[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7521063B1 - Haptic feedback for 3D models using quantum random numbers - Google Patents

Haptic feedback for 3D models using quantum random numbers Download PDF

Info

Publication number
JP7521063B1
JP7521063B1 JP2023080247A JP2023080247A JP7521063B1 JP 7521063 B1 JP7521063 B1 JP 7521063B1 JP 2023080247 A JP2023080247 A JP 2023080247A JP 2023080247 A JP2023080247 A JP 2023080247A JP 7521063 B1 JP7521063 B1 JP 7521063B1
Authority
JP
Japan
Prior art keywords
sense
model
touch
random number
random numbers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023080247A
Other languages
Japanese (ja)
Inventor
芳明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2023080247A priority Critical patent/JP7521063B1/en
Application granted granted Critical
Publication of JP7521063B1 publication Critical patent/JP7521063B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

【課題】ポリゴンやボクセルによって触覚の凹凸を再現しようとする場合、コンピュータ処理負荷と通信回線負荷の増大に繋がる。3Dモデルのデータ量を小さく抑えることでコンピュータ処理負荷と通信回線負荷の増大は抑えられるが、ポリゴン数やボクセル数の少ない3Dモデルでは触覚の凹凸を得られにくくなる。疑似乱数を用いて触覚の凹凸を再現する方法も考えられるが、多くの3Dモデルを内包するバーチャル空間内においては関数計算が複雑化し、コンピュータ処理負荷が極めて増大するトラブルなどが予想される。【解決手段】触覚再現用の固有の乱数情報を3Dモデルのデータに格納しておく。コンピュータは量子乱数生成器から生成される量子乱数を3Dモデルのデータに格納されている触覚再現用の固有の乱数情報に従い触覚フィードバックの値に利用する。触覚再現用の固有の乱数情報に従い量子乱数をあてはめ、触覚を再現する。【選択図】 なし[Problem] When trying to reproduce the unevenness of the sense of touch using polygons or voxels, it leads to an increase in the computer processing load and the communication line load. The increase in the computer processing load and the communication line load can be suppressed by keeping the data volume of the 3D model small, but it is difficult to obtain the unevenness of the sense of touch with a 3D model with a small number of polygons or voxels. A method of reproducing the unevenness of the sense of touch using pseudo-random numbers is also conceivable, but in a virtual space containing many 3D models, functional calculations become complicated, and problems such as an extremely large increase in the computer processing load are expected. [Solution] Unique random number information for reproducing the sense of touch is stored in the data of the 3D model. The computer uses quantum random numbers generated by a quantum random number generator as the value of the tactile feedback in accordance with the unique random number information for reproducing the sense of touch stored in the data of the 3D model. The quantum random numbers are applied in accordance with the unique random number information for reproducing the sense of touch to reproduce the sense of touch. [Selected image] None

Description

3Dモデルにおける触覚の再現方法として、多数のポリゴンやボクセルによって作られた凹凸形状の座標情報などを読み取ることにより3Dモデルにおける形状の触覚を再現するという方法がある。 One method for reproducing the sense of touch in a 3D model is to reproduce the sense of touch of the shape in the 3D model by reading the coordinate information of the uneven shape created by a large number of polygons or voxels.

発明の詳細な説明Detailed Description of the Invention

表面素材感を表現するポリゴンやボクセルによっての凹凸形状の値を読み取る方法にて3Dモデルにおける表面素材感を感じさせる触覚の凹凸を再現しようとする場合、複雑で微細な凹凸形状を表現するためにポリゴンやボクセルは多く必要となるため、個々の3Dモデルのデータ量は大きくなり、コンピュータの処理負荷は増大するうえ、通信回線における回線負荷の増大にも繋がる、という問題がある。
コンピュータへの処理負荷の増大、通信回線における回線負荷の増大を抑える方法のひとつは個々の3Dモデルのデータ量をなるべく小さく抑えることだが、例えば表面素材感を陰影表現などで疑似的凹凸表現に処理したポリゴン数やボクセル数の少ない3Dモデルにおいては、3Dモデルにおける表面素材感を感じさせる触覚の凹凸を表現するポリゴンやボクセルが無い又は極端に少ないために、3Dモデルにおける表面素材感を感じさせる触覚の凹凸の再現を得られにくいという問題がある。
3Dモデルにおける表面素材感を感じさせる触覚の凹凸をポリゴンやボクセルによって再現しようとせず、関数計算で得られる疑似乱数を用いての、3Dモデルにおける表面素材感を感じさせる触覚の凹凸を再現する方法も考えられるが、例えばメタバース型の遊園地やアパレル店舗など、多くの3Dモデルを内包するバーチャル空間内で連続的かつ異なる3Dモデルに同時に触れる場合などにおいては関数計算が複雑化し、コンピュータの処理負荷が極めて増大する瞬間が多発するトラブルなどが予想される。

発明の実施形態を説明する。
3Dモデルにおける表面素材感を感じさせる触覚の凹凸の高さの値となる乱数の範囲を指定した触覚再現用の固有の乱数情報を、3Dモデルのデータに格納しておく。又、その形態については、3Dモデルにおけるテクスチャー部位ごとに指定するなどで触覚再現用の固有の乱数情報を格納する形態なども考えられる。
コンピュータは、コンピュータに備えられている又はネットワーク上にある量子乱数生成器から生成される量子乱数を受け取り、その量子乱数を、3Dモデルのデータに格納されている触覚再現用の固有の乱数情報に従い、触覚再現デバイスを通して3Dモデルを触れたときの触覚フィードバックの値に利用する。
ユーザーが触覚再現デバイスを通して3Dモデルに触れると、コンピュータは3Dモデルのデータに格納されている触覚再現用の固有の乱数情報に従い、ユーザーが触覚再現デバイスを通して触れている3Dモデル上の座標における触覚としての表面凹凸の高さの値に量子乱数をあてはめ、触覚再現動作用に符号化した信号を触覚再現デバイス側に送信する。ユーザーは触覚再現デバイスを通して、触れた3Dモデルにおける表面素材感を感じさせる触覚の凹凸を感じることができる。
触覚再現動作用に符号化する量子乱数のあてはめについては、例えば、値が大きければ触覚としての表面凹凸における凸の高さを大きく、値が小さければ凸の高さを小さく、などとする方法が考えられ、又、触覚再現用の固有の乱数情報においては、乱数の範囲を広くすれば3Dモデルにおける表面素材感を感じさせる触覚の凹凸の高低差が大きくなり荒い表面素材感となり、乱数の範囲を狭くすれば3Dモデルにおける表面素材感を感じさせる触覚の凹凸の高低差は小さくなり滑らかな表面素材感となる、というような量子乱数のあてはめ形態が考えられる。

本実施形態によれば、3Dモデルにおける表面素材感を感じさせる触覚の凹凸の触覚を再現するにあたり、関数設計が複雑化しやすい疑似乱数ではなく量子乱数生成器から得られる量子乱数をあてはめる方法により、複雑な関数設計がなくとも確実な不規則性の乱数の値を得ることができ、さらに、ポリゴンやボクセルによって高解像で詳細な表面凹凸を表現せずとも、ポリゴン数やボクセル数の少ない3Dモデルであっても触覚における微細な表面凹凸の表現が可能になるため、表面凹凸の表現が低解像でデータ量の少ない3Dモデルであっても、触覚においては表面素材感の詳細な表面凹凸を感じられる3Dモデルが実現できる。これらにより、コンピュータの処理負荷の低減を図りやすくなり、3Dモデルにおけるデータ量の増大を抑えることにもなるため通信回線における回線負荷の低減も図りやすくなる、という効果が得られる。
When attempting to reproduce the tactile unevenness of a 3D model that gives the impression of a surface material by reading the values of the unevenness shape using polygons or voxels that represent the surface material texture, a large number of polygons or voxels are required to represent the complex and fine unevenness shape, which results in a large amount of data for each 3D model, increasing the processing load on the computer and also leading to an increase in the line load on communication lines.
One method of preventing an increase in the processing load on computers and an increase in the line load on communication lines is to keep the amount of data for each 3D model as small as possible. However, for example, in a 3D model with a small number of polygons or voxels in which the surface texture has been processed to create a pseudo-roughness representation using shading or the like, there is a problem that it is difficult to reproduce the tactile unevenness that gives a sense of the surface material of the 3D model, because there are no or extremely few polygons or voxels that express the tactile unevenness that gives a sense of the surface material of the 3D model.
One possible method is to use pseudo-random numbers obtained by functional calculations to reproduce the tactile unevenness that gives a sense of the surface texture of a 3D model, rather than using polygons or voxels. However, in cases where consecutive and different 3D models are touched simultaneously within a virtual space that contains many 3D models, such as a metaverse-type amusement park or apparel store, the functional calculations become complex, and frequent problems can be expected in which the computer's processing load increases dramatically.

An embodiment of the invention will now be described.
Unique random number information for tactile reproduction, which specifies a range of random numbers that will be the height of the unevenness of the tactile sensation that gives the feeling of the surface material of the 3D model, is stored in the data of the 3D model. As for the form, a form in which unique random number information for tactile reproduction is stored by specifying it for each texture part in the 3D model, etc. is also conceivable.
The computer receives quantum random numbers generated from a quantum random number generator installed in the computer or on a network, and uses the quantum random numbers as the value of tactile feedback when the 3D model is touched through a tactile reproduction device, in accordance with unique random number information for tactile reproduction stored in the 3D model data.
When a user touches a 3D model through the haptic reproduction device, the computer assigns a quantum random number to the height of the surface irregularities as a tactile sensation at the coordinates on the 3D model that the user is touching through the haptic reproduction device, according to the unique random number information for haptic reproduction stored in the data of the 3D model, and transmits a signal coded for haptic reproduction operation to the haptic reproduction device. Through the haptic reproduction device, the user can feel the haptic irregularities that give a sense of the surface texture of the 3D model that he or she touches.
Regarding the fitting of quantum random numbers to be encoded for tactile reproduction operations, for example, a method can be considered in which the height of the protrusions in the surface unevenness as a tactile sensation is made larger if the value is larger, and the height of the protrusions is made smaller if the value is smaller.Furthermore, with regard to the unique random number information for tactile reproduction, if the range of random numbers is widened, the difference in height of the tactile unevenness that gives the impression of the surface material of the 3D model will become larger, resulting in a rough surface material feel, and if the range of random numbers is narrowed, the difference in height of the tactile unevenness that gives the impression of the surface material of the 3D model will become smaller, resulting in a smooth surface material feel.

According to this embodiment, in reproducing the tactile sensation of the unevenness of the surface texture of a 3D model, a method of applying quantum random numbers obtained from a quantum random number generator instead of pseudorandom numbers, which tend to complicate function design, makes it possible to obtain reliably irregular random number values without complex function design, and furthermore, even without expressing detailed surface unevenness at high resolution using polygons or voxels, it is possible to express fine surface unevenness in the tactile sensation even with a 3D model with a small number of polygons or voxels, so that a 3D model in which the surface unevenness is expressed at low resolution and with a small amount of data can be realized in which the detailed surface unevenness of the surface texture can be felt in the tactile sensation. As a result, it is easier to reduce the processing load of the computer, and the increase in the amount of data in the 3D model is suppressed, which makes it easier to reduce the line load on the communication line.

Claims (1)

量子乱数生成器から生成された量子乱数を、3Dモデルのデータに格納された触覚再現用の固有の乱数情報をもとに、3Dモデルにおける触覚としての表面素材感を感じさせる表面凹凸の高さの値にあてはめて触覚を再現する、触覚フィードバック方法。 A tactile feedback method that reproduces tactile sensations by applying quantum random numbers generated by a quantum random number generator to the height values of surface irregularities that give the impression of the surface material of a 3D model, based on unique random number information for tactile reproduction stored in the 3D model data.
JP2023080247A 2023-05-15 2023-05-15 Haptic feedback for 3D models using quantum random numbers Active JP7521063B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023080247A JP7521063B1 (en) 2023-05-15 2023-05-15 Haptic feedback for 3D models using quantum random numbers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023080247A JP7521063B1 (en) 2023-05-15 2023-05-15 Haptic feedback for 3D models using quantum random numbers

Publications (1)

Publication Number Publication Date
JP7521063B1 true JP7521063B1 (en) 2024-07-23

Family

ID=91954388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023080247A Active JP7521063B1 (en) 2023-05-15 2023-05-15 Haptic feedback for 3D models using quantum random numbers

Country Status (1)

Country Link
JP (1) JP7521063B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047567A (en) 1998-07-24 2000-02-18 Dainippon Printing Co Ltd Tactile sense simulation device for object
JP2014112357A (en) 2012-10-31 2014-06-19 Immersion Corp Method and apparatus for simulating surface features on user interface with haptic effects
JP2018005274A (en) 2016-06-27 2018-01-11 ソニー株式会社 Information processing device, information processing method, and program
WO2021025087A1 (en) 2019-08-05 2021-02-11 学校法人慶應義塾 Position/force controller, and position/force control method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047567A (en) 1998-07-24 2000-02-18 Dainippon Printing Co Ltd Tactile sense simulation device for object
JP2014112357A (en) 2012-10-31 2014-06-19 Immersion Corp Method and apparatus for simulating surface features on user interface with haptic effects
JP2018005274A (en) 2016-06-27 2018-01-11 ソニー株式会社 Information processing device, information processing method, and program
WO2021025087A1 (en) 2019-08-05 2021-02-11 学校法人慶應義塾 Position/force controller, and position/force control method and program

Similar Documents

Publication Publication Date Title
JP6840702B2 (en) Friction Modulation for 3D Relief in Tactile Devices
Kim et al. Tactile rendering of 3D features on touch surfaces
Casiez et al. Surfpad: riding towards targets on a squeeze film effect
US6552722B1 (en) Systems and methods for sculpting virtual objects in a haptic virtual reality environment
JP2016524489A (en) Mobile device game interface
CN105580063A (en) Method and device for controlling haptic device
JP7521063B1 (en) Haptic feedback for 3D models using quantum random numbers
KR20110051044A (en) Method and apparatus for providing users with haptic information on a 3-d object
JP3722994B2 (en) Object contact feeling simulation device
CN115375813A (en) Rendering method and device of virtual model, storage medium and electronic device
Beven et al. HandLog: a deformable tangible device for continuous input through finger flexion
CN107526441A (en) 3D virtual interacting methods and system
US10960301B2 (en) Rendering method
CN115375797A (en) Layer processing method and device, storage medium and electronic device
US11099708B2 (en) Patterns for locations on three-dimensional objects
CN115131489A (en) Cloud layer rendering method and device, storage medium and electronic device
Kurzweg et al. Increasing Realism of Displayed Vibrating AR Objects through Edge Blurring
Vandenberghe et al. Sailing Skweezee: An Exploration of Squeeze Interaction in VR
De Souza e Silva From simulations to hybrid space: How nomadic technologies change the real
Danese Soft machine
Lindeman Virtual contact: the continuum from purely visual to purely physical
Sterling et al. Integrated multimodal interaction using normal maps
EP3495922A1 (en) A method and device for generating pseudo-haptic effect
Kamuro et al. Haptic editor
Kamuro et al. Haptic editor: Creation and editing system for touchable 3D content

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

R150 Certificate of patent or registration of utility model

Ref document number: 7521063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150