[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7523248B2 - Magnetostrictive material and magnetostrictive device using same - Google Patents

Magnetostrictive material and magnetostrictive device using same Download PDF

Info

Publication number
JP7523248B2
JP7523248B2 JP2020076871A JP2020076871A JP7523248B2 JP 7523248 B2 JP7523248 B2 JP 7523248B2 JP 2020076871 A JP2020076871 A JP 2020076871A JP 2020076871 A JP2020076871 A JP 2020076871A JP 7523248 B2 JP7523248 B2 JP 7523248B2
Authority
JP
Japan
Prior art keywords
magnetostrictive
magnetostrictive material
alloy
magnetostriction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076871A
Other languages
Japanese (ja)
Other versions
JP2021172850A (en
Inventor
太一 中村
誠一 秦
智絵美 岡
貴大 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2020076871A priority Critical patent/JP7523248B2/en
Publication of JP2021172850A publication Critical patent/JP2021172850A/en
Application granted granted Critical
Publication of JP7523248B2 publication Critical patent/JP7523248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、FeGa系合金から成る磁歪材料、特にFeGaSm系合金磁歪材料に関する。更に、本発明は、そのような磁歪材料を磁歪素子として用いてその磁歪効果を利用した磁歪式デバイスに関する。磁歪材料は、例えば応力センサ等に使用できる。 The present invention relates to a magnetostrictive material made of an FeGa-based alloy, in particular an FeGaSm-based alloy magnetostrictive material. Furthermore, the present invention relates to a magnetostrictive device that uses such a magnetostrictive material as a magnetostrictive element and utilizes its magnetostrictive effect. The magnetostrictive material can be used, for example, in a stress sensor, etc.

磁場によって弾性変形が誘起される磁歪材料が知られている。磁歪材料とは材料に磁界を加えると磁化し、同時に伸びを生じる材料である。磁歪材料を応力センサ等に利用する場合、磁歪応答性が高く、また、磁歪量が大きいほど、応力に対する変位の立ち上がりが早く、振幅を大きく取れる。 Magnetostrictive materials are known in which elastic deformation is induced by a magnetic field. A magnetostrictive material is a material that becomes magnetized when a magnetic field is applied to it, and at the same time, elongates. When magnetostrictive materials are used as stress sensors, etc., the higher the magnetostrictive response is, and the greater the amount of magnetostriction, the faster the rise in displacement in response to stress and the larger the amplitude that can be achieved.

従来の応力センサ等への利用を目指した磁歪材料としては、下記特許文献1に記載されているFeGa合金(例えば、ガルフェノール)がある。ガルフェノールは良好な磁歪効果に加え、機械的強度にも優れているため、振動発電やアクチュエーターへの応用が期待されている。 Conventional magnetostrictive materials aimed at use in stress sensors and the like include the FeGa alloys (e.g., Galfenol) described in the following Patent Document 1. Galfenol has a good magnetostrictive effect and also has excellent mechanical strength, so it is expected to be used in vibration power generation and actuators.

特許第5187099号公報Patent No. 5187099

しかしながら、特許文献1に記載されている磁歪材料はバルク形態である。応力センサのように小型のデバイスに用いる場合、磁歪素子として用いる磁歪材料は薄膜形態であることが望ましい。また、特許文献1に記載されている磁歪材料の磁歪量は単結晶化した場合で約300ppm程度であり、単純なスパッタ法で薄膜化すると、非晶質に近くなり磁歪量が低下する。 However, the magnetostrictive material described in Patent Document 1 is in bulk form. When used in small devices such as stress sensors, it is desirable for the magnetostrictive material used as a magnetostrictive element to be in thin film form. Furthermore, the magnetostriction amount of the magnetostrictive material described in Patent Document 1 is approximately 300 ppm when single crystallized, and when thinned by a simple sputtering method, it becomes closer to amorphous and the magnetostriction amount decreases.

発明者らが予備的に検討したところ、FeGa合金(例えば、ガルフェノール)を薄膜化した場合、得られる薄膜化磁歪材料の磁歪量は、応力センサの機能を発揮するには不十分であることが分かった。応力センサに用いる場合、薄膜化磁歪材料は、そのようなFeGa合金の薄膜化磁歪材料が発現する磁歪量の少なくとも1.5倍の磁歪量を発現する必要がある。 The inventors' preliminary study revealed that when an FeGa alloy (e.g., Galfenol) is thinned, the magnetostriction of the resulting thin-film magnetostrictive material is insufficient to function as a stress sensor. When used as a stress sensor, the thin-film magnetostrictive material must exhibit a magnetostriction amount at least 1.5 times the amount of magnetostriction exhibited by such a thin-film magnetostrictive material of an FeGa alloy.

本発明は、Smを更に含むFeGa系合金系磁歪材料、即ち、FeGaSm合金系磁歪材料において、向上した磁歪量を発現できる新たな磁性材料を提供することを課題とする。より詳しくは、本発明は、上述の従来の磁歪材料と比較して、向上した磁歪量を発現できる、例えば少なくとも1.5倍の磁歪量を発現できる磁歪材料を提供することを課題とする。 The present invention aims to provide a new magnetic material that can exhibit an improved magnetostriction amount in an FeGa-based alloy magnetostrictive material that further contains Sm, i.e., an FeGaSm alloy magnetostrictive material. More specifically, the present invention aims to provide a magnetostrictive material that can exhibit an improved magnetostriction amount, for example, at least 1.5 times the magnetostriction amount, compared to the conventional magnetostrictive materials described above.

本発明の1つの要旨によれば、FeGaSmの3元系合金から成る磁歪材料が提供され、磁歪材料は、次式(1):
Fe(100-x-y)GaSm (1)
(式中、合金を構成するFe原子、Ga原子およびSm原子の総数を基準として、xはGa含有率(at%)、yはSm含有率(at%)であり、xおよびyは、x-y直交座標系において、不等式:y≦0.33x-0.67、y≧1.5x-24およびy≧-0.25x+7.5を満たす)
で表されるFeGaSm合金から成ることを特徴とする。
According to one aspect of the present invention, there is provided a magnetostrictive material made of a ternary alloy of FeGaSm, the magnetostrictive material having a structure represented by the following formula (1):
Fe (100-x-y) Ga x Sm y (1)
(In the formula, x is the Ga content (at %), y is the Sm content (at %) based on the total number of Fe atoms, Ga atoms, and Sm atoms constituting the alloy, and x and y satisfy the inequalities y≦0.33x−0.67, y≧1.5x−24, and y≧−0.25x+7.5 in an xy orthogonal coordinate system.)
The present invention is characterized in that the material is an FeGaSm alloy represented by the formula:

即ち、本発明の磁歪材料において、合金を構成するFe、Ga、およびSmの総原子数を基準として、Gaの含有率(at%または原子%)がx%であり、また、Smの含有率(at%または原子%)がy%であり、Feの含有率(at%または原子%)は、(100-x-y)%となる。従って、x-y直交座標系において、点(x,y)は、3本の直線:y=0.33x-0.67、y=1.5x-24およびy=-0.25x+7.5を満足する線上またはこれらの直線によって囲まれる領域内に存在する。このような組成を有する磁歪材料は、従来の磁歪材料と比較して、向上した磁歪量を発現できる。
That is, in the magnetostrictive material of the present invention, the Ga content (at% or atomic%) is x%, the Sm content (at% or atomic%) is y%, and the Fe content (at% or atomic%) is (100-x-y)% based on the total number of atoms of Fe, Ga, and Sm constituting the alloy. Therefore, in an xy orthogonal coordinate system, a point (x, y) exists on a line satisfying three straight lines: y=0.33x-0.67, y=1.5x-24, and y=-0.25x+7.5, or in a region surrounded by these straight lines. A magnetostrictive material having such a composition can exhibit an improved amount of magnetostriction compared to conventional magnetostrictive materials.

尚、本発明の磁歪材料は、本発明の磁歪材料を得るに際して用いる原料に不可避的に含まれる他の元素を含んでもよい。具体的には、本発明の磁歪材料は、微量元素として例えば酸素を0.005at%未満の量で含んでいてもよい。 The magnetostrictive material of the present invention may contain other elements that are inevitably contained in the raw materials used to obtain the magnetostrictive material of the present invention. Specifically, the magnetostrictive material of the present invention may contain, for example, oxygen as a trace element in an amount of less than 0.005 at%.

本発明の別の要旨によれば、上述の磁歪材料から形成される、所定の形態を有する磁歪素子が提供される。この磁歪素子は、応力センサのような磁歪式デバイスにて用いられ、磁歪効果または逆磁歪効果によって意図するデバイスの機能を発現できるように適切に選択された形態(例えば形状、寸法等)を有する。 According to another aspect of the present invention, there is provided a magnetostrictive element having a predetermined configuration formed from the above-mentioned magnetostrictive material. This magnetostrictive element is used in a magnetostrictive device such as a stress sensor, and has a configuration (e.g., shape, dimensions, etc.) appropriately selected so that the intended function of the device can be realized by the magnetostrictive effect or the inverse magnetostrictive effect.

本発明の更に別の要旨によれば、上述の本発明の磁歪材料を磁歪素子として有する磁歪式デバイスが提供される。 According to yet another aspect of the present invention, there is provided a magnetostrictive device having the above-mentioned magnetostrictive material of the present invention as a magnetostrictive element.

本発明によれば、既知の磁歪材料との比較において、磁歪量が向上し、例えば少なくとも1.5倍の磁歪量を発現できる磁歪材料を提供することができる。 The present invention provides a magnetostrictive material that has an improved magnetostriction amount, for example at least 1.5 times the amount of magnetostriction, compared to known magnetostrictive materials.

図1は、基板上に本発明の磁歪材料を堆積した様子を斜視図にて模式的に示す。FIG. 1 is a perspective view showing a magnetostrictive material of the present invention deposited on a substrate. 図2は、本発明の磁歪材料を製造する対向ターゲットスパッタ装置の概略図を示す。FIG. 2 shows a schematic diagram of a facing target sputtering apparatus for producing the magnetostrictive material of the present invention. 図3は、実施例および比較例の磁歪材料の組成および相対磁歪量を示す表1である。FIG. 3 is Table 1 showing the compositions and relative magnetostriction amounts of the magnetostrictive materials of the examples and comparative examples. 図4は、実施例および比較例の結果を示すグラフである。FIG. 4 is a graph showing the results of the examples and the comparative examples.

以下、本発明の実施形態における磁歪材料およびその製造方法、磁歪素子ならびに磁歪式デバイスについて説明するが、本発明はかかる実施形態に限定されるものではない。 The following describes the magnetostrictive material and its manufacturing method, magnetostrictive element, and magnetostrictive device according to the embodiments of the present invention, but the present invention is not limited to these embodiments.

本実施形態における磁歪材料は、次式(1):
Fe(100-x-y)GaSm (1)
(式中、合金を構成するFe原子、Ga原子およびSm原子の総数を基準として、xはGa含有率(at%)、yはSm含有率(at%)であり、x-y直交座標系において、点(x,y)は、3本の直線:y=0.33x-0.67、y=1.5x-24およびy=-0.25x+7.5を満足する線上またはこれらの直線によって囲まれる領域内に存在する。)
で表されるFeGaSm合金から実質的に成る。
The magnetostrictive material in this embodiment has the following formula (1):
Fe (100-x-y) Ga x Sm y (1)
(In the formula, x is the Ga content (at %) and y is the Sm content (at %) based on the total number of Fe atoms, Ga atoms, and Sm atoms that constitute the alloy, and in an xy orthogonal coordinate system, the point (x, y) is on a line that satisfies the three straight lines: y = 0.33x - 0.67, y = 1.5x - 24, and y = -0.25x + 7.5, or is within a region surrounded by these straight lines.)
The FeGaSm alloy is essentially composed of an FeGaSm alloy represented by the formula:

本開示において、「含有率」は、FeGaSm合金を構成する各元素の原子数の総和に対する各元素の原子数の割合(%)を意味し、at%(原子パーセント)の単位を用いて表される。このような「含有率」は、FeGaEr合金を電子線マイクロアナライザ(EPMA)で分析することにより、各元素の含有率として測定できる。 In this disclosure, "content" refers to the percentage (%) of the number of atoms of each element relative to the total number of atoms of each element constituting the FeGaSm alloy, and is expressed in units of at% (atomic percent). Such "content" can be measured as the content of each element by analyzing the FeGaEr alloy with an electron probe microanalyzer (EPMA).

尚、Gaは、Feに固溶することによって優れた磁歪特性を示すことが知られている。磁歪材料におけるGa含有率が20at%よりも大きくなると、結晶構造がbcc相よりもD03型規則格子が支配的になるために磁歪特性が低下し、また、14at%よりも低濃度になると、Ga添加による磁歪特性効果が十分に得難くなる。従って、Ga含有率は、14at%以上、20at%以下であるのが好ましい。Smは、FeおよびGaよりも原子半径が大きく、その添加により誘起される局所的な歪み、およびSmのもつ4f電子の四重極モーメントに起因する一軸磁気異方性による影響により磁歪特性を発現できる。 It is known that Ga exhibits excellent magnetostrictive properties by dissolving in Fe. If the Ga content in the magnetostrictive material is greater than 20 at%, the D03 type ordered lattice becomes more dominant in the crystal structure than the bcc phase, resulting in a decrease in magnetostrictive properties. If the Ga content is less than 14 at%, it becomes difficult to obtain sufficient magnetostrictive properties due to the addition of Ga. Therefore, it is preferable that the Ga content is 14 at% or more and 20 at% or less. Sm has a larger atomic radius than Fe and Ga, and can exhibit magnetostrictive properties due to the local distortion induced by its addition and the uniaxial magnetic anisotropy caused by the quadrupole moment of the 4f electrons of Sm.

このような磁歪材料は、好ましい態様では薄膜形態を有する。1つの実施形態では、本発明の磁歪材料は、例えば50nm~400nm、好ましくは100nm~350nm、より好ましくは150nm~300nmの厚さを有する。このような磁歪材料は、薄膜を形成するいずれの適当な方法を用いて製造してもよく、例えばCVD、好ましい形態では、スパッタ法、特に好ましい態様では、対向ターゲット式スパッタ法によって形成する。従って、所定の基板上に磁歪材料を形成する。 In a preferred embodiment, such a magnetostrictive material has a thin film form. In one embodiment, the magnetostrictive material of the present invention has a thickness of, for example, 50 nm to 400 nm, preferably 100 nm to 350 nm, and more preferably 150 nm to 300 nm. Such a magnetostrictive material may be manufactured using any suitable method for forming a thin film, such as CVD, or in a preferred embodiment, sputtering, and in a particularly preferred embodiment, facing target sputtering. Thus, the magnetostrictive material is formed on a predetermined substrate.

図1に、このように形成した磁歪材料を模式的に示す。図示した態様では、磁歪材料101が基板102の上に形成されている。このように得られた磁歪材料を、所定の形態に加工して磁歪素子を得ることができる。図示した磁歪材料は薄膜形態であり、基板と磁歪材料は一体である。通常、図示したような基板を加工することによって、所定の形態を有する磁歪素子を得る。これを組み込んで所定のデバイス、例えば応力センサを得ることができる。 Figure 1 shows a schematic diagram of the magnetostrictive material thus formed. In the illustrated embodiment, magnetostrictive material 101 is formed on substrate 102. The magnetostrictive material thus obtained can be processed into a desired shape to obtain a magnetostrictive element. The magnetostrictive material shown in the figure is in the form of a thin film, and the substrate and magnetostrictive material are integrated. Typically, a magnetostrictive element having a desired shape is obtained by processing a substrate such as that shown in the figure. This can be incorporated to obtain a desired device, for example, a stress sensor.

基板102は、いずれの適当な材料からできていてもよく、いずれの適当な形態であってもよい。例えば6mmx20mmx150μmのSiからなる基板を使用でき、例えば対向ターゲットスパッタ法によって、6mmx20mmx(50~400)nmの本発明のFeGaSm3元系合金の磁歪材料を形成できる。 The substrate 102 may be made of any suitable material and may be in any suitable form. For example, a substrate made of Si measuring 6 mm x 20 mm x 150 μm may be used, and a magnetostrictive material of the FeGaSm ternary alloy of the present invention measuring 6 mm x 20 mm x (50-400) nm may be formed, for example, by facing target sputtering.

尚、薄膜形態の磁歪材料が一体に付着した基板の形態は、いずれの適当な形態であってもよく、基板を平面視した場合(即ち、図1において磁歪材料101の上方から眺めた場合)の形状は、例えば円形、楕円形、正方形、長方形およびこれらの種々の組み合わせの形状であってよい The shape of the substrate to which the magnetostrictive material in the form of a thin film is attached may be any suitable shape, and the shape of the substrate when viewed from above (i.e., when viewed from above the magnetostrictive material 101 in FIG. 1) may be, for example, a circle, an ellipse, a square, a rectangle, or any combination of these shapes.

尚、本開示において、「磁歪量」は、磁歪材料における磁歪効果による寸法変化の割合であり、具体的には、例えば光てこ法によって測定できる。この方法では、基板の自由端にレーザ光を照射し、その位置変化を変位センサで測定する。後述の実施例および比較例において、この方法に基づく光てこ式磁歪測定装置(ネオアーク株式会社製、NH-1000MS-TIS)を用いて磁歪量を測定した。 In this disclosure, the "magnetostriction amount" refers to the rate of dimensional change due to the magnetostrictive effect in magnetostrictive materials, and can be measured, for example, by the optical lever method. In this method, a laser beam is irradiated onto the free end of the substrate, and the change in position is measured by a displacement sensor. In the examples and comparative examples described below, the magnetostriction amount was measured using an optical lever type magnetostriction measuring device based on this method (NH-1000MS-TIS, manufactured by NeoArc Co., Ltd.).

本発明の薄膜形態の磁性材料は、好ましくは多結晶構造を有し、各結晶粒が厚さ方向に対して(110)面、(200)面または(211)面を有するbccFeの単相である。特に好ましい形態では、大部分の結晶が磁歪材料の厚さ方向に(110)面が配向している。その結果、本発明の磁歪材料は大きい磁歪量を発現できると考えられる。 The thin-film magnetic material of the present invention preferably has a polycrystalline structure and is a single phase bccFe in which each crystal grain has a (110), (200) or (211) plane in the thickness direction. In a particularly preferred embodiment, the majority of the crystals have the (110) plane oriented in the thickness direction of the magnetostrictive material. As a result, it is believed that the magnetostrictive material of the present invention can exhibit a large amount of magnetostriction.

本発明によれば、上述のような磁歪材料を含む磁歪式デバイスも提供される。本開示において「磁歪式デバイス」とは、本発明の磁歪材料と一体になった、所定形状を有する基板を、磁歪素子として含むものを意味する。このデバイスの1つの態様では、本発明の磁歪式デバイスは、そのような磁歪材料を、デバイスの構成要素である磁歪素子として含み、磁歪効果に基づいて応力を検知できる構造となっている。例えば、磁歪式応力センサを本発明の磁歪式デバイスとして挙げることができる。これらのデバイスにおいて、本発明の磁歪材料が各々のデバイスに適した所定の形状の基板と共に含まれる。 According to the present invention, there is also provided a magnetostrictive device that includes the magnetostrictive material as described above. In this disclosure, the term "magnetostrictive device" refers to a device that includes, as a magnetostrictive element, a substrate having a predetermined shape that is integrated with the magnetostrictive material of the present invention. In one aspect of this device, the magnetostrictive device of the present invention includes such a magnetostrictive material as a magnetostrictive element that is a component of the device, and is structured to be able to detect stress based on the magnetostrictive effect. For example, a magnetostrictive stress sensor can be cited as an example of the magnetostrictive device of the present invention. In these devices, the magnetostrictive material of the present invention is included together with a substrate of a predetermined shape suitable for each device.

本発明の磁歪材料の製造は、上述の式(1)を満たす、所定の組成を有するFeGaSm合金の磁歪材料を基板上に形成できる方法であれば、任意の適切な合金製造方法を用いることができる。特に好ましいのはスパッタ法であり、とりわけ対向ターゲットスパッタ法を例示でき、基板上にFeGaSm合金を堆積できる。 The magnetostrictive material of the present invention can be manufactured by any suitable alloy manufacturing method as long as it is a method capable of forming a magnetostrictive material of an FeGaSm alloy having a predetermined composition that satisfies the above formula (1) on a substrate. Particularly preferred is a sputtering method, in particular a facing target sputtering method, which can deposit an FeGaSm alloy on a substrate.

図2に、基板102上に磁歪材料101を堆積させるための対向ターゲット式スパッタ装置の概略図を示す。図示した装置では、ターゲットA202およびターゲットB203を、これらが相互に対向するようにターゲットボックス201に配置する。ターゲットボックス201内にArガスを伴う高密度プラズマ環境を発生させ、基板ホルダー204に取り付けた基板102のターゲットボックス201側の表面に磁歪材料101を堆積させる。 Figure 2 shows a schematic diagram of a facing target sputtering apparatus for depositing magnetostrictive material 101 on substrate 102. In the apparatus shown, target A 202 and target B 203 are arranged in target box 201 so that they face each other. A high-density plasma environment accompanied by Ar gas is generated in target box 201, and magnetostrictive material 101 is deposited on the surface of substrate 102 attached to substrate holder 204 facing target box 201.

尚、例えばターゲットAとしてFeGaの2元系ターゲットを、ターゲットBとしてFeSmの2元系のターゲットを用いるのが好ましく、基板102上に磁歪材料101を堆積させる。堆積させる磁歪材料の組成および厚さは、ターゲットに印加する電圧および電流を適宜選択することによってコントロールする。このように対向するターゲットを使用すると、結晶異方性を有する多結晶の磁歪材料を形成できる。特に好ましい態様では、ターゲットから基板に向かう粒子が30°~60°、好ましくは40°~50°、例えば45°となるようにスパッタをコントロールするのが望ましい。 For example, it is preferable to use a binary target of FeGa as target A and a binary target of FeSm as target B, and deposit magnetostrictive material 101 on substrate 102. The composition and thickness of the deposited magnetostrictive material are controlled by appropriately selecting the voltage and current applied to the targets. By using opposing targets in this way, a polycrystalline magnetostrictive material with crystalline anisotropy can be formed. In a particularly preferred embodiment, it is desirable to control the sputtering so that the grains from the target toward the substrate are at an angle of 30° to 60°, preferably 40° to 50°, for example 45°.

従って、本発明は、上述の本発明の磁歪材料の製造方法であって、対向ターゲットスパッタ法を用いて対向する一方のターゲットがFeGaの2元系ターゲットであり、他方のターゲットがFeSmの2元系ターゲットであることを特徴とする、磁歪材料の製造方法も提供する。 Therefore, the present invention also provides a method for producing the magnetostrictive material of the present invention described above, characterized in that one of the opposing targets is a binary FeGa target and the other is a binary FeSm target using a facing target sputtering method.

尚、図示した態様では、基板ホルダ204に対する基板102の設置に際しては、基板主面の短尺が図2中のx方向と平行になるように、基板主面の長尺が図2中のz方向と平行となるように、基板の厚み方向が図2中のy方向と平行となるように取り付けて、形成される磁歪材料の組成がx軸方向に沿って磁歪材料の組成のバラつきを抑制するのが好ましい。 In the illustrated embodiment, when the substrate 102 is placed on the substrate holder 204, it is preferable to attach the substrate 102 so that the short dimension of the substrate main surface is parallel to the x direction in FIG. 2, the long dimension of the substrate main surface is parallel to the z direction in FIG. 2, and the thickness direction of the substrate is parallel to the y direction in FIG. 2, so that the composition of the magnetostrictive material formed suppresses variation in the composition of the magnetostrictive material along the x-axis direction.

上述のように形成した磁歪材料101の結晶構造をXRD(X線回折装置)によって分析して結晶配向性を推定できる。本発明の磁歪材料の場合、XRDパターンのピーク比(110)/(200)および(110)/(211)は十分に大きく、ピーク比は、具体的には少なくとも10、好ましくは少なくとも20、例えば25であり、磁歪材料の厚さ方向に対する高い配向性を有する。 The crystal structure of the magnetostrictive material 101 formed as described above can be analyzed by XRD (X-ray diffraction) to estimate the crystal orientation. In the case of the magnetostrictive material of the present invention, the peak ratios (110)/(200) and (110)/(211) in the XRD pattern are sufficiently large, specifically, the peak ratio is at least 10, preferably at least 20, for example 25, and the magnetostrictive material has a high orientation in the thickness direction.

更に、本発明の磁歪材料では、そのような配向性の向上に伴って増加した磁歪量を発現する。多結晶構造の磁歪材料における配向性向上とは、複数の結晶粒が同一方位に揃っているということを意味する。本発明の磁歪材料では、Sm添加により配向性が向上し、磁歪量の増大効果がもたらされると考えられる。この効果は、単一結晶粒を有する単結晶のほうが顕著に表れると予想でき、単結晶構造の磁歪材料であってもSm添加により顕著な磁歪量増大が予測できる。 Furthermore, the magnetostrictive material of the present invention exhibits an increased magnetostriction amount as the orientation is improved. In a magnetostrictive material with a polycrystalline structure, improved orientation means that multiple crystal grains are aligned in the same direction. In the magnetostrictive material of the present invention, the addition of Sm is thought to improve the orientation, resulting in an increase in magnetostriction amount. This effect is expected to be more pronounced in single crystals having single crystal grains, and even in magnetostrictive materials with a single crystal structure, a significant increase in magnetostriction amount can be expected by adding Sm.

以下、本発明を実施例および比較例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

(実施例1~実施例13)
上述のように、FeGaの2元系ターゲットおよびFeSmの2元系ターゲットを配置した対向ターゲットスパッタ装置を使用して、6mmx20mmx150μmのSiからなる基板102上に、FeGaSm系合金を堆積させて薄膜形態の磁歪材料101(6mmx20mmx(250±50)nm)を得た。磁歪材料のその他の製造条件は以下に示す通りである。
(Examples 1 to 13)
As described above, a facing target sputtering apparatus in which a binary FeGa target and a binary FeSm target were arranged was used to deposit an FeGaSm alloy on a 6 mm x 20 mm x 150 μm Si substrate 102 to obtain a thin film magnetostrictive material 101 (6 mm x 20 mm x (250 ± 50) nm). Other manufacturing conditions for the magnetostrictive material are as follows.

ターゲットとして、Fe100-xGax(xはGaの原子%(at%)であり、x=20または30)合金およびFe90Sm10合金(Feが90at%、Smが10at%)を用いた。ベース圧力は5Pa-4以下で、Arガスを流量15sccmで供給することによってガス圧0.5Paとした。出力電力を50~300Wの範囲で適宜選択し、また、スパッタ時のガス圧を適宜選択してGaおよびSm組成を調整して種々の磁歪材料を得た。 The targets used were Fe100-xGax (x is the atomic percentage (at%) of Ga, x=20 or 30) alloy and Fe90Sm10 alloy (Fe is 90 at%, Sm is 10 at%). The base pressure was 5 Pa -4 or less, and the gas pressure was set to 0.5 Pa by supplying Ar gas at a flow rate of 15 sccm. The output power was appropriately selected in the range of 50 to 300 W, and the gas pressure during sputtering was appropriately selected to adjust the Ga and Sm compositions to obtain various magnetostrictive materials.

<実施例1>
上述のようにして得た磁歪材料の組成は、Fe75.6at%・Ga19.1at%・Sm5.3at%であった。尚、この組成は、基板102の重心近傍の磁歪材料の部分において、電子線マイクロアナライザ(EPMA)により3点の点分析を行い、3点の各種含有率の平均値として算出した。
Example 1
The composition of the magnetostrictive material obtained as described above was 75.6 at % Fe, 19.1 at % Ga, and 5.3 at % Sm. This composition was calculated as the average value of the various contents at three points in a portion of the magnetostrictive material near the center of gravity of the substrate 102, which was analyzed using an electron probe microanalyzer (EPMA).

得られた磁歪材料の磁歪量として、基板102及び磁歪材料101の主面長手方向に対して磁場を印加した際の寸法変化量を上述の光てこ法により測定した。磁歪材料の組成および磁歪量の結果を図3の表1に示す。尚、上述の組成は、便宜的に"Fe75.6Ga19.1Sm5.3at%"と表記し、磁歪量は後述の比較例1の磁歪材料との相対比として表記している。 The magnetostriction of the obtained magnetostrictive material was measured by the optical lever method described above, measuring the dimensional change when a magnetic field was applied in the longitudinal direction of the main surfaces of the substrate 102 and the magnetostrictive material 101. The composition of the magnetostrictive material and the magnetostriction results are shown in Table 1 of FIG. 3. For convenience, the composition described above is expressed as "Fe75.6Ga19.1Sm5.3at%", and the magnetostriction is expressed as a relative ratio to the magnetostrictive material of Comparative Example 1 described below.

<実施例2~実施例13>
出力電力を50~300Wの範囲で適宜選択し、また、スパッタ時のガス圧を適宜選択して、実施例1と同様にして、種々の磁歪材料を堆積させ、その組成および磁歪量を測定した。これらの結果を、表1に示す。
<Examples 2 to 13>
The output power was appropriately selected in the range of 50 to 300 W, and the gas pressure during sputtering was appropriately selected to deposit various magnetostrictive materials in the same manner as in Example 1, and the composition and magnetostriction were measured. The results are shown in Table 1.

(比較例1および2)
FeGaの2元系ターゲットを配置した通常のスパッタ装置(即ち、ターゲットと基板とが対向するタイプ)を用いた以外は実施例1と実質的に同様にして、磁歪材料を得た。実施例1と同様に、得られた磁歪材料の組成および磁歪量を同様に測定した。これらの結果を、表1に示す。
(Comparative Examples 1 and 2)
A magnetostrictive material was obtained in substantially the same manner as in Example 1, except that a normal sputtering apparatus (i.e., a type in which the target and the substrate face each other) with a binary FeGa target was used. The composition and magnetostriction of the obtained magnetostrictive material were measured in the same manner as in Example 1. The results are shown in Table 1.

(比較例3および4)
FeGaの2元系ターゲットを対向するように配置した対向ターゲットスパッタ装置を用いた以外は比較例1と同様にして磁歪材料を得た。得られた磁歪材料の組成および磁歪量を同様に測定した。これらの結果を、表1に示す。
(Comparative Examples 3 and 4)
A magnetostrictive material was obtained in the same manner as in Comparative Example 1, except that a facing target sputtering apparatus in which two FeGa binary targets were arranged to face each other was used. The composition and magnetostriction of the obtained magnetostrictive material were measured in the same manner. These results are shown in Table 1.

(比較例5および6)
実施例1と同様に、FeGaの2元系ターゲットおよびFeSmの2元系ターゲットを配置した対向ターゲットスパッタ装置を使用して磁歪材料を得た(但し、得られた磁歪材料の組成は、実施例1と比較して大きく異なり、本発明の範囲外である)。実施例1と同様に、得られた磁歪材料の組成および磁歪量を同様に測定した。これらの結果を、表1に示す。
(Comparative Examples 5 and 6)
As in Example 1, a facing target sputtering apparatus was used in which a binary FeGa target and a binary FeSm target were arranged to obtain a magnetostrictive material (however, the composition of the obtained magnetostrictive material was significantly different from that of Example 1 and was outside the scope of the present invention). As in Example 1, the composition and magnetostriction of the obtained magnetostrictive material were measured in the same manner. The results are shown in Table 1.

図3の表1において、比較例1の磁歪量に対する磁歪量の比を「比較例1の磁歪量に対する磁歪量の比」として相対評価で示す。この相対評価が1.5に満たない場合の評価を×とし、1.5以上である場合(即ち、向上した磁歪量を発現する場合)の評価を〇としている。 In Table 1 of FIG. 3, the ratio of magnetostriction to that of Comparative Example 1 is shown as a relative evaluation, "Ratio of magnetostriction to that of Comparative Example 1." If this relative evaluation is less than 1.5, it is evaluated as "X," and if it is 1.5 or more (i.e., if it exhibits an improved magnetostriction), it is evaluated as "O."

また、得られた磁歪材料のGa含有率とSm含有率との関係における評価を図4のグラフに示す。図示したグラフから分かるように、評価が〇である点(x,y)は、3本の直線:y=0.33x-0.67、y=1.5x-24およびy=-0.25x+7.5によって囲まれた領域内部またはその線上に位置する。
The relationship between the Ga content and the Sm content of the magnetostrictive material is shown in the graph of Figure 4. As can be seen from the graph, the points (x, y) that are evaluated as ◯ are located within the area surrounded by the three straight lines: y = 0.33x - 0.67, y = 1.5x - 24, and y = -0.25x + 7.5, or on those lines.

尚、比較例5については、GaおよびSmの含有量が少なく、十分な磁歪量向上効果が得られなかったと考えられる。また、比較例6については、GaとSmの合計含有率が30at%に近くなり、不規則bcc相から規則相(D03、L12)へと結晶構造が変化することによる影響が大きく、十分な磁歪量向上効果が得られなかったと考えられる。 In addition, in Comparative Example 5, the Ga and Sm contents were low, and it is believed that a sufficient improvement in magnetostriction was not achieved. In Comparative Example 6, the total Ga and Sm content was close to 30 at%, and the change in crystal structure from the irregular bcc phase to the ordered phase (D03, L12) had a large effect, and it is believed that a sufficient improvement in magnetostriction was not achieved.

本発明の磁歪材料は、堆積物の磁歪量を向上させることで、応力センサの実用的な小型化を実現する磁歪材料の提供が可能となり、それ故、応力センサの実用的な小型化に寄与することで様々な用途展開に積極的に適用することができる。特に、対向ターゲット式スパッタを用いて堆積させた薄膜板形状の磁歪材料においてFeGaSmの3元系合金の組成を所定範囲とすることによって、多結晶の薄膜形態の堆積物を、向上した磁歪量を発現できる磁歪材料として得ることができる。 The magnetostrictive material of the present invention can provide a magnetostrictive material that realizes a practical miniaturization of stress sensors by improving the magnetostriction amount of the deposit, and therefore can be actively applied to various applications by contributing to the practical miniaturization of stress sensors. In particular, by setting the composition of the FeGaSm ternary alloy within a predetermined range in a magnetostrictive material in the form of a thin film plate deposited using facing target sputtering, a polycrystalline thin film deposit can be obtained as a magnetostrictive material that can exhibit an improved magnetostriction amount.

101…磁歪材用
102…基板
201…ターゲットボックス
202,203…ターゲット
204…基板ホルダ
101... for magnetostrictive material 102... substrate 201... target box 202, 203... target 204... substrate holder

Claims (6)

FeGaSmの3元系合金から成る磁歪材料であって、次式(1):
Fe(100-x-y)GaSm (1)
(式中、合金を構成するFe原子、Ga原子およびSm原子の総数を基準として、xはGa含有率(at%)、yはSm含有率(at%)であり、xおよびyは、x-y直交座標系において、不等式:y≦0.33x-0.67、y≧1.5x-24およびy≧-0.25x+7.5を満たす)
で表されるFeGaSm合金から成る磁歪材料。
A magnetostrictive material made of a ternary alloy of Fe, Ga, Sm, having the following formula (1):
Fe (100-x-y) Ga x Sm y (1)
(In the formula, x is the Ga content (at %), y is the Sm content (at %) based on the total number of Fe atoms, Ga atoms, and Sm atoms constituting the alloy, and x and y satisfy the inequalities y≦0.33x−0.67, y≧1.5x−24, and y≧−0.25x+7.5 in an xy orthogonal coordinate system.)
A magnetostrictive material made of an FeGaSm alloy represented by the formula:
厚さが50nm~400nmである、多結晶構造である請求項1に記載の磁歪材料。 The magnetostrictive material according to claim 1, which has a polycrystalline structure and a thickness of 50 nm to 400 nm. 磁性材料の多結晶構造において、各結晶粒が厚さ方向に対して(110)面、(200)面または(211)面が配向するbccFeの単相であり、磁性材料のXRDパターンのピーク比(110)/(200)および(110)/(211)が少なくとも10である請求項2に記載の磁性材料。 The magnetic material according to claim 2, wherein the polycrystalline structure of the magnetic material is a single phase of bccFe in which each crystal grain is oriented with the (110), (200) or (211) plane in the thickness direction, and the peak ratios (110)/(200) and (110)/(211) in the XRD pattern of the magnetic material are at least 10. 請求項1~3のいずれかに記載の磁歪材料により形成される、所定の形状を有する磁歪素子。 A magnetostrictive element having a predetermined shape, formed from the magnetostrictive material according to any one of claims 1 to 3. 請求項4に記載の磁歪素子を有する磁歪式デバイス。 A magnetostrictive device having the magnetostrictive element according to claim 4. 請求項1~3のいずれかに記載の磁歪材料の製造方法であって、対向ターゲットスパッタ法を用いて対向する一方のターゲットがFeGa合金の2元系ターゲットであり、他方のターゲットがFeSm合金の2元系ターゲットであることを特徴とする、磁歪材料の製造方法。 A method for producing a magnetostrictive material according to any one of claims 1 to 3, characterized in that one of the opposing targets is a binary target of an FeGa alloy and the other is a binary target of an FeSm alloy, using a facing target sputtering method.
JP2020076871A 2020-04-23 2020-04-23 Magnetostrictive material and magnetostrictive device using same Active JP7523248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076871A JP7523248B2 (en) 2020-04-23 2020-04-23 Magnetostrictive material and magnetostrictive device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076871A JP7523248B2 (en) 2020-04-23 2020-04-23 Magnetostrictive material and magnetostrictive device using same

Publications (2)

Publication Number Publication Date
JP2021172850A JP2021172850A (en) 2021-11-01
JP7523248B2 true JP7523248B2 (en) 2024-07-26

Family

ID=78279012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076871A Active JP7523248B2 (en) 2020-04-23 2020-04-23 Magnetostrictive material and magnetostrictive device using same

Country Status (1)

Country Link
JP (1) JP7523248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6399502B1 (en) * 2018-03-26 2018-10-03 パナソニックIpマネジメント株式会社 Magnetostrictive material and magnetostrictive device using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556045A (en) 2013-10-21 2014-02-05 北京航空航天大学 Novel magnetostrictive material designed according to FeGa-RFe2 magnetocrystalline anisotropy compensation principle and preparation method thereof
CN104947194A (en) 2015-05-04 2015-09-30 北京航空航天大学 Magnetostrictive material and preparation method thereof
JP2019169673A (en) 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Magnetostrictive material and magnetostrictive device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556045A (en) 2013-10-21 2014-02-05 北京航空航天大学 Novel magnetostrictive material designed according to FeGa-RFe2 magnetocrystalline anisotropy compensation principle and preparation method thereof
CN104947194A (en) 2015-05-04 2015-09-30 北京航空航天大学 Magnetostrictive material and preparation method thereof
JP2019169673A (en) 2018-03-26 2019-10-03 パナソニックIpマネジメント株式会社 Magnetostrictive material and magnetostrictive device using the same

Also Published As

Publication number Publication date
JP2021172850A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
Klokholm et al. The saturation magnetostriction of permalloy films
CN111244263B (en) Piezoelectric thin film element
KR102386800B1 (en) Ti-Al-Ta-BASED COATING EXHIBITING ENHANCED THERMAL STABILITY
Brombacher et al. FePtCu alloy thin films: Morphology, L1 chemical ordering, and perpendicular magnetic anisotropy
US9689065B2 (en) Magnetic stack including crystallized segregant induced columnar magnetic recording layer
JP2004311925A (en) FePt MAGNETIC THIN-FILM HAVING PERPENDICULAR MAGNETIC ANISOTROPY AND ITS MANUFACTURING METHOD
WO2022181642A1 (en) Magnetic material, laminate, laminate manufacturing method, thermoelectric conversion element, and magnetic sensor
JP6803523B2 (en) Manufacturing method of thin film magnet and thin film magnet
JP7523248B2 (en) Magnetostrictive material and magnetostrictive device using same
Barmak et al. Stoichiometry–anisotropy connections in epitaxial L1 0 FePt (001) films
US20010036563A1 (en) Nanogranular thin film and magnetic recording media
US6171693B1 (en) Structures with improved magnetic characteristics for giant magneto-resistance applications
US20220351884A1 (en) Soft magnetic alloy and magnetic component
US20020144902A1 (en) Method for making Ni-Si magnetron sputtering targets and targets made thereby
JP5120950B2 (en) Magnetic thin film element
US20190273203A1 (en) Magnetoresistive effect element
JPH02143510A (en) Fe-co magnetic film and manufacture thereof
JP4621899B2 (en) Magnetic media
Zhang et al. Effect of change in thickness of ag toplayer on the structure and magnetic properties of FePd films grown on glass substrate
WO2022137284A1 (en) Magnetoresistance effect element
Kabe et al. Elasticity study of nanostructured Al and Al-Si (Cu) films
JP2020077788A (en) Piezoelectric thin film, manufacturing method thereof, and use thereof
Tsukahara et al. Magnetic domain pattern and magnetocrystalline anisotropy in epitaxially grown thin films of Fe, Ni, and Ni-Fe alloys
Yaqoob et al. Effect of oxidation temperature on structural and magnetic properties of Al-doped iron oxide thin films
WO2024154441A1 (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240716

R150 Certificate of patent or registration of utility model

Ref document number: 7523248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150