength dual-phase steels having delayed fracture resistance according to the present invention of Examples 1-6 and Comparative Examples 1-14 were both made by the following steps:
(1) Smelting and continuous casting: In the continuous casting process, the pulling speed of the continuous casting was set to 0.9-1.5 m/min, and the continuous casting was performed in a large water volume secondary cooling mode;
(2) Hot rolling: the cast slab is soaked at a temperature of 1200-1260°C; then it is rolled, the finish rolling temperature is 840-900°C, and after rolling, it is cooled at a rate of 20-70°C/s; then it is wound, the winding temperature is 580-630°C, and after winding, it is kept warm in a heat-insulating cover for 1-5 hours;
(3) Cold rolling: the cold rolling reduction ratio was 45 to 65%;
(4) Annealing: heating at a heating rate of 3-10 ° C./s, annealing soaking temperature of 780-820 ° C., annealing time of 40-200 s, and rapid cooling at a rate of 30-80 ° C./s, with the start temperature of rapid cooling being 650-730 ° C.;
(5) Tempering: the tempering temperature is 200-280°C, and the tempering time is 100-400s;
(6) Temper: Temper reduction rate ≦0.3%;
(7) Double-sided zinc electroplating, the plating layer weight on one side was 10-100 g/m2.
説明しなければならないが、実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼の化学成分および関連のプロセスパラメータは、いずれも本発明の設計規範の制限要求を満たしている。比較例1-6の鋼の化学成分は、いずれも本発明に設計される要求のパラメータを満たさない;比較例7-14に対応するM鋼種の化学成分は、本発明の設計要求を満たすものの、関連のプロセスパラメータはいずれも本発明の設計規範のパラメータを満たさない。 It should be noted that the chemical compositions and related process parameters of the zinc electroplated ultra-high strength dual-phase steels with delayed fracture resistance in Examples 1-6 all meet the limiting requirements of the design criteria of the present invention. None of the chemical compositions of the steels in Comparative Examples 1-6 meet the required parameters designed in the present invention; the chemical compositions of the M steel grades corresponding to Comparative Examples 7-14 meet the design requirements of the present invention, but none of the related process parameters meet the parameters of the design criteria of the present invention.
表2-1と表2-2は、実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼および比較例1-14の鋼の具体的なプロセスパラメータを示す。 Tables 2-1 and 2-2 show the specific process parameters for the zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance of Example 1-6 and the steel of Comparative Example 1-14.
実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼および比較例1-14の鋼に対し各性能測定を行い、得られる測定結果を表3に示す。 Performance measurements were carried out on the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance of Example 1-6 and the steel of Comparative Example 1-14, and the measurement results obtained are shown in Table 3.
表3は、実施例1-6の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼および比較例1-14の鋼の性能測定結果を示す。性能測定方法は、GB/T13239-2006金属材料低温引張試験方法に基づき、標準サンプルを作製し、引張試験機で静的引張を行い、得られた相応の応力-ひずみ曲線に対しデータ処理を行い、最終的に降伏強度、引張強度と破断伸び率パラメータを得た。 Table 3 shows the performance measurement results of the zinc electroplated ultra-high tensile dual-phase steel with delayed fracture resistance of Example 1-6 and the steel of Comparative Example 1-14. The performance measurement method was based on GB/T13239-2006 Low-temperature tensile test method for metallic materials. Standard samples were prepared and subjected to static tension using a tensile tester. The corresponding stress-strain curves were subjected to data processing, and finally the yield strength, tensile strength and fracture elongation parameters were obtained.
水素含有量の測定方法:サンプルを一定の温度に加熱し、水素分析器で温度変化(上昇)に伴って放出される水素の濃度を測定し、鋼中の初期水素含有量を判断する。 Method of measuring hydrogen content: The sample is heated to a certain temperature, and the concentration of hydrogen released with the temperature change (rise) is measured with a hydrogen analyzer to determine the initial hydrogen content in the steel.
表3で分かるように、本発明の各実施例の降伏強度はいずれも≧550MPaであり、引張強度はいずれも≧980MPaであり、破断伸び率はいずれも≧12%であり、初期水素含有量はいずれも≦3ppmである。各実施例の耐遅れ破壊性を有する亜鉛電気めっき超高張力二相鋼は、いずれも超高強度および同レベルのほかの比較鋼種より明らかに優れた遅れ破壊性能を有し、プレストレスが引張強度の1.0倍以上である場合でも、1mol/Lの塩酸に300時間を浸しても遅れ破壊が発生しない。本発明による耐遅れ破壊性を有する電気めっき亜鉛超高張力二相鋼は優れた性能を有するため、工業上での要求を満たし、自動車安全構造部品の製造などに適用し、良好な汎用価値および展望がある。 As can be seen from Table 3, the yield strength of each embodiment of the present invention is ≧550 MPa, the tensile strength of each embodiment is ≧980 MPa, the elongation at break of each embodiment is ≧12%, and the initial hydrogen content of each embodiment is ≦3 ppm. The zinc electroplated ultra-high tensile dual-phase steels with delayed fracture resistance of each embodiment have significantly better delayed fracture performance than other comparative steels of ultra-high strength and the same level, and even when the prestress is 1.0 times or more the tensile strength, delayed fracture does not occur even after immersion in 1 mol/L hydrochloric acid for 300 hours. The zinc electroplated ultra-high tensile dual-phase steels with delayed fracture resistance according to the present invention have excellent performance, meet industrial requirements, and are applicable to the manufacture of automotive safety structural parts, etc., and have good general value and prospects.
説明しなければならないが、本発明の保護範囲中における従来技術の部分は、本願に提供される実施例に限定するものではなく、先行特許文献、先行開示出版物、先行開示応用などを含むがそれらに限らない本発明の技術案に矛盾しない技術案は、いずれも本発明の保護範囲に収まる。また、本願における各技術特徴の組み合わせ方式は、本願請求項に記載の組み合わせ方式もしくは具体的な実施例に記載の組み合わせ方式に限定するものではなく、本願に記載の全ての技術特徴は、お互いに矛盾しない限り、いかなる方式で自由に組み合わせもしくは結合してもいい。 It should be noted that the prior art in the scope of protection of the present invention is not limited to the examples provided in this application, and any technical solutions that do not contradict the technical solutions of the present invention, including but not limited to prior patent documents, prior disclosure publications, prior disclosure applications, etc., are within the scope of protection of the present invention. In addition, the combination methods of each technical feature in this application are not limited to the combination methods described in the claims of this application or the combination methods described in the specific examples, and all technical features described in this application may be freely combined or combined in any manner as long as they do not contradict each other.
さらに、注意しなければならないが、以上に挙げられた実施例は、本発明の具体的な実施例でしかない。本発明は以上の実施例に限定されなく、当業者は、その類似変化や変形を、本発明の開示内容から直接得られ、もしくは容易に想到できるため、本発明の保護範囲に属すことは、言うまでもない。 Furthermore, it should be noted that the above-mentioned embodiments are merely specific embodiments of the present invention. The present invention is not limited to the above-mentioned embodiments, and those skilled in the art can directly obtain or easily conceive similar changes and modifications from the disclosure of the present invention, and therefore, needless to say, they fall within the scope of protection of the present invention.
Claims (13)
C:0.07-0.1%、Si:0.05-0.3%、Mn:2.0-2.6%、Cr:0.2-0.6%、Mo:0.1-0.25%、Al:0.02-0.05%、Nb:0.02-0.04%、V:0.06-0.2%、任意にB:0.0015-0.003%、残りがFeおよびその他の避けられない不純物である。 1. A zinc electroplated ultra high strength duplex steel with delayed fracture resistance , the ultra high strength duplex steel having a matrix structure of ferrite plus tempered martensite, the chemical elements of the zinc electroplated ultra high strength duplex steel with delayed fracture resistance having the following weight percentages :
C: 0.07-0.1%, Si: 0.05-0.3%, Mn: 2.0-2.6%, Cr: 0.2-0.6%, Mo: 0.1-0.25%, Al: 0.02-0.05%, Nb: 0.02-0.04%, V: 0.06-0.2%, optionally B: 0.0015-0.003%, the balance being Fe and other unavoidable impurities.
(1)製錬および連続鋳造;
(2)熱間圧延;
(3)冷間圧延;
(4)焼鈍:3-10℃/sの加熱速度で昇温し、焼鈍均熱温度を780~820℃とし、焼鈍時間を40~200sとし、そして30~80℃/sの速度で急速に冷却し、急速冷却の開始温度を650~730℃とする;
(5)焼き戻し:焼き戻し温度を200~280℃とし、焼き戻し時間を100~400sとする;
(6)テンパー;
(7)電気めっき。 A method for producing a zinc electroplated ultra high strength dual phase steel having delayed fracture resistance according to any one of claims 1 to 7 , comprising the following steps:
(1) Smelting and continuous casting;
(2) hot rolling;
(3) cold rolling;
(4) Annealing: heating at a heating rate of 3-10°C/s, annealing soaking temperature is 780-820°C, annealing time is 40-200s, and then rapidly cooling at a rate of 30-80°C/s, and the start temperature of rapid cooling is 650-730°C;
(5) Tempering: the tempering temperature is 200-280°C, and the tempering time is 100-400s;
(6) Temper;
(7) Electroplating.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010459228.2 | 2020-05-27 | ||
CN202010459228.2A CN113737108A (en) | 2020-05-27 | 2020-05-27 | Delay cracking resistant electro-galvanized super-strong dual-phase steel and manufacturing method thereof |
PCT/CN2021/095802 WO2021238915A1 (en) | 2020-05-27 | 2021-05-25 | Electro-galvanized super-strength dual-phase steel resistant to delayed cracking, and manufacturing method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023527197A JP2023527197A (en) | 2023-06-27 |
JP7524354B2 true JP7524354B2 (en) | 2024-07-29 |
Family
ID=78722980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022572382A Active JP7524354B2 (en) | 2020-05-27 | 2021-05-25 | Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230243008A1 (en) |
EP (1) | EP4159887A4 (en) |
JP (1) | JP7524354B2 (en) |
CN (1) | CN113737108A (en) |
CA (1) | CA3180458A1 (en) |
WO (1) | WO2021238915A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115125439B (en) * | 2022-06-16 | 2023-10-31 | 唐山钢铁集团高强汽车板有限公司 | Zinc-based coating 1800 Mpa-level hot stamping formed steel and preparation method thereof |
CN117286396A (en) * | 2022-06-17 | 2023-12-26 | 宝山钢铁股份有限公司 | Hydrogen induced cracking resistant cold-rolled hot-dip galvanized ultra-high strength dual-phase steel and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004323958A (en) | 2003-04-28 | 2004-11-18 | Jfe Steel Kk | High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method |
JP2008156734A (en) | 2006-12-26 | 2008-07-10 | Jfe Steel Kk | High-strength hot-dip galvanized steel sheet and its manufacturing method |
JP2009019258A (en) | 2007-07-13 | 2009-01-29 | Nippon Steel Corp | Hot dip galvannealed high strength steel sheet having tensile strength of >=700 mpa and excellent corrosion resistance, hole expansibility and ductility, and method for producing the same |
JP2010180462A (en) | 2009-02-06 | 2010-08-19 | Sumitomo Metal Ind Ltd | Cold-rolled steel sheet and method for producing the same |
WO2016013145A1 (en) | 2014-07-25 | 2016-01-28 | Jfeスチール株式会社 | High-strength hot-dip zinc-coated steel sheet and method for producing same |
CN110331341A (en) | 2019-08-21 | 2019-10-15 | 攀钢集团攀枝花钢铁研究院有限公司 | High-mouldability can high-strength hot-dip zinc-coated dual phase steel and its production method |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2398126A1 (en) | 2000-11-28 | 2002-06-06 | Saiji Matsuoka | High-strength dual-phase steel sheets and high-strength dual-phase plated steel sheets as well as method of producing the same |
JP4510488B2 (en) * | 2004-03-11 | 2010-07-21 | 新日本製鐵株式会社 | Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same |
JP4998708B2 (en) * | 2007-02-26 | 2012-08-15 | Jfeスチール株式会社 | Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same |
JP5668337B2 (en) * | 2010-06-30 | 2015-02-12 | Jfeスチール株式会社 | Ultra-high-strength cold-rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same |
JP5620336B2 (en) * | 2011-05-26 | 2014-11-05 | 新日鐵住金株式会社 | Steel parts for high fatigue strength and high toughness machine structure and manufacturing method thereof |
CN106232852B (en) * | 2014-04-15 | 2018-12-11 | 蒂森克虏伯钢铁欧洲股份公司 | The manufacturing method and flat cold-rolled bar product of flat cold-rolled bar product with high-yield strength |
WO2015185956A1 (en) * | 2014-06-06 | 2015-12-10 | ArcelorMittal Investigación y Desarrollo, S.L. | High strength multiphase galvanized steel sheet, production method and use |
KR101913053B1 (en) | 2014-10-30 | 2018-10-29 | 제이에프이 스틸 가부시키가이샤 | High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same |
JP5958666B1 (en) * | 2014-12-22 | 2016-08-02 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
JP6394812B2 (en) * | 2016-03-31 | 2018-09-26 | Jfeスチール株式会社 | Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method |
CN106282790B (en) | 2016-08-17 | 2018-04-03 | 马钢(集团)控股有限公司 | A kind of electrogalvanizing ultra-deep punching cold-rolling steel sheet and its production method |
MX2019002138A (en) * | 2016-09-30 | 2019-06-20 | Jfe Steel Corp | High-strength plated steel sheet and production method therefor. |
CN108396220A (en) * | 2017-02-05 | 2018-08-14 | 鞍钢股份有限公司 | High-strength high-toughness galvanized steel sheet and manufacturing method thereof |
CN108977726B (en) * | 2017-05-31 | 2020-07-28 | 宝山钢铁股份有限公司 | Delayed-cracking-resistant martensite ultrahigh-strength cold-rolled steel strip and manufacturing method thereof |
CN109207867A (en) * | 2017-06-29 | 2019-01-15 | 宝山钢铁股份有限公司 | A kind of cold rolled annealed dual phase steel, steel plate and its manufacturing method |
CN107761006B (en) * | 2017-10-23 | 2019-12-03 | 攀钢集团攀枝花钢铁研究院有限公司 | Strong dual phase steel of low-carbon hot galvanizing superelevation and preparation method thereof |
CN108374118A (en) * | 2018-03-15 | 2018-08-07 | 鞍钢蒂森克虏伯汽车钢有限公司 | It is a kind of that there is the hot dip galvanized dual phase steel plate and its manufacturing method for being easy to shaping characteristic |
CN108441763B (en) * | 2018-03-23 | 2019-11-19 | 马钢(集团)控股有限公司 | A kind of tensile strength 1000MPa grades of cold rollings galvanizing by dipping high-strength steel and preparation method thereof |
-
2020
- 2020-05-27 CN CN202010459228.2A patent/CN113737108A/en active Pending
-
2021
- 2021-05-25 CA CA3180458A patent/CA3180458A1/en active Pending
- 2021-05-25 EP EP21813639.8A patent/EP4159887A4/en active Pending
- 2021-05-25 JP JP2022572382A patent/JP7524354B2/en active Active
- 2021-05-25 US US17/927,771 patent/US20230243008A1/en active Pending
- 2021-05-25 WO PCT/CN2021/095802 patent/WO2021238915A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004323958A (en) | 2003-04-28 | 2004-11-18 | Jfe Steel Kk | High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method |
JP2008156734A (en) | 2006-12-26 | 2008-07-10 | Jfe Steel Kk | High-strength hot-dip galvanized steel sheet and its manufacturing method |
JP2009019258A (en) | 2007-07-13 | 2009-01-29 | Nippon Steel Corp | Hot dip galvannealed high strength steel sheet having tensile strength of >=700 mpa and excellent corrosion resistance, hole expansibility and ductility, and method for producing the same |
JP2010180462A (en) | 2009-02-06 | 2010-08-19 | Sumitomo Metal Ind Ltd | Cold-rolled steel sheet and method for producing the same |
WO2016013145A1 (en) | 2014-07-25 | 2016-01-28 | Jfeスチール株式会社 | High-strength hot-dip zinc-coated steel sheet and method for producing same |
CN110331341A (en) | 2019-08-21 | 2019-10-15 | 攀钢集团攀枝花钢铁研究院有限公司 | High-mouldability can high-strength hot-dip zinc-coated dual phase steel and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP2023527197A (en) | 2023-06-27 |
EP4159887A4 (en) | 2023-11-01 |
WO2021238915A1 (en) | 2021-12-02 |
EP4159887A9 (en) | 2023-06-21 |
US20230243008A1 (en) | 2023-08-03 |
CN113737108A (en) | 2021-12-03 |
CA3180458A1 (en) | 2021-12-02 |
EP4159887A1 (en) | 2023-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8430975B2 (en) | High strength galvanized steel sheet with excellent formability | |
JP4894863B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
KR101329928B1 (en) | High-strength hot-dip galvanized steel plate of excellent workability and manufacturing method therefor | |
JP7528267B2 (en) | Ultra-high strength dual-phase steel and its manufacturing method | |
JP4786521B2 (en) | High-strength galvanized steel sheet with excellent workability, paint bake hardenability and non-aging at room temperature, and method for producing the same | |
JP5408314B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same | |
CN101348884B (en) | 440MPa grade niobium-containing high-strength IF steel and manufacturing method thereof | |
WO2006129425A1 (en) | High-strength steel sheet plated with zinc by hot dipping with excellent formability and process for producing the same | |
JP5786317B2 (en) | High-strength hot-dip galvanized steel sheet with excellent material stability and workability and method for producing the same | |
JP5532088B2 (en) | High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof | |
WO2012043420A1 (en) | High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same | |
EP3705592A1 (en) | High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor | |
CN113227415B (en) | Steel sheet, member, and method for producing same | |
JP7524354B2 (en) | Zinc electroplated ultra-high strength dual-phase steel with delayed fracture resistance and method of manufacturing same | |
WO2021065738A1 (en) | Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member | |
TW200532032A (en) | High strength cold rolled steel sheet and method for manufacturing the same | |
CN112313351B (en) | Steel sheet and method for producing steel sheet | |
JP5262372B2 (en) | High-strength steel sheet excellent in deep drawability and manufacturing method thereof | |
JP2023547090A (en) | High-strength steel plate with excellent thermal stability and its manufacturing method | |
JP4301045B2 (en) | High-strength steel plate, plated steel plate, and production method thereof | |
CN115216700B (en) | 1700 MPa-level steel for fasteners and production method and heat treatment process thereof | |
KR101528014B1 (en) | Cold-rolled steel plate and method for producing same | |
JP3291639B2 (en) | Cold rolled steel sheet excellent in workability uniformity and method for producing the same | |
KR20240144215A (en) | High-strength hot-dip galvanized steel strip having plastic produced by microstructural transformation and method for producing the same | |
JP2021172838A (en) | High strength steel sheet and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240717 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7524354 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |