[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7521173B2 - Blade detection device and method for cleaning the blade detection device - Google Patents

Blade detection device and method for cleaning the blade detection device Download PDF

Info

Publication number
JP7521173B2
JP7521173B2 JP2020103172A JP2020103172A JP7521173B2 JP 7521173 B2 JP7521173 B2 JP 7521173B2 JP 2020103172 A JP2020103172 A JP 2020103172A JP 2020103172 A JP2020103172 A JP 2020103172A JP 7521173 B2 JP7521173 B2 JP 7521173B2
Authority
JP
Japan
Prior art keywords
light
cleaning
blade
amount
cleaning member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020103172A
Other languages
Japanese (ja)
Other versions
JP2021194739A (en
Inventor
慶治 三宅
汐里 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2020103172A priority Critical patent/JP7521173B2/en
Publication of JP2021194739A publication Critical patent/JP2021194739A/en
Priority to JP2024108639A priority patent/JP2024128020A/en
Application granted granted Critical
Publication of JP7521173B2 publication Critical patent/JP7521173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Dicing (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

本発明はブレード検出装置及びブレード検出装置の洗浄方法に係り、特にダイシング装置のブレードの摩耗又は破損等のブレードの状態を検出するブレード検出装置及びブレード検出装置の洗浄方法に関する。 The present invention relates to a blade detection device and a method for cleaning the blade detection device, and in particular to a blade detection device that detects the condition of the blade of a dicing device, such as wear or damage, and a method for cleaning the blade detection device.

半導体装置又は電子部品が形成されたワークを個々のチップに分割するダイシング装置は、スピンドルによって高速回転されるブレードと、ワークを吸着保持するテーブルとを備えている。ダイシング装置は、テーブルに吸着保持されたワークに対し、高速回転するブレードによって溝入れ加工又は切断加工を行う。 A dicing device that divides a workpiece on which semiconductor devices or electronic components are formed into individual chips is equipped with a blade that is rotated at high speed by a spindle and a table that suction-holds the workpiece. The dicing device performs grooving or cutting on the workpiece that is suction-held on the table with the blade that rotates at high speed.

上記のようなダイシング装置において、例えば、特許文献1に開示されたダイシング装置には、ブレードの摩耗又は破損等の状態を検出するブレード検出装置が搭載されている。 In the above-mentioned dicing device, for example, the dicing device disclosed in Patent Document 1 is equipped with a blade detection device that detects the wear or damage of the blade.

上記のブレード検出装置は、ブレードを覆うホイールカバーに取り付けられており、ブレードに向けて光を投光する投光部と、ブレードを挟んで投光部に対向して設けられ投光部からの光を受光する受光部と、を有する検出ユニットを備えている。また、上記のブレード検出装置は、検出ユニットをブレードの回転中心に向けて移動させる移動手段と、検出ユニットの受光部による受光量の変化に基づいてブレードの状態を検出するとともに、移動手段を制御して検出ユニットをブレードの回転中心に向けて移動させ、移動量を積算してブレードの磨耗量を演算する制御部と、を有している。 The above blade detection device is attached to a wheel cover that covers the blade, and is equipped with a detection unit having a light-projecting section that projects light toward the blade, and a light-receiving section that is disposed opposite the light-projecting section across the blade and receives the light from the light-projecting section. The above blade detection device also has a moving means that moves the detection unit toward the center of rotation of the blade, and a control section that detects the state of the blade based on changes in the amount of light received by the light-receiving section of the detection unit, controls the moving means to move the detection unit toward the center of rotation of the blade, and calculates the amount of wear of the blade by integrating the amount of movement.

特開2009-231760号公報JP 2009-231760 A

しかしながら、上記のブレード検出装置は、ワークの加工時に発生する切削粉を含んだミスト状の環境下に設置されているため、以下の問題が発生する。 However, the above blade detection device is installed in a misty environment that contains cutting powder generated during workpiece processing, which causes the following problems:

すなわち、上記の検出ユニットのうち、外部に露出されている投光面や受光面に上記の切削粉が付着すると、受光部で受光される受光量が減少する。この場合、ブレード検出装置は、実際の摩耗量よりも少ない摩耗量を検出してしまうので、ブレードの状態(摩耗又は破損)を正確に検出することができない場合がある。 In other words, if the cutting powder adheres to the light-emitting surface or light-receiving surface of the detection unit that is exposed to the outside, the amount of light received by the light-receiving section decreases. In this case, the blade detection device detects an amount of wear that is less than the actual amount of wear, and may not be able to accurately detect the condition of the blade (worn or damaged).

本発明はこのような問題に鑑みて成されたものであり、ブレードの状態を正確に検出することができるブレード検出装置及びブレード検出装置の洗浄方法を提供することを目的とする。 The present invention was made in consideration of these problems, and aims to provide a blade detection device and a method for cleaning the blade detection device that can accurately detect the condition of the blade.

本発明のブレード検出装置は、本発明の目的を達成するために、ブレードの側面に対し離間して配置された投光面を有する投光部と、ブレードを挟んで投光面に対向配置された受光面を有する受光部と、を有し、投光面から受光面に向けて光を投光する検出ユニットと、投光面と受光面とに接触して投光面と受光面とを洗浄する洗浄部材と、洗浄部材が投光面と受光面とから離間した退避位置と、洗浄部材が投光面と受光面とに接触する洗浄位置との間で、検出ユニットと洗浄部材とを相対的に移動させる移動手段と、を備える。 To achieve the object of the present invention, the blade detection device of the present invention comprises a light-projecting section having a light-projecting surface spaced apart from the side of the blade, and a light-receiving section having a light-receiving surface arranged opposite the light-projecting surface across the blade, a detection unit that projects light from the light-projecting surface towards the light-receiving surface, a cleaning member that comes into contact with the light-projecting surface and the light-receiving surface to clean them, and a moving means that moves the detection unit and the cleaning member relatively between a retracted position where the cleaning member is spaced apart from the light-projecting surface and the light-receiving surface, and a cleaning position where the cleaning member comes into contact with the light-projecting surface and the light-receiving surface.

本発明のブレード検出装置の一形態は、弾性変形可能な弾性部材により形成されることが好ましい。 One embodiment of the blade detection device of the present invention is preferably formed from an elastic member that can be elastically deformed.

本発明のブレード検出装置の一形態は、洗浄部材は、連続気泡構造、半独立気泡構造又は独立気泡構造のスポンジであることが好ましい。 In one embodiment of the blade detection device of the present invention, the cleaning member is preferably a sponge having an open cell structure, a semi-closed cell structure, or a closed cell structure.

本発明のブレード検出装置の一形態は、洗浄部材は、軸心を有するロール状に形成されることが好ましい。 In one embodiment of the blade detection device of the present invention, the cleaning member is preferably formed in a roll shape having an axis.

本発明のブレード検出装置の一形態は、洗浄部材は、軸心を中心に回転自在に設けられ、洗浄部材が洗浄位置にある場合、洗浄部材は、投光面及び受光面のいずれか一方よりも他方に近い側にオフセットされた位置に配置されることが好ましい。 In one embodiment of the blade detection device of the present invention, the cleaning member is provided so as to be freely rotatable about its axis, and when the cleaning member is in the cleaning position, it is preferable that the cleaning member is disposed at a position offset to the side closer to either the light projecting surface or the light receiving surface than the other.

本発明のブレード検出装置の一形態は、洗浄部材は、軸心に沿ってスライド可能に配置されることが好ましい。 In one embodiment of the blade detection device of the present invention, the cleaning member is preferably arranged to be slidable along the axis.

本発明のブレード検出装置の一形態は、検出ユニットをブレードの回転中心に向けて駆動する送り手段を有し、送り手段は、移動手段として兼用されることが好ましい。 One embodiment of the blade detection device of the present invention has a feed means for driving the detection unit toward the center of rotation of the blade, and the feed means preferably also serves as a moving means.

本発明のブレード検出装置の一形態は、受光部が受光した受光量を検出する受光量検出部と、単位時間当たりの受光量の変化率を算出する算出部と、受光量と変化率とに基づき、投光面及び受光面の洗浄が必要であるか否かを判定する判定部と、判定部が洗浄が必要であると判定した場合に、移動手段を駆動して洗浄部材を退避位置から洗浄位置に相対的に移動させる駆動制御部と、を有することが好ましい。 One embodiment of the blade detection device of the present invention preferably includes a light receiving amount detection unit that detects the amount of light received by the light receiving unit, a calculation unit that calculates the rate of change of the amount of light received per unit time, a determination unit that determines whether cleaning of the light projecting surface and the light receiving surface is necessary based on the amount of light received and the rate of change, and a drive control unit that drives the moving means to relatively move the cleaning member from the retracted position to the cleaning position when the determination unit determines that cleaning is necessary.

本発明のブレード検出装置の一形態は、受光部が受光した受光量を検出する受光量検出部と、受光量に基づき、投光面及び受光面の洗浄が必要であるか否かを判定する判定部と、判定部が洗浄が必要であると判定した場合に、受光量に応じた洗浄回数の分だけ移動手段を駆動して洗浄部材を退避位置と洗浄位置との間で相対的に往復移動させる駆動制御部と、を有することが好ましい。 One embodiment of the blade detection device of the present invention preferably includes a light receiving amount detection unit that detects the amount of light received by the light receiving unit, a determination unit that determines whether cleaning of the light projecting surface and the light receiving surface is necessary based on the amount of light received, and a drive control unit that, when the determination unit determines that cleaning is necessary, drives the moving means for the number of cleanings corresponding to the amount of light received, thereby relatively moving the cleaning member back and forth between the retracted position and the cleaning position.

本発明のブレード検出装置の洗浄方法は、本発明の目的を達成するために、ブレードを挟んで対向配置された投光面と受光面とを有し、投光面から投光されて受光面を介して受光した受光量に基づきブレードの状態を検出するブレード検出装置の投光面と受光面とを洗浄する洗浄方法において、受光量を検出する受光量検出工程と、単位時間当たりの受光量の変化率を算出する算出工程と、受光量と変化率とに基づき、投光面及び受光面の洗浄が必要であるか否かを判定する判定工程と、投光面と受光面とから離間した退避位置から、投光面と受光面とに接触する洗浄位置に洗浄部材を相対的に移動させる移動工程と、を有し、移動工程は、判定工程が洗浄が必要であると判定した場合に実行される。 In order to achieve the object of the present invention, the cleaning method for a blade detection device of the present invention is a cleaning method for cleaning the light-projecting surface and the light-receiving surface of a blade detection device that has a light-projecting surface and a light-receiving surface arranged opposite each other with a blade therebetween and detects the state of the blade based on the amount of light projected from the light-projecting surface and received through the light-receiving surface, the cleaning method includes a light-receiving amount detection process for detecting the amount of light received, a calculation process for calculating the rate of change in the amount of light received per unit time, a determination process for determining whether cleaning of the light-projecting surface and the light-receiving surface is necessary based on the amount of light received and the rate of change, and a movement process for relatively moving a cleaning member from a retracted position spaced apart from the light-projecting surface and the light-receiving surface to a cleaning position in contact with the light-projecting surface and the light-receiving surface, the movement process being executed when the determination process determines that cleaning is necessary.

本発明のブレード検出装置の洗浄方法は、本発明の目的を達成するために、ブレードを挟んで対向配置された投光面と受光面とを有し、投光面から投光されて受光面を介して受光した受光量に基づきブレードの状態を検出するブレード検出装置の投光面と受光面とを洗浄する洗浄方法において、受光量を検出する受光量検出工程と、受光量に基づき、投光面及び受光面の洗浄が必要であるか否かを判定する判定工程と、投光面と受光面とから離間した退避位置と、投光面と受光面とに接触する洗浄位置との間で洗浄部材を相対的に往復移動させる移動工程と、を有し、移動工程は、判定工程が洗浄が必要であると判定した場合に、受光量に応じた洗浄回数の分だけ実行される。 In order to achieve the object of the present invention, the cleaning method for a blade detection device of the present invention is a cleaning method for cleaning the light-projecting surface and the light-receiving surface of a blade detection device that has a light-projecting surface and a light-receiving surface arranged opposite each other with a blade therebetween and detects the state of the blade based on the amount of light projected from the light-projecting surface and received through the light-receiving surface, the cleaning method includes a light-receiving amount detection process that detects the amount of light received, a determination process that determines whether cleaning of the light-projecting surface and the light-receiving surface is necessary based on the amount of light received, and a movement process that relatively moves the cleaning member back and forth between a retracted position spaced apart from the light-projecting surface and the light-receiving surface and a cleaning position in contact with the light-projecting surface and the light-receiving surface, and the movement process is performed a number of times for cleaning according to the amount of light received when the determination process determines that cleaning is necessary.

本発明によれば、ブレードの状態を正確に検出することができる。 The present invention allows the blade condition to be detected accurately.

実施形態のブレード検出装置が搭載されたダイシング装置の斜視図FIG. 1 is a perspective view of a dicing device equipped with a blade detection device according to an embodiment; 図1に示したダイシング装置の加工部の構成を示した斜視図FIG. 2 is a perspective view showing a configuration of a processing unit of the dicing device shown in FIG. 検出ユニットと送り機構とが設けられたスピンドルの斜視図FIG. 1 is a perspective view of a spindle provided with a detection unit and a feed mechanism; 第1実施形態の洗浄部材の検出ユニットの構造を示した概略構造図FIG. 1 is a schematic diagram showing a structure of a detection unit of a cleaning member according to a first embodiment; 送り機構の構造を示した概略構造図Schematic diagram showing the structure of the feed mechanism 洗浄部材による洗浄状態を模式的に示した説明図FIG. 1 is an explanatory diagram showing a schematic diagram of a cleaning state using a cleaning member; 洗浄部材の斜視図FIG. 洗浄部材の動作を制御する制御部の機能ブロック図A functional block diagram of a control unit that controls the operation of the cleaning member. 受光量と受光量の変化率を示したグラフGraph showing the amount of light received and the rate of change in the amount of light received 第1の洗浄方法のフローチャートFlowchart of the first cleaning method 受光量の光量値の変化率を示したグラフGraph showing the rate of change in the amount of light received 第2の洗浄方法のフローチャートFlowchart of the second cleaning method 第2実施形態の洗浄部材の説明図FIG. 11 is an explanatory diagram of a cleaning member according to a second embodiment;

以下添付図面に従って本発明に係るブレード検出装置及びブレード検出装置の洗浄方法の好ましい実施形態について詳説する。 The following describes in detail a preferred embodiment of the blade detection device and the method for cleaning the blade detection device according to the present invention with reference to the attached drawings.

図1は、実施形態のブレード検出装置10(図4参照)が搭載されたダイシング装置100の外観を示す斜視図である。 Figure 1 is a perspective view showing the appearance of a dicing device 100 equipped with a blade detection device 10 (see Figure 4) according to an embodiment.

図1に示すダイシング装置100は、互いに対向して配置された一対のスピンドル106、106と、ワークWを吸着保持するワークテーブル108と、を有する加工部110を備える。また、ダイシング装置100は、加工済みのワークWをスピン洗浄する洗浄部112と、複数枚のワークWを収納したカセットを載置するロードポート114と、ワークWを搬送する搬送装置116と、各部の動作を統括制御する制御部118と、を備えている。 The dicing device 100 shown in FIG. 1 includes a processing section 110 having a pair of spindles 106, 106 arranged opposite each other and a work table 108 that suction-holds the workpiece W. The dicing device 100 also includes a cleaning section 112 that spin-cleans the processed workpiece W, a load port 114 on which a cassette containing multiple workpieces W is placed, a transport device 116 that transports the workpiece W, and a control section 118 that controls the overall operation of each section.

上記のスピンドル106は、例えば、高周波モータ内蔵型のスピンドルであり、スピンドル106の先端には、ワークWに対して切削加工を行うブレード102が取り付けられている。ブレード102は、スピンドル106によって、例えば8000rpm~60000rpmで高速回転される。 The spindle 106 is, for example, a spindle with a built-in high-frequency motor, and a blade 102 that performs cutting processing on a workpiece W is attached to the tip of the spindle 106. The blade 102 is rotated at high speed by the spindle 106, for example, at 8,000 rpm to 60,000 rpm.

ブレード102は、薄い円盤状に構成された切削刃である。ブレード102としては、ダイヤモンド砥粒やCBN(Cubic Boron Nitride)砥粒をニッケルで電着した電着ブレード、又は樹脂で結合したレジンブレード等が用いられる。また、ブレード102の寸法は、加工内容によって種々選択されるが、通常の半導体ウェーハをワークWとしてダイシングする場合は直径50mm、厚さ30μm前後のものが用いられる。 The blade 102 is a cutting blade configured in a thin, disk-like shape. The blade 102 may be an electroplated blade in which diamond abrasive grains or CBN (Cubic Boron Nitride) abrasive grains are electroplated with nickel, or a resin blade bonded with resin. The dimensions of the blade 102 are selected according to the processing content, but when dicing a normal semiconductor wafer as the workpiece W, a blade with a diameter of about 50 mm and a thickness of about 30 μm is used.

図2は、加工部110の構成を示した斜視図である。 Figure 2 is a perspective view showing the configuration of the processing section 110.

図2に示す加工部110は、Xテーブル126を有している。このXテーブル126は、Xベース120に設けられたXガイド122、122にガイドされ、リニアモータ124によって図2のX-Xで示すX軸方向に駆動される。このXテーブル126には、Z軸を中心に回転する回転テーブル128が搭載され、この回転テーブル128にワークテーブル108が設けられている。 The processing section 110 shown in FIG. 2 has an X-table 126. This X-table 126 is guided by X-guides 122, 122 provided on the X-base 120, and is driven in the X-axis direction indicated by X-X in FIG. 2 by a linear motor 124. This X-table 126 is equipped with a rotary table 128 that rotates around the Z-axis, and the work table 108 is provided on this rotary table 128.

また、加工部110は、Yベース130を有している。このYベース130は、リニアモータ124を跨ぐように設けられている。このYベース130の側面には、Yガイド132、132にガイドされ、図示しない駆動装置によって図2のY-Yで示すY軸方向に駆動されるYテーブル134、134が設けられている。各Yテーブル134には、図示しない駆動手段によってZ軸方向に駆動されるZテーブル136が設けられている。また、Zテーブル136には、先端にブレード102が取り付けられた上記のスピンドル106が固定されている。このような加工部110の構造により、ブレード102はY軸方向にインデックス送りされるとともにZ軸方向に切込み送りされ、ワークテーブル108はX軸方向に切削送りされる。なお、X、Y、Z軸の各軸は、互いに直交する軸であり、X、Y軸は水平方向に向いた軸であり、Z軸は鉛直(上下)方向に向いた軸である。 The processing section 110 also has a Y base 130. This Y base 130 is provided so as to straddle the linear motor 124. On the side of this Y base 130, Y tables 134, 134 are provided, which are guided by Y guides 132, 132 and driven in the Y-axis direction indicated by Y-Y in FIG. 2 by a driving device (not shown). Each Y table 134 is provided with a Z table 136, which is driven in the Z-axis direction by a driving means (not shown). In addition, the spindle 106, which has the blade 102 attached to its tip, is fixed to the Z table 136. With this structure of the processing section 110, the blade 102 is index-fed in the Y-axis direction and cut-fed in the Z-axis direction, and the work table 108 is cut-fed in the X-axis direction. Note that the X, Y, and Z axes are mutually orthogonal, the X and Y axes are horizontal axes, and the Z axis is vertical (up and down) axis.

図3は、スピンドル106の先端部構造を示した斜視図である。 Figure 3 is an oblique view showing the tip structure of the spindle 106.

図3に示すように、スピンドル106の先端部には、ブレード102の上部を覆うホイールカバー15が取り付けられている。このホイールカバー15は、カバー前部16、カバー後部18及びノズルブロック20等の部材を組み付けることによって構成され、ワークWの加工時に発生する切削粉や切削水及び冷却水の飛散を抑制する機能を有している。 As shown in FIG. 3, a wheel cover 15 that covers the top of the blade 102 is attached to the tip of the spindle 106. This wheel cover 15 is constructed by assembling components such as a front cover 16, a rear cover 18, and a nozzle block 20, and has the function of suppressing the scattering of cutting powder, cutting water, and cooling water that are generated when the workpiece W is machined.

カバー後部18の上面には、ホース21の端部が接続されており、ホース21からは切削水が供給される。供給された切削水は、ホイールカバー15に設けられたノズル23から回転中のブレード102に向けて噴射される。また、ノズルブロック20の上面には、ホース22の端部が接続されており、ホース22からは冷却水が供給される。供給された冷却水は、ブレード102を挟んで対向配置された一対のL字状のノズル24、24から回転中のブレード102とワークWに向けて噴射される。 The end of a hose 21 is connected to the upper surface of the rear cover 18, and cutting water is supplied from the hose 21. The supplied cutting water is sprayed from a nozzle 23 provided on the wheel cover 15 toward the rotating blade 102. In addition, the end of a hose 22 is connected to the upper surface of the nozzle block 20, and cooling water is supplied from the hose 22. The supplied cooling water is sprayed from a pair of L-shaped nozzles 24, 24 arranged opposite each other with the blade 102 in between toward the rotating blade 102 and the workpiece W.

上記のように構成されたホイールカバー15には、ブレード検出装置10を構成する検出ユニット12と、検出ユニット12をZ軸方向に移動させる送り機構14とが設けられている。以下、検出ユニット12の構造について詳しく説明する。 The wheel cover 15 configured as described above is provided with a detection unit 12 that constitutes the blade detection device 10, and a feed mechanism 14 that moves the detection unit 12 in the Z-axis direction. The structure of the detection unit 12 will be described in detail below.

図4は、検出ユニット12の構造を示した概略構造図であり、検出ユニット12を図3のX軸方向から見た側面図が示されている。 Figure 4 is a schematic diagram showing the structure of the detection unit 12, and shows a side view of the detection unit 12 as seen from the X-axis direction in Figure 3.

図4に示すように、検出ユニット12は、投光部26と受光部28とを備えており、投光部26は、移動ブロック26Aを有し、受光部28は、移動ブロック28Aを有している。移動ブロック26Aと移動ブロック28Aは、Y軸方向に互い対向配置されて各々の上部で連結されて一体化されている。また、移動ブロック26Aと移動ブロック28Aとの間にはZ軸方向に沿った空間72が形成され、この空間72に後述の洗浄部材70が配置されている。 As shown in FIG. 4, the detection unit 12 includes a light-projecting section 26 and a light-receiving section 28. The light-projecting section 26 has a moving block 26A, and the light-receiving section 28 has a moving block 28A. The moving blocks 26A and 28A are disposed opposite each other in the Y-axis direction and are connected at their upper portions to be integrated. A space 72 is formed between the moving blocks 26A and 28A along the Z-axis direction, and a cleaning member 70, which will be described later, is disposed in this space 72.

投光部26は、発光ダイオード又はレーザーダイオード等から構成される発光素子30と、発光素子30の光を伝送するオプティカルケーブル32と、移動ブロック26Aの下部に取り付けられてオプティカルケーブル32で伝送された光を反射して出射する直角プリズム34と、を有している。そして、直角プリズム34の光出射端面が投光部26の投光面36として形成されている。この投光面36は、ブレード102の側面に対し離間して配置されている。 The light-projecting unit 26 has a light-emitting element 30 composed of a light-emitting diode or a laser diode, an optical cable 32 that transmits the light from the light-emitting element 30, and a right-angle prism 34 that is attached to the lower part of the moving block 26A and reflects and emits the light transmitted by the optical cable 32. The light-emitting end face of the right-angle prism 34 is formed as the light-projecting surface 36 of the light-projecting unit 26. This light-projecting surface 36 is disposed at a distance from the side surface of the blade 102.

一方、受光部28は、フォトダイオード等の受光素子38と、受光素子38に接続されたオプティカルケーブル40と、移動ブロック28Aの下部に取り付けられてオプティカルケーブル40に接続された直角プリズム42と、を有している。そして、直角プリズム42の光入射端面が受光部28の受光面44として形成されている。 On the other hand, the light receiving unit 28 has a light receiving element 38 such as a photodiode, an optical cable 40 connected to the light receiving element 38, and a right-angle prism 42 attached to the lower part of the moving block 28A and connected to the optical cable 40. The light incident end surface of the right-angle prism 42 is formed as the light receiving surface 44 of the light receiving unit 28.

図4に示したブレード検出装置10においては、投光部26の投光面36と受光部28の受光面44とが、ブレード102の刃先102Aを挟むように対向して配置され、投光面36から受光面44に向けて出射(投光)された光のうち刃先102Aで遮られない光が受光面44に入射されるように構成されている。また、受光素子38で受光された受光量に基づいて、後述の制御部118(図1参照)がブレード102の摩耗量を検出し、また、洗浄部材70による洗浄を実行する。 In the blade detection device 10 shown in FIG. 4, the light-projecting surface 36 of the light-projecting unit 26 and the light-receiving surface 44 of the light-receiving unit 28 are arranged opposite to each other so as to sandwich the cutting edge 102A of the blade 102, and are configured so that, of the light emitted (projected) from the light-projecting surface 36 toward the light-receiving surface 44, the light that is not blocked by the cutting edge 102A is incident on the light-receiving surface 44. Based on the amount of light received by the light-receiving element 38, the control unit 118 (see FIG. 1), which will be described later, detects the amount of wear on the blade 102 and also performs cleaning using the cleaning member 70.

次に、検出ユニット12をZ軸方向に移動させる送り機構14について説明する。 Next, we will explain the feed mechanism 14 that moves the detection unit 12 in the Z-axis direction.

図5は、送り機構14の構造を示した概略構造図である。 Figure 5 is a schematic diagram showing the structure of the feed mechanism 14.

図5に示すように、送り機構14は、パルスモータ50と、パルスモータ50の出力軸52に固定されたギヤ54と、ギヤ54に噛合されたギヤ56と、ギヤ56に連結された送りネジ58と、送りネジ58に噛合されるとともに検出ユニット12に固定されたナット60と、を有している。また、パルスモータ50の出力軸52、各ギヤ54、56、及び送りネジ58のそれぞれの回転軸心は図5上でZ軸に沿って配置されている。このように構成された送り機構14によれば、パルスモータ50の回転力がギヤ54、56を介して送りネジ58に伝達され、送りネジ58が回転されることにより、ナット60を介して検出ユニット12が図5上でZ軸に沿って移動される。これにより、投光部26の投光面36と受光部28の受光面44が、ブレード102の回転中心S(図3参照)に対して一体的に進退移動される。 5, the feed mechanism 14 has a pulse motor 50, a gear 54 fixed to the output shaft 52 of the pulse motor 50, a gear 56 meshed with the gear 54, a feed screw 58 connected to the gear 56, and a nut 60 meshed with the feed screw 58 and fixed to the detection unit 12. The rotational axes of the output shaft 52 of the pulse motor 50, the gears 54 and 56, and the feed screw 58 are arranged along the Z axis in FIG. 5. According to the feed mechanism 14 configured in this way, the rotational force of the pulse motor 50 is transmitted to the feed screw 58 via the gears 54 and 56, and the feed screw 58 is rotated, so that the detection unit 12 is moved along the Z axis in FIG. 5 via the nut 60. As a result, the light-emitting surface 36 of the light-emitting unit 26 and the light-receiving surface 44 of the light-receiving unit 28 are moved forward and backward together with respect to the rotation center S of the blade 102 (see FIG. 3).

上記の検出ユニット12と送り機構14とを備えたブレード検出装置10によれば、受光素子38で受光される受光量の変化に基づき、制御部118(図1参照)が送り機構14を制御して検出ユニット12をブレード102の回転中心Sに向けてZ軸方向に自動送りする。そして、制御部118は、検出ユニット12の移動量を積算することでブレード102の刃先102Aの磨耗量を検出する。 According to the blade detection device 10 equipped with the above-mentioned detection unit 12 and feed mechanism 14, the control unit 118 (see FIG. 1) controls the feed mechanism 14 based on the change in the amount of light received by the light receiving element 38 to automatically feed the detection unit 12 in the Z-axis direction toward the rotation center S of the blade 102. The control unit 118 then detects the amount of wear on the cutting edge 102A of the blade 102 by integrating the amount of movement of the detection unit 12.

ところで、上記の検出ユニット12を有するブレード検出装置10では、加工時に発生した塵が検出ユニット12の投光面36に付着した場合、投光面36からの光が減衰し散乱することによりSN比が低下してブレード102の状態を誤検出する場合がある。また、受光面44に塵が付着している場合、正確な受光量を検出できないためブレード102の状態を誤検出する場合がある。 However, in the blade detection device 10 having the above-mentioned detection unit 12, if dust generated during processing adheres to the light-projecting surface 36 of the detection unit 12, the light from the light-projecting surface 36 is attenuated and scattered, lowering the signal-to-noise ratio and may result in erroneous detection of the state of the blade 102. Also, if dust adheres to the light-receiving surface 44, the accurate amount of received light cannot be detected, and this may result in erroneous detection of the state of the blade 102.

そこで、実施形態のブレード検出装置10は、上記の誤検出を防止するために、投光面36と受光面44とを洗浄(清掃とも言う。)する洗浄部材70(図4参照)を備えている。以下、洗浄部材70について詳しく説明する。 To prevent the above-mentioned erroneous detection, the blade detection device 10 of the embodiment is provided with a cleaning member 70 (see FIG. 4) that cleans (also called cleaning) the light-projecting surface 36 and the light-receiving surface 44. The cleaning member 70 will be described in detail below.

〈第1実施形態の洗浄部材70について〉
図4に示すように、洗浄部材70は、移動ブロック26Aと移動ブロック28Aとの間に形成される空間72に配置される。この洗浄部材70は、非洗浄時において、図4の実線及び図6の二点鎖線で示す退避位置に配置されている。すなわち、洗浄部材70は、投光面36と受光面44とから離間した位置に配置されている。そして、投光面36と受光面44とを洗浄する洗浄時には、上記の退避位置から、図6の実線で示した洗浄位置に相対的に移動され、投光面36と受光面44と接触される。そして、洗浄部材70は、洗浄位置でZ軸方向に相対的に上下に移動される。これにより、投光面36と受光面44とが洗浄部材70に擦られて投光面36と受光面44とに付着した塵が除去される。なお、図6は、洗浄部材70による投光面36と受光面44の洗浄状態を模式的に示した説明図である。
Regarding the cleaning member 70 of the first embodiment
As shown in FIG. 4, the cleaning member 70 is disposed in a space 72 formed between the moving block 26A and the moving block 28A. When not cleaning, the cleaning member 70 is disposed in a retracted position indicated by a solid line in FIG. 4 and a two-dot chain line in FIG. 6. That is, the cleaning member 70 is disposed in a position spaced apart from the light-projecting surface 36 and the light-receiving surface 44. When cleaning the light-projecting surface 36 and the light-receiving surface 44, the cleaning member 70 is relatively moved from the retracted position to a cleaning position indicated by a solid line in FIG. 6 and contacts the light-projecting surface 36 and the light-receiving surface 44. The cleaning member 70 is relatively moved up and down in the Z-axis direction at the cleaning position. As a result, the light-projecting surface 36 and the light-receiving surface 44 are rubbed against the cleaning member 70, and dust attached to the light-projecting surface 36 and the light-receiving surface 44 is removed. FIG. 6 is an explanatory diagram that shows a schematic diagram of the cleaning state of the light-projecting surface 36 and the light-receiving surface 44 by the cleaning member 70.

洗浄部材70を上記の退避位置から洗浄位置に相対的に移動させる移動手段として、実施形態のブレード検出装置10では、検出ユニット12をZ軸方向に沿って送り移動させる送り機構14を兼用している。 In the embodiment of the blade detection device 10, the feed mechanism 14 that feeds and moves the detection unit 12 along the Z-axis direction is also used as the moving means for relatively moving the cleaning member 70 from the retracted position to the cleaning position.

送り機構14を移動手段として兼用した場合、洗浄部材70は、移動させる必要がないので、例えば、ホイールカバー15側に固定することが好ましい。そして、図5の状態の検出ユニット12を送り機構14によって上昇させて投光面36と受光面44とを洗浄部材70に接触させる。これにより、検出ユニット12に対して洗浄部材70を上記の洗浄位置に相対的に移動させることが可能となる。なお、送り機構14を移動手段として兼用することなく、洗浄部材70を単独で洗浄位置と退避位置との間で移動させる専用の移動手段をブレード検出装置10に設けてもよい。つまり、上記の移動手段としては、洗浄位置と退避位置との間で、検出ユニット12と洗浄部材70とを相対的に移動させる移動手段であれば適用できる。但し、送り機構14を移動手段として兼用することにより、ブレード検出装置10の装置構成を簡素化できるので好ましい。 When the feed mechanism 14 is used as a moving means, the cleaning member 70 does not need to be moved, so it is preferable to fix it to the wheel cover 15 side, for example. Then, the detection unit 12 in the state shown in FIG. 5 is raised by the feed mechanism 14 to bring the light projection surface 36 and the light receiving surface 44 into contact with the cleaning member 70. This makes it possible to move the cleaning member 70 to the above-mentioned cleaning position relative to the detection unit 12. Note that the blade detection device 10 may be provided with a dedicated moving means for moving the cleaning member 70 alone between the cleaning position and the retracted position without using the feed mechanism 14 as a moving means. In other words, the above-mentioned moving means can be any moving means that moves the detection unit 12 and the cleaning member 70 relatively between the cleaning position and the retracted position. However, it is preferable to use the feed mechanism 14 as a moving means because it simplifies the device configuration of the blade detection device 10.

次に、投光面36と受光面44に付着した塵を効果的に除去するための洗浄部材70の構成について説明する。 Next, we will explain the configuration of the cleaning member 70 for effectively removing dust adhering to the light-projecting surface 36 and the light-receiving surface 44.

《洗浄部材70の素材について》
洗浄部材70は、弾性変形可能な弾性部材によって形成されていることが好ましく、その一例として、発泡体であるスポンジによって形成されている。
<<Material of the cleaning member 70>>
The cleaning member 70 is preferably made of an elastic material that is elastically deformable, and one example of such a material is a sponge, which is a foam.

《洗浄部材70の形状について》
図7は、洗浄部材70の外観を示した斜視図である。
<<Shape of the cleaning member 70>>
FIG. 7 is a perspective view showing the appearance of the cleaning member 70. As shown in FIG.

図6及び図7に示すように、洗浄部材70は、断面形状が円筒であるロール状に構成されている。この洗浄部材70は、軸心70Aと洗浄面として機能する外周面70Bを有している。なお、洗浄部材70の断面形状は真円であってもよく、例えば、楕円であってもよい。 As shown in Figures 6 and 7, the cleaning member 70 is configured in a roll shape with a cylindrical cross-sectional shape. This cleaning member 70 has an axis 70A and an outer peripheral surface 70B that functions as a cleaning surface. The cross-sectional shape of the cleaning member 70 may be a perfect circle or, for example, an ellipse.

洗浄部材70をロール状に形成することにより、図6の如く、投光面36と受光面44とを洗浄する洗浄液74を、外周面70Bと投光面36との間の隙間(X軸方向から見て断面三角形状の隙間)76、及び外周面70Bと受光面44との間の隙間(X軸方向から見て断面三角形状の隙間)78に効果的に貯めることが可能となる。これにより、投光面36と受光面44の洗浄性を向上させることができる。 By forming the cleaning member 70 into a roll shape, as shown in FIG. 6, the cleaning liquid 74 for cleaning the light-projecting surface 36 and the light-receiving surface 44 can be effectively stored in the gap 76 between the outer peripheral surface 70B and the light-projecting surface 36 (a gap with a triangular cross-section when viewed from the X-axis direction) and in the gap 78 between the outer peripheral surface 70B and the light-receiving surface 44 (a gap with a triangular cross-section when viewed from the X-axis direction). This improves the cleanability of the light-projecting surface 36 and the light-receiving surface 44.

上記の洗浄液74としては、ノズル23、24、24(図3参照)から噴射される切削水や冷却水を兼用することができる。つまり、切削水や冷却水は、ホイールカバー15の内部で飛散し、その飛散した一部の切削水や冷却水が洗浄液74として上記の隙間76、78に貯まるからである。なお、洗浄液74を個別に供給する供給ラインをブレード検出装置10に設けてもよい。但し、切削水や冷却水を洗浄液74として兼用することにより、ブレード検出装置10の装置構成を簡素化できるので好ましい。 The above-mentioned cleaning fluid 74 can be the cutting water or cooling water sprayed from the nozzles 23, 24, 24 (see FIG. 3). That is, the cutting water or cooling water splashes inside the wheel cover 15, and some of the splashed cutting water or cooling water accumulates in the above-mentioned gaps 76, 78 as cleaning fluid 74. A supply line for individually supplying cleaning fluid 74 may be provided in the blade detection device 10. However, it is preferable to use the cutting water or cooling water as cleaning fluid 74, since this simplifies the device configuration of the blade detection device 10.

《洗浄部材70の配置形態について》
図6に示すように、洗浄部材70は、軸心70AがX軸方向に沿うように配置されている。また、図6の実線で示した洗浄位置に洗浄部材70がある場合、洗浄部材70は、Y軸方向において投光面36と受光面44との間の中央位置に配置されている。これにより、投光面36と受光面44とに洗浄部材70の外周面70Bが均一な接触力(押圧力)で接触されるので、投光面36と受光面44の洗浄性を均一にすることができる。なお、洗浄部材70は、長手方向の両端部のうち少なくとも一つの端部をホイールカバー15側に支持させることでホイールカバー15側に固定することができる。この場合、洗浄部材70を回転自在に支持してもよく、回転不能に支持してもよい。
Regarding the arrangement of the cleaning member 70
As shown in Fig. 6, the cleaning member 70 is disposed so that the axis 70A is along the X-axis direction. When the cleaning member 70 is at the cleaning position shown by the solid line in Fig. 6, the cleaning member 70 is disposed at the center position between the light-projecting surface 36 and the light-receiving surface 44 in the Y-axis direction. This allows the outer peripheral surface 70B of the cleaning member 70 to contact the light-projecting surface 36 and the light-receiving surface 44 with a uniform contact force (pressing force), so that the cleaning properties of the light-projecting surface 36 and the light-receiving surface 44 can be made uniform. The cleaning member 70 can be fixed to the wheel cover 15 by supporting at least one of both ends in the longitudinal direction on the wheel cover 15 side. In this case, the cleaning member 70 may be supported rotatably or non-rotatably.

図8は、洗浄部材70の洗浄動作を制御する制御部118の機能ブロック図である。なお、制御部118は、ダイシング装置100全体を統括制御するものであるが、図8では、図面の煩雑さを避けるため、洗浄部材70の洗浄動作を制御する機能部のみ図示している。 Figure 8 is a functional block diagram of the control unit 118 that controls the cleaning operation of the cleaning member 70. Note that the control unit 118 controls the entire dicing device 100, but in order to avoid cluttering the drawing, Figure 8 only illustrates the functional units that control the cleaning operation of the cleaning member 70.

図8に示すように、制御部118は、受光素子38(図4参照)が受光した受光量を検出する受光量検出部62を備えている。また、制御部118は、単位時間当たりの受光量の変化率を算出する算出部66と、受光量検出部62の検出結果や算出部66の算出結果に基づき判定を行う判定部65と、送り機構14のパルスモータ50(図5参照)を駆動制御する駆動制御部64と、を備えている。駆動制御部64は、判定部65による判定結果に基づき、パルスモータ50を駆動制御して検出ユニット12をZ軸に沿って移動させる。 As shown in FIG. 8, the control unit 118 includes a light-receiving amount detection unit 62 that detects the amount of light received by the light-receiving element 38 (see FIG. 4). The control unit 118 also includes a calculation unit 66 that calculates the rate of change in the amount of light received per unit time, a determination unit 65 that makes a determination based on the detection result of the light-receiving amount detection unit 62 and the calculation result of the calculation unit 66, and a drive control unit 64 that drives and controls the pulse motor 50 (see FIG. 5) of the feed mechanism 14. Based on the determination result by the determination unit 65, the drive control unit 64 drives and controls the pulse motor 50 to move the detection unit 12 along the Z axis.

なお、制御部118は、CPU(Central Processing Unit)及びFPGA(field-programmable gate array)等含む1つ又は複数のプロセッサ(processor)と、1つ又は複数のメモリとを備えて構成されている。 The control unit 118 is configured with one or more processors, including a CPU (Central Processing Unit) and an FPGA (field-programmable gate array), and one or more memories.

次に、上記の洗浄部材70を使用したブレード検出装置10の洗浄方法のいくつかの例について説明する。 Next, we will explain some examples of how to clean the blade detection device 10 using the above-mentioned cleaning member 70.

〈第1の洗浄方法〉
第1の洗浄方法は、図8に示した判定部65が、受光量検出部62で検出した「受光量」と、算出部66で算出した単位時間当たりの「受光量の変化率」とに基づき、洗浄が必要であるか否かを判定して行う洗浄方法である。
<First cleaning method>
The first cleaning method is a cleaning method in which the determination unit 65 shown in FIG. 8 determines whether or not cleaning is necessary based on the "amount of received light" detected by the received light amount detection unit 62 and the "rate of change in the amount of received light" per unit time calculated by the calculation unit 66.

すなわち、第1の洗浄方法は、上記の「受光量」だけではなく、上記の「受光量の変化率」を含めて洗浄要否の判断を行うものである。その理由について、図9のグラフを用いて説明する。 In other words, the first cleaning method determines whether or not cleaning is necessary based not only on the "amount of received light" but also on the "rate of change in the amount of received light." The reason for this will be explained using the graph in Figure 9.

図9の矢印IXAで示すグラフは、受光量検出部62で検出される受光量(L)が縦軸に示され、加工時間(t)が横軸に示されており、汚れ判定閾値としての受光量aが示されている。IXAで示すグラフによれば、受光量検出部62(図8参照)で検出される受光量は、投光面36(図7参照)や受光面44に付着する塵や汚れが時間の経過とともに増えていくことから、概ね加工開始直後の初期値から徐々に減少していく傾向にあることが分かる。 The graph indicated by the arrow IXA in FIG. 9 shows the amount of light (L) detected by the light receiving amount detection unit 62 on the vertical axis, the processing time (t) on the horizontal axis, and the amount of light received a as the dirt determination threshold. According to the graph indicated by IXA, it can be seen that the amount of light received detected by the light receiving amount detection unit 62 (see FIG. 8) tends to gradually decrease from the initial value immediately after the start of processing, as dust and dirt adhering to the light-projecting surface 36 (see FIG. 7) and the light-receiving surface 44 increase over time.

ここで、IXAのグラフに示す「受光量」のみで判定部65が洗浄要否を判定した場合、例えば、急激に低下した受光量cであって、汚れ判定閾値(受光量a)未満の受光量cを受光量検出部62が検出すると、判定部65は洗浄要と判定するので、洗浄部材70の洗浄動作が実行される。しかしながら、受光量検出部62による受光量cの検出は一瞬であり、その直後の受光量は受光量a以上となる。このような現象は、例えば、微細な塵が投光面36と受光面44との間の光路を遮ったために発生したものと考えられる。この場合は、汚れではない可能性が高いので洗浄は不要である。 Here, if the determination unit 65 determines whether cleaning is required based only on the "amount of received light" shown in the graph of IXA, for example, when the received light amount detection unit 62 detects a sudden drop in the amount of received light c that is less than the dirt determination threshold (amount of received light a), the determination unit 65 determines that cleaning is required, and the cleaning operation of the cleaning member 70 is performed. However, the detection of the amount of received light c by the received light amount detection unit 62 is instantaneous, and the amount of received light immediately thereafter is equal to or greater than the amount of received light a. This phenomenon is thought to occur, for example, when fine dust blocks the optical path between the light projection surface 36 and the light receiving surface 44. In this case, it is highly likely that this is not dirt, so cleaning is not necessary.

つまり、「受光量」のみで洗浄要否を判定した場合、本来必要のない場合であっても、洗浄部材70の洗浄動作を実行してしまうという問題がある。 In other words, if the need for cleaning is determined based solely on the "amount of received light," there is a problem in that the cleaning operation of the cleaning member 70 will be performed even when it is not actually necessary.

そこで、第1の洗浄方法は、受光量検出部62で検出した「受光量」と、算出部66で算出した「受光量の変化率」とに基づき、判定部65が洗浄要否を判断することで、本来必要とする場合のみ洗浄を行うものである。 In the first cleaning method, the determination unit 65 determines whether cleaning is necessary based on the "amount of received light" detected by the received light amount detection unit 62 and the "rate of change in the amount of received light" calculated by the calculation unit 66, and cleaning is performed only when it is actually necessary.

ここで、図9の矢印IXBで示すグラフには、算出部66で算出される受光量の変化率(dL/dt)が縦軸に示され、加工時間(t)が横軸に示されており、汚れ判定範囲としての変化率範囲bが示されている。 In the graph indicated by the arrow IXB in FIG. 9, the vertical axis shows the rate of change (dL/dt) of the amount of received light calculated by the calculation unit 66, the horizontal axis shows the processing time (t), and the change rate range b is shown as the dirt determination range.

図9のIXBのグラフによれば、受光量検出部62で上記の受光量cを検出したとき(t1)、算出部66で算出される「受光の変化率」は、変化率範囲bの範囲外である変化率eであるので、このとき、判定部65は、上述したように洗浄不要と判定する。そして、判定部65は、受光量検出部62で受光量a未満の「受光量」を検出し、且つ算出部66で変化率範囲bの範囲内の「受光量の変化率」を算出したとき(t2)に洗浄要と判断して洗浄を行う。このように、第1の洗浄方法は、本来必要とする場合のみ洗浄を行うものである。 According to the graph of IXB in FIG. 9, when the received light amount detection unit 62 detects the above-mentioned received light amount c (t1), the "rate of change in received light" calculated by the calculation unit 66 is change rate e, which is outside the change rate range b, so at this time, the judgment unit 65 judges that cleaning is unnecessary as described above. Then, when the received light amount detection unit 62 detects an "amount of received light" less than the received light amount a and the calculation unit 66 calculates a "rate of change in the amount of received light" within the change rate range b (t2), the judgment unit 65 judges that cleaning is necessary and performs cleaning. In this way, the first cleaning method performs cleaning only when it is originally necessary.

以下、第1の洗浄方法について、図9のグラフを参照しながら図10に示すフローチャートを説明する。 The first cleaning method will now be described with reference to the graph in Figure 9 and the flowchart in Figure 10.

図10に示すように、ブレード102による加工を開始すると、受光量検出部62(図8参照)で受光量が検出される(S10:受光量検出工程)。 As shown in FIG. 10, when processing with the blade 102 begins, the amount of received light is detected by the received light amount detection unit 62 (see FIG. 8) (S10: received light amount detection process).

そして、判定部65(図8参照)は、受光量検出部62で検出された受光量が、受光量a未満であるか否かを判定し(S20)、その受光量が受光量a以上の場合には(S20:NO)、洗浄不要と判定してS10に戻る。 Then, the determination unit 65 (see FIG. 8) determines whether the amount of received light detected by the light receiving amount detection unit 62 is less than the amount of received light a (S20), and if the amount of received light is equal to or greater than the amount of received light a (S20: NO), it determines that cleaning is not necessary and returns to S10.

一方、S20において、受光量検出部62で検出された受光量が、受光量a未満の受光量cの場合には(S20:YES)、判定部65は、算出部66で算出された受光量の変化率が、変化率範囲bの範囲内にあるか否かを判定する(S30:算出工程、判定工程)。そして、変化率が変化率範囲bの範囲外の上記の変化率eの場合には(S30:NO、t1)、洗浄不要と判定してS10に戻る(判定工程)。 On the other hand, in S20, if the amount of received light detected by the light receiving amount detection unit 62 is the amount of received light c that is less than the amount of received light a (S20: YES), the determination unit 65 determines whether the rate of change in the amount of received light calculated by the calculation unit 66 is within the range of change rate b (S30: calculation step, determination step). Then, if the rate of change is the above-mentioned rate of change e that is outside the range of change rate b (S30: NO, t1), it is determined that cleaning is not necessary and the process returns to S10 (determination step).

そして、受光量が受光量a未満の場合であって(S20:YES)、変化率が変化率範囲bの範囲内のときに(S30:YES、t2)、判定部65は洗浄要と判定する(判定工程)。判定部65が洗浄要と判定した場合、駆動制御部64(図8参照)が送り機構14を駆動して洗浄部材70を退避位置から洗浄位置に移動させて、洗浄部材70による投光面36と受光面44の洗浄を実行する(S40:移動工程)。以上が第1の洗浄方法である。 If the amount of received light is less than the amount of received light a (S20: YES) and the rate of change is within the rate of change range b (S30: YES, t2), the determination unit 65 determines that cleaning is required (determination step). If the determination unit 65 determines that cleaning is required, the drive control unit 64 (see FIG. 8) drives the feed mechanism 14 to move the cleaning member 70 from the retracted position to the cleaning position, and performs cleaning of the light projection surface 36 and the light receiving surface 44 with the cleaning member 70 (S40: movement step). This completes the first cleaning method.

第1の洗浄方法では、上述したように、受光量検出部62で検出された「受光量」が受光量a未満であり、かつ算出部66で算出された「受光量の変化率」が変化率範囲bの範囲内にある場合に、洗浄部材70を退避位置から洗浄位置に移動させて洗浄動作を実行する。すなわち、受光量a未満であっても、変化率範囲bの範囲内でない場合には、投光面36や受光面44に付着する塵や汚れに起因しない一時的な受光量の変化と考えられるため、洗浄動作は行わない。これにより、第1の洗浄方法によれば、本来洗浄が必要な場合にのみ洗浄を行うことができる。よって、洗浄部材70の摩耗を抑制することができ、また、洗浄時間を短縮することができるので、ダイシング装置100によるワークWの加工効率(スループット)を向上させることができる。 In the first cleaning method, as described above, when the "amount of received light" detected by the light receiving amount detection unit 62 is less than the amount of received light a and the "rate of change in the amount of received light" calculated by the calculation unit 66 is within the range of the rate of change b, the cleaning member 70 is moved from the retracted position to the cleaning position to perform the cleaning operation. In other words, even if the amount of received light is less than a, if it is not within the range of the rate of change b, it is considered to be a temporary change in the amount of received light that is not caused by dust or dirt adhering to the light projection surface 36 or the light receiving surface 44, so the cleaning operation is not performed. As a result, according to the first cleaning method, cleaning can be performed only when cleaning is actually necessary. Therefore, wear of the cleaning member 70 can be suppressed and the cleaning time can be shortened, so that the processing efficiency (throughput) of the workpiece W by the dicing device 100 can be improved.

また、第1の洗浄方法は、受光量検出部62等によるブレード状態検出動作中に洗浄が必要と判断された場合には、ブレード状態検出動作及び加工動作を一時停止させて、送り機構14により洗浄部材70を洗浄位置まで移動させて洗浄することが可能となる。これにより、ブレード状態検出動作及び加工動作を速やかに再開することができ、洗浄動作のためにダイシング装置100の稼働を停止する必要がない。また、上記のように洗浄が必要と判断された場合に洗浄部材70による洗浄を実行するので、塵に起因する誤検出を防止でき、ブレード102の状態を正確に検出することが可能となる。 Furthermore, in the first cleaning method, if cleaning is determined to be necessary during the blade state detection operation by the light receiving amount detection unit 62 or the like, the blade state detection operation and processing operation can be temporarily stopped, and the cleaning member 70 can be moved to the cleaning position by the feed mechanism 14 for cleaning. This allows the blade state detection operation and processing operation to be quickly resumed, and there is no need to stop the operation of the dicing device 100 for the cleaning operation. Furthermore, since cleaning is performed by the cleaning member 70 when it is determined that cleaning is necessary as described above, erroneous detection due to dust can be prevented, and the state of the blade 102 can be accurately detected.

〈第2の洗浄方法〉
第2の洗浄方法は、受光量検出部62で検出された「受光量」に応じて洗浄部材70による洗浄回数を変化させて洗浄動作を行うものである。
<Second cleaning method>
In the second cleaning method, the number of cleaning operations by the cleaning member 70 is changed according to the “amount of received light” detected by the received light amount detection unit 62 .

つまり、「受光量」に関係なく、例えば、洗浄部材70による洗浄回数を等しくした場合、微小な汚れであるにもかかわらず、本来必要としない過剰な洗浄回数で洗浄したり、大きな汚れであるのにもかかわらず、本来必要とする多めの洗浄回数で洗浄されなかったりする問題がある。 In other words, regardless of the "amount of received light," for example, if the number of cleanings using the cleaning member 70 is the same, there is a problem that even if the dirt is very small, it may be cleaned an excessive number of times that is not actually required, or even if the dirt is large, it may not be cleaned an excessive number of times that is actually required.

そこで、第2の洗浄方法は、「受光量」に応じて洗浄部材70による洗浄回数を変化させることで、本来必要とする洗浄回数で洗浄を行うものである。 Therefore, the second cleaning method involves changing the number of cleanings performed by the cleaning member 70 depending on the "amount of received light," thereby performing cleaning the number of times that is originally required.

以下、第2の洗浄方法について、図11に示すグラフを参照しながら図12に示すフローチャートを説明する。 The second cleaning method will now be described with reference to the graph in Figure 11 and the flowchart in Figure 12.

ここで、図11の矢印XIA及びXIBで示すグラフは、受光量検出部62で検出される受光量(%)が縦軸に示され、加工時間(t)が横軸に示されている。また、XIA及びXIBのグラフでは、第1の閾値としての受光量(一例として85%)が設定されていることが示され、第2の閾値としての受光量(一例として80%)が設定されていることが示されている。なお、本例の受光量(%)とは、例えば、ワークWの加工開始直後に受光部28で受光された受光量を100%とした場合における割合を示している。 Here, the graphs indicated by the arrows XIA and XIB in FIG. 11 show the amount of light (%) detected by the light receiving unit 62 on the vertical axis, and the processing time (t) on the horizontal axis. The graphs XIA and XIB also show that the amount of light received (85% as an example) is set as the first threshold, and that the amount of light received (80% as an example) is set as the second threshold. Note that the amount of light received (%) in this example indicates the percentage when, for example, the amount of light received by the light receiving unit 28 immediately after processing of the workpiece W begins is taken as 100%.

図12に示すように、ワークW加工中のダイシング装置100では、ブレード検出装置10を洗浄するか否かの洗浄チェック指令が制御部118(図8参照)から判定部65に定期的に出力される(S200)。洗浄チェック指令を受けた判定部65は、受光量検出部62で検出されている受光量が、第1の閾値である受光量(85%)以上であるか否かを判定し(S210)、その受光量が85%以上の場合には(S210:YES)、正常と判定して洗浄動作を実行せずに、洗浄を終了する(S220:受光量検出工程)。 As shown in FIG. 12, in the dicing device 100 during processing of the workpiece W, a cleaning check command as to whether or not to clean the blade detection device 10 is periodically output from the control unit 118 (see FIG. 8) to the judgment unit 65 (S200). The judgment unit 65 that has received the cleaning check command judges whether or not the amount of received light detected by the received light amount detection unit 62 is equal to or greater than the first threshold amount of received light (85%) (S210), and if the amount of received light is equal to or greater than 85% (S210: YES), it judges it to be normal and ends the cleaning operation without performing the cleaning operation (S220: received light amount detection process).

一方、S210において、受光量検出部62で検出している受光量が85%未満の場合には(S210:NO)、判定部65は、その受光量が第2の閾値である受光量(80%)以上であるか否かを判定する(S230:受光量検出工程)。そして、その受光量が80%以上の場合には(S230:YES)、判定部65は、洗浄が必要であると判定して維持モードを選択する(S240:判定工程)。この維持モードでは、駆動制御部64が送り機構14を駆動制御して投光面36と受光面44とを洗浄部材70で第1の洗浄回数にて洗浄する(移動工程)。 On the other hand, in S210, if the amount of received light detected by the light receiving amount detection unit 62 is less than 85% (S210: NO), the judgment unit 65 judges whether the amount of received light is equal to or greater than the second threshold amount of received light (80%) (S230: light receiving amount detection process). Then, if the amount of received light is equal to or greater than 80% (S230: YES), the judgment unit 65 judges that cleaning is necessary and selects the maintenance mode (S240: judgment process). In this maintenance mode, the drive control unit 64 drives and controls the feed mechanism 14 to clean the light projection surface 36 and the light receiving surface 44 with the cleaning member 70 for the first cleaning number of times (movement process).

ここで、上記の洗浄回数とは、送り機構14による検出ユニット12の往復動作(ストローク)の回数を指しており、維持モードでは例えば1ストロークの動作が実行される。 The number of cleanings mentioned above refers to the number of reciprocating movements (strokes) of the detection unit 12 by the feed mechanism 14, and in the maintenance mode, for example, one stroke operation is performed.

図11のXIAでは、ストローク回数が1回の維持モードを実行した場合の受光量の変化が示されている。このような維持モードが終了すると、判定部65は、図12に示すように、受光量検出部62で検出されている受光量が85%以上であるか否かを判定し(S250)、その受光量が85%以上の場合には(S250:YES)、正常と判定して洗浄部材70による洗浄を終了する(S260)。一方で、維持モード終了後の受光量が85%未満の場合には(S250:NO)、判定部65は、強制洗浄モードを選択する(S270)。この強制洗浄モードでは、例えば、送り機構14による検出ユニット12の往復動作を複数回実行させて投光面36と受光面44を強制的に洗浄する。その後、S210に戻る。なお、上記の強制洗浄モードにおいては、洗浄部材70を軸心70Aを中心に回転させて投光面36と受光面44を強制的に洗浄してもよい。 In FIG. 11, XIA shows the change in the amount of received light when the maintenance mode is executed with one stroke. When the maintenance mode ends, the determination unit 65 determines whether the amount of received light detected by the light-receiving amount detection unit 62 is 85% or more (S250), as shown in FIG. 12, and if the amount of received light is 85% or more (S250: YES), it determines that the operation is normal and ends the cleaning by the cleaning member 70 (S260). On the other hand, if the amount of received light after the maintenance mode ends is less than 85% (S250: NO), the determination unit 65 selects the forced cleaning mode (S270). In this forced cleaning mode, for example, the reciprocating movement of the detection unit 12 by the feed mechanism 14 is executed multiple times to forcibly clean the light-projecting surface 36 and the light-receiving surface 44. Then, the process returns to S210. In the forced cleaning mode, the cleaning member 70 may be rotated around the axis 70A to forcibly clean the light-projecting surface 36 and the light-receiving surface 44.

一方、S230において、受光量検出部62で検出している受光量が80%未満の場合には(S230:NO)、判定部65は、洗浄が必要であると判定して洗浄モードを選択する(S280:判定工程)。この洗浄モードでは、駆動制御部64が送り機構14を駆動制御して投光面36と受光面44とを洗浄部材70で上記の第1の洗浄回数(1ストローク)よりも多い第2の洗浄回数(6ストローク)にて洗浄する(移動工程)。 On the other hand, in S230, if the amount of received light detected by the light receiving amount detection unit 62 is less than 80% (S230: NO), the determination unit 65 determines that cleaning is necessary and selects the cleaning mode (S280: determination step). In this cleaning mode, the drive control unit 64 drives and controls the feed mechanism 14 to clean the light projecting surface 36 and the light receiving surface 44 with the cleaning member 70 a second number of cleaning cycles (6 strokes) that is greater than the first number of cleaning cycles (1 stroke) (movement step).

図11のXIBでは、ストローク回数が6回の洗浄モードを実行した場合の受光量の変化が示されている。このような洗浄モードが終了すると、判定部65は、図12に示すように、受光量検出部62で検出されている受光量が85%以上であるか否かを判定し(S290)、その受光量が85%以上の場合には(S290:YES)、正常と判定して洗浄部材70による洗浄を終了する(S300)。一方で、洗浄モード終了後の受光量が85%未満の場合には(S290:NO)、判定部65は、強制洗浄モードを選択し(S270)、送り機構14による検出ユニット12の往復動作を複数回実行させて投光面36と受光面44を強制的に洗浄する。又は、洗浄部材70を軸心70Aを中心に回転させて投光面36と受光面44を強制的に洗浄する。その後、S210に戻る。以上が第2の洗浄方法である。なお、上記の強制洗浄モードとは、維持モードや洗浄モードでは除去できなかった、比較的酷い汚れを強制的に除去するモードであり、洗浄回数は洗浄モードよりも多い回数(例えば、洗浄モードの洗浄回数の2倍程度)に設定されている。 In FIG. 11, XIB shows the change in the amount of received light when the cleaning mode with six strokes is executed. When such a cleaning mode ends, the determination unit 65 determines whether the amount of received light detected by the light-receiving amount detection unit 62 is 85% or more (S290), as shown in FIG. 12, and if the amount of received light is 85% or more (S290: YES), it determines that the cleaning is normal and ends the cleaning by the cleaning member 70 (S300). On the other hand, if the amount of received light after the cleaning mode ends is less than 85% (S290: NO), the determination unit 65 selects the forced cleaning mode (S270) and executes the reciprocating movement of the detection unit 12 by the feed mechanism 14 multiple times to forcibly clean the light-projecting surface 36 and the light-receiving surface 44. Or, the cleaning member 70 is rotated around the axis 70A to forcibly clean the light-projecting surface 36 and the light-receiving surface 44. Then, the process returns to S210. This is the second cleaning method. The forced cleaning mode is a mode that forcibly removes relatively heavy dirt that could not be removed by the maintenance mode or cleaning mode, and the number of cleanings is set to be more than in the cleaning mode (for example, about twice the number of cleanings in the cleaning mode).

上記の第2の洗浄方法は、受光量検出部62で検出された受光量が第1の閾値(例えば85%)未満であって第2の閾値(例えば80%)以上の場合には、ストローク回数の少ない第1の洗浄回数の分だけ洗浄する。また、受光量が第2の閾値未満の場合には、ストローク回数の多い第2の洗浄回数の分だけ洗浄する。すなわち、第1の閾値以上の場合には洗浄動作は行わず、第1の閾値未満であっても第2の閾値以上の場合には、第1の洗浄回数の分だけ洗浄を行い、第2の閾値未満の場合のみ第2の洗浄回数の分だけ洗浄を行う。このように第2の洗浄方法は、投光面36や受光面44に付着した汚れの度合いに対応した適切な洗浄回数で洗浄動作を実行するので、洗浄部材70の摩耗を抑制することができ、また、洗浄時間を短縮することができるので、ダイシング装置100によるワークWの加工効率(スループット)を向上させることができる。 In the second cleaning method described above, when the amount of received light detected by the light receiving amount detection unit 62 is less than the first threshold (e.g., 85%) and is equal to or greater than the second threshold (e.g., 80%), cleaning is performed for the first cleaning number, which is the smaller number of strokes. Also, when the amount of received light is less than the second threshold, cleaning is performed for the second cleaning number, which is the larger number of strokes. That is, when the amount of received light is equal to or greater than the first threshold, cleaning is performed for the first cleaning number, when the amount of received light is less than the first threshold but is equal to or greater than the second threshold, cleaning is performed for the second cleaning number only when the amount of received light is less than the second threshold. In this way, the second cleaning method performs the cleaning operation with an appropriate number of cleanings corresponding to the degree of dirt attached to the light projecting surface 36 and the light receiving surface 44, so that wear of the cleaning member 70 can be suppressed and the cleaning time can be shortened, thereby improving the processing efficiency (throughput) of the workpiece W by the dicing device 100.

また、第2の洗浄方法は、受光量検出部62等によるブレード状態検出動作中に洗浄が必要と判断された場合には、ブレード状態検出動作及び加工動作を一時停止させて、送り機構14によって洗浄部材70を退避位置と洗浄位置との間で往復移動させて洗浄することが可能となる。これにより、ブレード状態検出動作及び加工動作を速やかに再開することができ、洗浄動作のためにダイシング装置100の稼働を停止する必要がない。また、上記のように洗浄が必要と判断された場合に洗浄部材70による洗浄を実行するので、塵に起因する誤検出を防止でき、ブレード102の状態を正確に検出することが可能となる。 In addition, in the second cleaning method, when cleaning is determined to be necessary during the blade state detection operation by the light receiving amount detection unit 62 or the like, the blade state detection operation and processing operation are temporarily stopped, and the cleaning member 70 is moved back and forth between the retracted position and the cleaning position by the feed mechanism 14 to perform cleaning. This allows the blade state detection operation and processing operation to be quickly resumed, and there is no need to stop the operation of the dicing device 100 for the cleaning operation. In addition, since cleaning is performed by the cleaning member 70 when it is determined that cleaning is necessary as described above, erroneous detection due to dust can be prevented, and the state of the blade 102 can be accurately detected.

なお、上記の第2の洗浄方法では、第1の洗浄回数として1ストロークを例示したが、これに限定されるものではない。但し、第1の洗浄回数を必要以上に増やした場合には、必要以上に洗浄動作を行う場合があるので、上記のように第1の洗浄回数は1ストローク又は2ストローク程度であることが好ましい。また、第2の洗浄回数として6ストロークを例示したが、これに限定されるものではない。但し、第2の洗浄回数を必要以上に少なくした場合には、洗浄性が低下する場合があるので、上記のように第2の洗浄回数は6ストローク又は5ストローク程度であることが好ましい。 In the above second cleaning method, one stroke is exemplified as the first cleaning count, but this is not limited to this. However, if the first cleaning count is increased more than necessary, the cleaning operation may be performed more than necessary, so as described above, it is preferable that the first cleaning count is about one or two strokes. Also, six strokes are exemplified as the second cleaning count, but this is not limited to this. However, if the second cleaning count is decreased more than necessary, the cleaning performance may decrease, so as described above, it is preferable that the second cleaning count is about six or five strokes.

また、第1乃至第2の洗浄方法は、ブレード102をスピンドル106に取り付けた状態で投光面36と受光面44の洗浄を行うことができるので、例えば、洗浄する際にブレード102をスピンドル106から取り外さなければならない洗浄方法と比較して、ダイシング装置100によるワークWの加工効率をより一層向上させることができる。 In addition, the first and second cleaning methods allow cleaning of the light-projecting surface 36 and the light-receiving surface 44 while the blade 102 is attached to the spindle 106, and therefore can further improve the processing efficiency of the workpiece W by the dicing device 100, compared to, for example, a cleaning method in which the blade 102 must be removed from the spindle 106 during cleaning.

以下、洗浄部材70の他の実施形態について説明する。 Other embodiments of the cleaning member 70 are described below.

<第2実施形態の洗浄部材70について>
以下、第2実施形態の洗浄部材70について図13を参照して説明する。なお、図6に示した第1実施形態の洗浄部材70と同一若しくは類似する部分については同一の符号を付して説明する。
<Regarding the cleaning member 70 of the second embodiment>
The cleaning member 70 of the second embodiment will be described below with reference to Fig. 13. Note that parts that are the same as or similar to the cleaning member 70 of the first embodiment shown in Fig. 6 will be described with the same reference numerals.

第1実施形態の洗浄部材70は、ホイールカバー15側に回転可能又は回転不能に固定された形態であるが、図13に示す第2実施形態の洗浄部材70は、軸心70Aを中心にホイールカバー15(図3参照)に回転自在に設けられている。 The cleaning member 70 in the first embodiment is fixed to the wheel cover 15 in a rotatable or non-rotatable manner, whereas the cleaning member 70 in the second embodiment shown in FIG. 13 is rotatably mounted on the wheel cover 15 (see FIG. 3) around the axis 70A.

また、第2実施形態の洗浄部材70では、図13の二点鎖線で示す洗浄位置に洗浄部材70がある場合、洗浄部材70は、Y軸方向において、受光面44よりも投光面36に近い側にオフセットされた位置に配置される。なお、洗浄部材70は、Y軸方向におけるオフセット量を調整自在に構成されていてもよい。 In addition, in the second embodiment of the cleaning member 70, when the cleaning member 70 is located at the cleaning position shown by the two-dot chain line in FIG. 13, the cleaning member 70 is positioned at a position offset in the Y-axis direction closer to the light projection surface 36 than the light receiving surface 44. Note that the cleaning member 70 may be configured so that the amount of offset in the Y-axis direction is freely adjustable.

上記のようにオフセットされた位置に洗浄部材70を配置した場合、洗浄部材70は、投光面36に大きく弾性変形して接触し、受光面44に小さく弾性変形して接触するので、洗浄部材70と投光面36との間の摩擦抵抗が、洗浄部材70と受光面44との間の摩擦抵抗よりも大きく設定される。 When the cleaning member 70 is positioned at an offset position as described above, the cleaning member 70 undergoes large elastic deformation when it comes into contact with the light-projecting surface 36 and small elastic deformation when it comes into contact with the light-receiving surface 44, so that the frictional resistance between the cleaning member 70 and the light-projecting surface 36 is set to be larger than the frictional resistance between the cleaning member 70 and the light-receiving surface 44.

このような第2実施形態の洗浄部材70において、検出ユニット12を送り機構14(図5参照)によって上昇させて、図13の如く、投光面36と受光面44とを洗浄部材70から上方に退避させると、上記の摩擦抵抗の差によって洗浄部材70が軸心70Aを中心に図13の矢印方向に所定角度回転する。 In this second embodiment of the cleaning member 70, when the detection unit 12 is raised by the feed mechanism 14 (see FIG. 5) and the light-projecting surface 36 and the light-receiving surface 44 are retracted upward from the cleaning member 70 as shown in FIG. 13, the difference in frictional resistance causes the cleaning member 70 to rotate a predetermined angle around the axis 70A in the direction of the arrow in FIG. 13.

洗浄部材70の回転によって、洗浄部材70の外周面70Bのうち、先の洗浄では未使用の新たな外周面70Bが投光面36と受光面44とに対向するようになるので、新たな外周面70Bを次の洗浄に利用することができる。これにより、洗浄部材70の外周面70Bの全面を有効利用することができ、また、外周面70Bの偏摩耗を防止することができるので、洗浄部材70の使用寿命を延ばすことができる。なお、洗浄部材70を投光面36よりも受光面44に近い側にオフセットされた位置に配置した場合も同様である。 By rotating the cleaning member 70, the new outer peripheral surface 70B of the cleaning member 70 that was unused in the previous cleaning faces the light-projecting surface 36 and the light-receiving surface 44, so that the new outer peripheral surface 70B can be used for the next cleaning. This allows the entire outer peripheral surface 70B of the cleaning member 70 to be used effectively, and also prevents uneven wear of the outer peripheral surface 70B, thereby extending the service life of the cleaning member 70. The same applies when the cleaning member 70 is positioned offset closer to the light-receiving surface 44 than the light-projecting surface 36.

また、第2実施形態の洗浄部材70では、軸心70Aを中心に洗浄部材70を回転自在に設け、かつ軸心70AをX軸方向に沿って配置した形態について説明したが、これに限定されるものではない。例えば、Y軸方向から見た場合に、軸心70AをX軸方向に対して傾斜させて配置してもよい。この場合、検出ユニット12の昇降動作に伴い洗浄部材70が斜め方向に回転する。これにより、洗浄部材70から投光面36と受光面44とに横方向の擦り力が付与されるので、洗浄力が向上する。 In addition, in the second embodiment of the cleaning member 70, the cleaning member 70 is rotatable about the axis 70A and is arranged along the X-axis direction, but this is not limited to the above. For example, when viewed from the Y-axis direction, the axis 70A may be arranged at an angle to the X-axis direction. In this case, the cleaning member 70 rotates diagonally as the detection unit 12 moves up and down. This applies a lateral rubbing force from the cleaning member 70 to the light-projecting surface 36 and the light-receiving surface 44, improving the cleaning power.

<第3実施形態の洗浄部材70について>
第3実施形態の洗浄部材70は、軸心70Aに沿ってスライド可能にホイールカバー15(図3参照)に設けられている。これにより、洗浄部材70の外周面70Bが洗浄動作によって汚れた場合は、洗浄部材70を軸心70Aに沿ってスライドさせる。これにより、未使用の新たな外周面70Bを洗浄に利用することができるので、洗浄部材70の外周面70Bを有効利用することができ、洗浄部材70の使用寿命を延ばすことができる。
<Regarding the cleaning member 70 of the third embodiment>
The cleaning member 70 of the third embodiment is provided on the wheel cover 15 (see FIG. 3) so as to be slidable along the axis 70A. As a result, when the outer peripheral surface 70B of the cleaning member 70 becomes dirty due to the cleaning operation, the cleaning member 70 is slid along the axis 70A. As a result, the unused new outer peripheral surface 70B can be used for cleaning, so that the outer peripheral surface 70B of the cleaning member 70 can be effectively used and the service life of the cleaning member 70 can be extended.

以上、第1乃至第3実施形態の洗浄部材70について説明したが、この洗浄部材70は既述したように弾性変形可能なスポンジ製なので、投光面36と受光面44の洗浄時に、投光面36及び受光面44に弾性をもって柔らかく接触する。これにより、投光面36及び受光面44の疵付きを防止することができ、かつ投光面36と受光面44に付着した汚れや塵を効果的に除去することができる。この場合、スポンジとしては、天然スポンジ又は合成スポンジを例示することができる。天然スポンジとしては海綿を例示できる。また、合成スポンジとしては、フッ素ゴム又はポリウレタン等の合成樹脂を発泡形成したものを例示できる。その中でもフッ素ゴムを発泡形成したスポンジは、耐久性が高いので好ましい。 The above describes the cleaning member 70 of the first to third embodiments. As described above, the cleaning member 70 is made of an elastically deformable sponge, so that when cleaning the light-projecting surface 36 and the light-receiving surface 44, the cleaning member 70 elastically and softly contacts the light-projecting surface 36 and the light-receiving surface 44. This makes it possible to prevent scratches on the light-projecting surface 36 and the light-receiving surface 44, and to effectively remove dirt and dust adhering to the light-projecting surface 36 and the light-receiving surface 44. In this case, examples of the sponge include natural sponge and synthetic sponge. An example of a natural sponge is sea sponge. Also, examples of a synthetic sponge include foamed synthetic resins such as fluororubber or polyurethane. Among these, sponges foamed with fluororubber are preferred because of their high durability.

また、スポンジとしては、連続気泡構造、半独立気泡構造又は独立気泡構造のスポンジを適用可能である。洗浄部材70が連続気泡構造のスポンジであれば、洗浄部材70の内部に洗浄液74を貯めることができるので保水性が向上する。また、半独立気泡構造のスポンジであれば、保水性が向上し、かつ投光面36及び受光面44に対する形状の追従性が向上する。また、独立気泡構造のスポンジであれば、外周面70Bの凹みに洗浄液74を貯めることができるので保水性が向上する。いずれの形態のスポンジであっても、洗浄性を向上させることができる。 The sponge may have an open cell structure, a semi-closed cell structure, or a closed cell structure. If the cleaning member 70 is a sponge with an open cell structure, the cleaning liquid 74 can be stored inside the cleaning member 70, improving water retention. If the cleaning member 70 is a sponge with a semi-closed cell structure, the water retention is improved and the conformability to the shape of the light-projecting surface 36 and the light-receiving surface 44 is improved. If the sponge has a closed cell structure, the cleaning liquid 74 can be stored in the recesses of the outer peripheral surface 70B, improving water retention. Regardless of the type of sponge, the cleaning ability can be improved.

なお、洗浄部材70は、スポンジ製に限定されず、投光面36と受光面44とに接触した場合に弾性変形可能な弾性部材であれば適用できる。 The cleaning member 70 is not limited to being made of sponge, and can be made of any elastic material that can be elastically deformed when it comes into contact with the light-projecting surface 36 and the light-receiving surface 44.

また、このような弾性部材に限定されるものではなく、例えば、全体がプラスチック等の樹脂によって形成された弾性変形不能な部材であっても洗浄部材70として適用できる。 In addition, the cleaning member 70 is not limited to such elastic members, and may be, for example, a member that is entirely made of resin such as plastic and is not elastically deformable.

また、第1乃至第3実施形態では、ロール状に形成された洗浄部材70について説明したが、洗浄部材の形状はロール状に限定されず、例えば、球状又はブラジ状であってもよい。 In addition, in the first to third embodiments, the cleaning member 70 formed in a roll shape has been described, but the shape of the cleaning member is not limited to a roll shape and may be, for example, spherical or brassy.

また、第1乃至第3実施形態では、1つの洗浄部材70によって投光面36と受光面44とを洗浄する形態を説明したが、投光面専用の洗浄部材と、受光面専用の洗浄部材を設けて投光面36と受光面44とを別々の洗浄部材によって洗浄してもよい。この場合、上記の専用の洗浄部材は、ロール状のものに限定されないが、例えば、それぞれの洗浄部材がロール状に構成されている場合、各々の軸心をX軸方向に沿って配置してもよく、上記のように各々の軸心をX軸方向に対して傾斜させて配置してもよい。 In the first to third embodiments, the light-projecting surface 36 and the light-receiving surface 44 are cleaned by a single cleaning member 70. However, a cleaning member dedicated to the light-projecting surface and a cleaning member dedicated to the light-receiving surface may be provided, and the light-projecting surface 36 and the light-receiving surface 44 may be cleaned by separate cleaning members. In this case, the dedicated cleaning members are not limited to those in a roll shape. For example, when each cleaning member is configured in a roll shape, each axis may be arranged along the X-axis direction, or each axis may be arranged at an angle with respect to the X-axis direction as described above.

更に、本例で説明したブレード検出装置10を、ブレードを自動交換する装置を備えたダイシング装置(例えば、特開2016-168652号公報参照)に搭載することが好ましい。これにより、ブレードの交換時に実施していたオペレータによる手動清掃作業をブレード検出装置10の洗浄部材70によって自動で行うことができる。よって、投光面36と受光面44の清掃作業を含む一連のブレード交換作業を自動化することができる。 Furthermore, it is preferable to mount the blade detection device 10 described in this example on a dicing device equipped with a device for automatically changing blades (see, for example, JP 2016-168652 A). This allows the cleaning member 70 of the blade detection device 10 to automatically perform the manual cleaning work that is performed by an operator when changing blades. Therefore, it is possible to automate a series of blade changing operations, including the cleaning work of the light projection surface 36 and the light receiving surface 44.

以上、本発明の実施形態を説明したが、本発明は実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 Although an embodiment of the present invention has been described above, the present invention is not limited to the embodiment, and various modifications are possible without departing from the spirit of the invention.

10…ブレード検出装置、12…検出ユニット、14…送り機構、15…ホイールカバー、16…カバー前部、18…カバー後部、20…ノズルブロック、21…ホース、22…ホース、23…ノズル、24…ノズル、26…投光部、28…受光部、30…発光素子、32…オプティカルケーブル、34…直角プリズム、36…投光面、38…受光素子、40…オプティカルケーブル、42…直角プリズム、44…受光面、50…パルスモータ、52…出力軸、54…ギヤ、56…ギヤ、56…ギヤ、58…ネジ、60…ナット、62…受光量検出部、64…駆動制御部、66…算出部、70…洗浄部材、72…空間、74…洗浄液、76…隙間、78…隙間、100…ダイシング装置、102…ブレード、106…スピンドル、108…ワークテーブル、110…加工部、112…洗浄部、114…ロードポート、116…搬送装置、118…制御部、120…Xベース、122…Xガイド、124…リニアモータ、126…Xテーブル、128…回転テーブル、130…Yベース、132…Yガイド、134…Yテーブル、136…Zテーブル 10...Blade detection device, 12...Detection unit, 14...Feed mechanism, 15...Wheel cover, 16...Front cover, 18...Rear cover, 20...Nozzle block, 21...Hose, 22...Hose, 23...Nozzle, 24...Nozzle, 26...Light projecting section, 28...Light receiving section, 30...Light emitting element, 32...Optical cable, 34...Right-angle prism, 36...Light projecting surface, 38...Light receiving element, 40...Optical cable, 42...Right-angle prism, 44...Light receiving surface, 50...Pulse motor, 52...Output shaft, 54...Gear, 56...Gear, 56...Gear, 58...Screw, 60...Nut , 62...light receiving amount detection unit, 64...drive control unit, 66...calculation unit, 70...cleaning member, 72...space, 74...cleaning liquid, 76...gap, 78...gap, 100...dicing device, 102...blade, 106...spindle, 108...work table, 110...processing unit, 112...cleaning unit, 114...load port, 116...transport device, 118...control unit, 120...X base, 122...X guide, 124...linear motor, 126...X table, 128...rotary table, 130...Y base, 132...Y guide, 134...Y table, 136...Z table

Claims (13)

ワークの加工時にブレードの状態を検出可能なブレード検出装置であって、
前記ワーク側に開口する空間を有し、前記ブレードを前記開口側から前記空間に収容可能な移動ブロックと、
前記移動ブロックの前記ワーク側の先端に配置された投光面を有する投光部と、前記空間を挟んで前記投光面に対向配置された受光面を有する受光部と、を有し、前記投光面から前記受光面に向けて光を投光する検出ユニットと、
前記投光面と前記受光面とに接触して前記投光面と前記受光面とを洗浄する洗浄部材と、
前記空間において前記投光面及び前記受光面に接触する洗浄位置と前記洗浄位置から前記開口側と反対方向に離間した退避位置との間で、前記検出ユニットと前記洗浄部材とを相対的に移動させる移動手段と、を備える、
ブレード検出装置。
A blade detection device capable of detecting a state of a blade during processing of a workpiece,
a moving block having a space that opens to the workpiece side and capable of housing the blade in the space from the opening side;
a detection unit including a light-projecting section having a light-projecting surface disposed at the tip of the moving block on the work side, and a light-receiving section having a light-receiving surface disposed opposite the light-projecting surface across the space , the detection unit projecting light from the light-projecting surface toward the light-receiving surface;
a cleaning member that comes into contact with the light projecting surface and the light receiving surface to clean the light projecting surface and the light receiving surface;
a moving means for relatively moving the detection unit and the cleaning member between a cleaning position in the space where the cleaning member contacts the light projection surface and the light receiving surface and a retracted position spaced from the cleaning position in a direction opposite to the opening side,
Blade detection device.
前記洗浄部材は、弾性変形可能な弾性部材により形成される、
請求項1に記載のブレード検出装置。
The cleaning member is formed of an elastic member that is elastically deformable.
The blade detection device of claim 1 .
前記洗浄部材は、連続気泡構造、半独立気泡構造又は独立気泡構造のスポンジある、
請求項2に記載のブレード検出装置。
The cleaning member is a sponge having an open cell structure, a semi-closed cell structure, or a closed cell structure.
3. The blade detection device of claim 2.
前記洗浄部材は、前記移動ブロックとの間の隙間に洗浄液を貯めることが可能な軸心を有するロール状に形成される、
請求項1から3のいずれか1項に記載のブレード検出装置。
The cleaning member is formed in a roll shape having an axis capable of storing cleaning liquid in a gap between the cleaning member and the moving block .
A blade detection device according to any one of claims 1 to 3.
前記洗浄部材は、前記軸心を中心に回転自在に設けられ、
前記洗浄部材が前記洗浄位置にある場合、前記洗浄部材は、前記投光面及び前記受光面のいずれか一方よりも他方に近い側にオフセットされた位置に配置される、
請求項4に記載のブレード検出装置。
The cleaning member is provided so as to be rotatable about the axis,
When the cleaning member is in the cleaning position, the cleaning member is disposed at a position offset toward a side closer to either the light projection surface or the light receiving surface than the other.
5. The blade detection device of claim 4.
前記洗浄部材は、前記軸心に沿ってスライド可能に配置される、
請求項4又は5に記載のブレード検出装置。
The cleaning member is disposed slidably along the axis.
A blade detection device according to claim 4 or 5.
前記検出ユニットを前記ブレードの回転中心に向けて駆動する送り手段を有し、
前記送り手段は、前記移動手段として兼用される、
請求項1から6のいずれか1項に記載のブレード検出装置。
a feed means for driving the detection unit toward the rotation center of the blade;
The feeding means is also used as the moving means.
A blade detection device according to any one of claims 1 to 6.
前記受光部が受光した受光量を検出する受光量検出部と、
単位時間当たりの前記受光量の変化率を算出する算出部と、
前記受光量と前記変化率とに基づき、前記投光面及び前記受光面の洗浄が必要であるか否かを判定する判定部と、
前記判定部が前記洗浄が必要であると判定した場合に、前記移動手段を駆動して前記洗浄部材を前記退避位置から前記洗浄位置に相対的に移動させる駆動制御部と、を有する、
請求項1から7のいずれか1項に記載のブレード検出装置。
a light receiving amount detection unit that detects an amount of light received by the light receiving unit;
A calculation unit that calculates a rate of change of the amount of received light per unit time;
a determination unit that determines whether or not cleaning of the light projection surface and the light receiving surface is necessary based on the amount of received light and the rate of change;
a drive control unit that drives the moving means to relatively move the cleaning member from the retracted position to the cleaning position when the determination unit determines that the cleaning is necessary,
A blade detection device according to any one of claims 1 to 7.
前記受光部が受光した受光量を検出する受光量検出部と、
前記受光量に基づき、前記投光面及び前記受光面の洗浄が必要であるか否かを判定する判定部と、
前記判定部が洗浄が必要であると判定した場合に、前記受光量に応じた洗浄回数の分だけ前記移動手段を駆動して前記洗浄部材を前記退避位置と前記洗浄位置との間で相対的に往復移動させる駆動制御部と、を有する、
請求項1から7のいずれか1項に記載のブレード検出装置。
a light receiving amount detection unit that detects an amount of light received by the light receiving unit;
a determination unit that determines whether or not cleaning of the light projection surface and the light receiving surface is required based on the amount of received light;
a drive control unit that drives the moving means to relatively move the cleaning member back and forth between the retracted position and the cleaning position by a number of cleaning times corresponding to the amount of received light when the determination unit determines that cleaning is necessary,
A blade detection device according to any one of claims 1 to 7.
前記判定部は、洗浄後に前記受光量が閾値以上であると判定した場合、前記検出ユニットで正常に検出可能であると判定する、請求項9に記載のブレード検出装置。The blade detection device according to claim 9 , wherein the determination section determines that the detection unit is capable of normal detection when determining that the amount of received light is equal to or greater than a threshold value after cleaning. ブレードを挟んで対向配置された投光面と受光面とを有し、前記投光面から投光されて前記受光面を介して受光した受光量に基づき前記ブレードの状態を検出するブレード検出装置の前記投光面と前記受光面とを洗浄する洗浄方法において、
前記受光量を検出する受光量検出工程と、
単位時間当たりの前記受光量の変化率を算出する算出工程と、
前記受光量と前記変化率とに基づき、前記投光面及び前記受光面の洗浄が必要であるか
否かを判定する判定工程と、
前記投光面と前記受光面とから離間した退避位置から、前記投光面と前記受光面とに接触する洗浄位置に洗浄部材を相対的に移動させる移動工程と、を有し、
前記移動工程は、前記判定工程が前記洗浄が必要であると判定した場合に実行される、
ブレード検出装置の洗浄方法。
A cleaning method for cleaning a blade detection device having a light-projecting surface and a light-receiving surface disposed opposite each other with a blade therebetween, the blade detection device detecting a state of the blade based on an amount of light projected from the light-projecting surface and received via the light-receiving surface, comprising:
a light receiving amount detection step of detecting the amount of light received;
a calculation step of calculating a rate of change of the amount of received light per unit time;
a determination step of determining whether or not cleaning of the light projection surface and the light receiving surface is necessary based on the amount of received light and the rate of change;
a moving step of relatively moving a cleaning member from a retreated position separated from the light projection surface and the light receiving surface to a cleaning position in which the cleaning member contacts the light projection surface and the light receiving surface,
The moving step is performed when the determining step determines that the cleaning is necessary.
A method for cleaning a blade detection device.
ブレードを挟んで対向配置された投光面と受光面とを有し、前記投光面から投光されて前記受光面を介して受光した受光量に基づき前記ブレードの状態を検出するブレード検出装置の前記投光面と前記受光面とを洗浄する洗浄方法において、
前記受光量を検出する受光量検出工程と、
前記受光量に基づき、前記投光面及び前記受光面の洗浄が必要であるか否かを判定する判定工程と、
前記投光面と前記受光面とから離間した退避位置と、前記投光面と前記受光面とに接触する洗浄位置との間で洗浄部材を相対的に往復移動させる移動工程と、を有し、
前記移動工程は、前記判定工程が洗浄が必要であると判定した場合に、前記受光量に応じた洗浄回数の分だけ実行される、
ブレード検出装置の洗浄方法。
A cleaning method for cleaning a blade detection device having a light-projecting surface and a light-receiving surface disposed opposite each other with a blade therebetween, the blade detection device detecting a state of the blade based on an amount of light projected from the light-projecting surface and received via the light-receiving surface, comprising:
a light receiving amount detection step of detecting the amount of light received;
a determination step of determining whether or not cleaning of the light projection surface and the light receiving surface is necessary based on the amount of received light;
a moving step of relatively reciprocatingly moving a cleaning member between a retracted position spaced apart from the light projection surface and the light receiving surface and a cleaning position in contact with the light projection surface and the light receiving surface,
the moving step is performed a number of times for cleaning corresponding to the amount of received light when the determining step determines that cleaning is necessary.
A method for cleaning a blade detection device.
ブレードの側面に対し離間して配置された投光面を有する投光部と、前記ブレードを挟んで前記投光面に対向配置された受光面を有する受光部と、を有し、前記投光面から前記受光面に向けて光を投光する検出ユニットと、a detection unit including a light-projecting section having a light-projecting surface disposed at a distance from a side surface of the blade, and a light-receiving section having a light-receiving surface disposed opposite the light-projecting surface across the blade, the detection unit projecting light from the light-projecting surface toward the light-receiving surface;
前記投光面と前記受光面とに接触して前記投光面と前記受光面とを洗浄する洗浄部材と、a cleaning member that comes into contact with the light projecting surface and the light receiving surface to clean the light projecting surface and the light receiving surface;
前記洗浄部材が前記投光面と前記受光面とから離間した退避位置と、前記洗浄部材が前記投光面と前記受光面とに接触する洗浄位置との間で、前記検出ユニットと前記洗浄部材とを相対的に移動させる移動手段と、を備え、a moving means for relatively moving the detection unit and the cleaning member between a retracted position where the cleaning member is separated from the light projection surface and the light receiving surface and a cleaning position where the cleaning member is in contact with the light projection surface and the light receiving surface,
前記洗浄部材は、軸心を有するロール状に形成され、前記軸心を中心に回転自在に設けられ、前記洗浄位置にある場合に前記投光面及び前記受光面のいずれか一方よりも他方に近い側にオフセットされた位置に配置される、ブレード検出装置。A blade detection device in which the cleaning member is formed in a roll shape having an axis, is freely rotatable around the axis, and is positioned at a position offset to one side closer to the other of the light projecting surface and the light receiving surface when in the cleaning position.
JP2020103172A 2020-06-15 2020-06-15 Blade detection device and method for cleaning the blade detection device Active JP7521173B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020103172A JP7521173B2 (en) 2020-06-15 2020-06-15 Blade detection device and method for cleaning the blade detection device
JP2024108639A JP2024128020A (en) 2020-06-15 2024-07-05 Blade Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103172A JP7521173B2 (en) 2020-06-15 2020-06-15 Blade detection device and method for cleaning the blade detection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024108639A Division JP2024128020A (en) 2020-06-15 2024-07-05 Blade Detector

Publications (2)

Publication Number Publication Date
JP2021194739A JP2021194739A (en) 2021-12-27
JP7521173B2 true JP7521173B2 (en) 2024-07-24

Family

ID=79196950

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020103172A Active JP7521173B2 (en) 2020-06-15 2020-06-15 Blade detection device and method for cleaning the blade detection device
JP2024108639A Pending JP2024128020A (en) 2020-06-15 2024-07-05 Blade Detector

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024108639A Pending JP2024128020A (en) 2020-06-15 2024-07-05 Blade Detector

Country Status (1)

Country Link
JP (2) JP7521173B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298001A (en) 2000-04-12 2001-10-26 Disco Abrasive Syst Ltd Cutting blade detecting mechanism for cutting device
JP2014108463A (en) 2012-11-30 2014-06-12 Disco Abrasive Syst Ltd Cutting device
JP2018043309A (en) 2016-09-13 2018-03-22 株式会社ディスコ Cutting apparatus
JP2018196920A (en) 2017-05-24 2018-12-13 株式会社ディスコ Cutting device
JP2019119001A (en) 2018-01-05 2019-07-22 株式会社ディスコ Cutting apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298001A (en) 2000-04-12 2001-10-26 Disco Abrasive Syst Ltd Cutting blade detecting mechanism for cutting device
JP2014108463A (en) 2012-11-30 2014-06-12 Disco Abrasive Syst Ltd Cutting device
JP2018043309A (en) 2016-09-13 2018-03-22 株式会社ディスコ Cutting apparatus
JP2018196920A (en) 2017-05-24 2018-12-13 株式会社ディスコ Cutting device
JP2019119001A (en) 2018-01-05 2019-07-22 株式会社ディスコ Cutting apparatus

Also Published As

Publication number Publication date
JP2024128020A (en) 2024-09-20
JP2021194739A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
KR101624465B1 (en) Polishing apparatus and polishing method
US7884929B2 (en) Blade breakage and abrasion detecting device
JP5722065B2 (en) Polishing equipment
US20190047116A1 (en) Processing apparatus
JP6736367B2 (en) Spindle unit
JP7521173B2 (en) Blade detection device and method for cleaning the blade detection device
KR20150130914A (en) Grinding apparatus
TW201919816A (en) Dressing device and dressing method for substrate back surface polishing member
JP2018113393A (en) Wafer cleaning device
JP2019115961A (en) Cutting device
US20170341254A1 (en) Cutting apparatus
JP2010114251A (en) Cutting device
JP2011110631A (en) Cutting device
JP5618508B2 (en) Wafer polisher
JP2000153517A (en) Wire saw
JP2017127910A (en) Cutting device
JP2015044250A (en) Polishing method
JP2011062778A (en) Cutting device
US20210039213A1 (en) Spindle unit
JP6908474B2 (en) Wafer cleaning device
JP6808292B2 (en) Diagnosis method of processing equipment
JP2018012149A (en) Spindle unit
JP7105093B2 (en) cutting equipment
JP7433709B2 (en) Cleaning equipment and cleaning method
KR20180103768A (en) Cutting blade, mount flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240623

R150 Certificate of patent or registration of utility model

Ref document number: 7521173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150