JP7517168B2 - Fault detection device and fault detection method for three-phase current detection unit - Google Patents
Fault detection device and fault detection method for three-phase current detection unit Download PDFInfo
- Publication number
- JP7517168B2 JP7517168B2 JP2021008381A JP2021008381A JP7517168B2 JP 7517168 B2 JP7517168 B2 JP 7517168B2 JP 2021008381 A JP2021008381 A JP 2021008381A JP 2021008381 A JP2021008381 A JP 2021008381A JP 7517168 B2 JP7517168 B2 JP 7517168B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- phase
- zero
- detection unit
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 108
- 230000005856 abnormality Effects 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 2
Images
Landscapes
- Control Of Electric Motors In General (AREA)
Description
本発明は、インバータによって駆動される3相交流モータ、例えば車載用モータ制御の3相電流検出部の故障検出に関する。 The present invention relates to fault detection in a three-phase current detection unit of a three-phase AC motor driven by an inverter, for example, an in-vehicle motor control.
3相交流モータをインバータによってドライブする従来の構成例を図2に示す。図2は特許文献1の図1に記載されたモータ制御装置であり、モータの電流制御用として3相電流を検出し、モータの回転数制御用として回転数ωを検出し、インバータ内のスイッチング素子のオン、オフ動作によってモータに流れる電流を制御することによって、モータの回転数やトルクを制御している。
Figure 2 shows a conventional example of a configuration in which a three-phase AC motor is driven by an inverter. Figure 2 shows the motor control device shown in Figure 1 of
図2において、50はモータ制御装置であり、インバータ50aと制御部50bとを有している。モータ制御装置50の直流側には蓄電池51が接続され、交流側にはモータ52(例えば、PMモータ(Permenent Magnet Motor))が接続されている。
In FIG. 2, 50 is a motor control device, which has an
また、インバータ50aの直流母線には直流電圧検出値を検出する直流電圧検出センサ53、インバータ50aの交流母線のU相、V相、W相には交流電流検出値(Iu,Iv,Iw)を検出する交流電流検出センサ54a,54b,54c、モータ52にはモータ52の回転数検出値(ω)を検出する磁極位置センサ55(例えばレゾルバ)が設けられている。
The DC busbar of the
制御部50bは、装置外部から回転数指令値、直流電圧検出センサ53から直流電圧検出値、交流電流検出センサ54a,54b,54cから交流電流検出値、磁極位置センサ55から回転数検出値を各々入力する。
The
制御部50bは、これら回転数指令値と各種センサ(直流電圧検出センサ53と交流電流検出センサ54a,54b,54cと磁極位置センサ55)からの検出値に基づいたベクトル制御によって所望の電圧指令値を図示しないゲート駆動回路に出力している。
The
ゲート駆動回路では、入力した電圧指令値に基づいたゲート信号をインバータ50aに出力してスイッチング素子(例えばIGBT)をオン、オフ制御する。
The gate drive circuit outputs a gate signal based on the input voltage command value to the
そして、モータ制御装置50は、スイッチング素子を有するインバータ50aにより、蓄電池51の直流電圧を所望の交流電圧に変換しモータ52に出力することでモータ制御を行っている。
The
図2のような3相交流モータの電流制御部(50b)において、電流検出器の異常による3相電流検出値の実電流との乖離を見抜く(検出する)ために、従来、3相電流の総和値を監視し故障の検出を行う故障検出方法が実施されていた。 In the current control unit (50b) of a three-phase AC motor as shown in FIG. 2, in order to detect deviations between the three-phase current detection values and the actual currents due to an abnormality in the current detector, a fault detection method has been implemented that monitors the total sum of the three-phase currents and detects faults.
この故障検出方法は、3相電流の総和値が0から乖離する時間が一定時間継続したら故障であると検出するものであるが、1相(例えばU相)の検出ゲインのみがずれている場合、3相電流Iu,Iv,Iwと総和値の電流波形を示す図3のように、故障相(U相電流Iu)のゼロクロス付近では3相電流検出の総和値(図示「I総和」)が0に近くなってしまうため、「総和値が0からの乖離を一定時間継続で故障検出」とするゼロクロス付近で時間がリセットされ故障検出が不可能となる。 This fault detection method detects a fault when the sum of the three-phase currents continues to deviate from zero for a certain period of time. However, if the detection gain of only one phase (for example, U phase) is off, as shown in Figure 3, which shows the current waveforms of the three-phase currents Iu, Iv, and Iw and the sum, the sum of the three-phase current detections (shown as "I sum") will be close to zero near the zero crossing of the faulty phase (U phase current Iu), and the time will be reset near the zero crossing where "a fault is detected when the sum continues to deviate from zero for a certain period of time", making fault detection impossible.
そのため、この故障検出方法でゲインのずれを見抜くためには累積時間での故障検出を行う必要があり、電流リプルで誤検出しないために閾値を上げる必要があり精度が低下する、累積時間での検出のため故障発生から検出まで時間がかかってしまう、等の問題があった。 Therefore, in order to detect gain deviations with this fault detection method, fault detection must be performed over cumulative time, which poses problems such as the need to raise the threshold to avoid false detection due to current ripple, resulting in reduced accuracy, and the fact that detection is performed over cumulative time, which means it takes a long time from when a fault occurs until it is detected.
また、3相電流値でなく電流実効値によって電流値の乖離を検出している場合、前記累積時間により故障検出を行う手段においても電流自体の異常は検出が可能である。ただし、制御等のためには3相電流検出値が必要であり、その検出値に異常が生じていないかを確認する必要があった。 In addition, if deviations in current values are detected using effective current values rather than three-phase current values, abnormalities in the current itself can be detected even by the means for fault detection using the accumulated time. However, three-phase current detection values are necessary for control, etc., and it is necessary to check whether there are any abnormalities in the detection values.
本発明は、上記課題を解決するものであり、その目的は、モータ回転時の3相電流検出ゲインずれ時の故障検出の精度を向上させた3相電流検出部の故障検出装置および故障検出方法を提供することにある。 The present invention aims to solve the above problems, and its purpose is to provide a fault detection device and a fault detection method for a three-phase current detection section that improves the accuracy of fault detection when there is a deviation in the three-phase current detection gain during motor rotation.
上記課題を解決するための請求項1に記載の3相電流検出部の故障検出装置は、
インバータによって駆動される3相交流モータに流れる電流を制御する電流制御系において、
前記3相交流モータに流れる3相電流を検出する電流検出部と、
前記電流検出部により検出された3相電流の各相の電流差分を演算する電流差分演算部と、
前記電流差分演算部により演算された電流差分のいずれかがゼロとなったタイミングでゼロクロストリガ信号を出力するゼロクロス検出部と、
前記3相交流モータの回転数を検出した回転数検出値又はモータの回転数指令値から演算した、電流検出のゲインずれがない場合のゼロクロストリガ信号間の時間間隔に相当する基準値Trefと、設定した余裕時間ΔTと、前記ゼロクロス検出部により出力されたゼロクロストリガ信号間の時間間隔Tdetとに基づいて、Tdet<Tref-ΔT、又はTdet>Tref+ΔTであるときに電流検出のゲインずれが発生していると判定する異常判定部と、
を備えたことを特徴とする。
In order to solve the above problem, a fault detection device for a three-phase current detection unit according to
In a current control system that controls a current flowing through a three-phase AC motor driven by an inverter,
a current detection unit that detects a three-phase current flowing through the three-phase AC motor;
a current difference calculation unit that calculates a current difference between each phase of the three-phase current detected by the current detection unit;
a zero-cross detection unit that outputs a zero-cross trigger signal when any of the current differences calculated by the current difference calculation unit becomes zero;
an abnormality determination unit which determines that a gain deviation in current detection has occurred when Tdet<Tref-ΔT or Tdet>Tref+ΔT, based on a reference value Tref, which corresponds to a time interval between zero-cross trigger signals in the case where there is no gain deviation in current detection and is calculated from a rotation speed detection value obtained by detecting the rotation speed of the three-phase AC motor or a motor rotation speed command value, a set margin time ΔT, and a time interval Tdet between zero-cross trigger signals output by the zero-cross detection unit;
The present invention is characterized by comprising:
請求項2に記載の3相電流検出部の故障検出装置は、請求項1において、
前記電流検出部は、3相のうち、いずれか2相の電流を各々検出する2つの電流センサと、残りの1相の電流を前記2つの電流センサの検出電流から計算して求める機能とを備えていることを特徴とする。
The fault detection device for a three-phase current detection unit according to
The current detection unit is characterized by having two current sensors that each detect the current of any two of the three phases, and a function of calculating the current of the remaining phase from the detected currents of the two current sensors.
請求項3に記載の3相電流検出部の故障検出方法は、
インバータによって駆動される3相交流モータに流れる電流を制御する電流制御系において、
電流検出部が、前記3相交流モータに流れる3相電流を検出するステップと、
電流差分演算部が、前記電流検出部により検出された3相電流の各相の電流差分を演算するステップと、
ゼロクロス検出部が、前記電流差分演算部により演算された電流差分のいずれかがゼロとなったタイミングでゼロクロストリガ信号を出力するステップと、
異常判定部が、前記3相交流モータの回転数を検出した回転数検出値又はモータの回転数指令値から、電流検出のゲインずれがない場合のゼロクロストリガ信号間の時間間隔に相当する基準値Trefを演算するステップと、
異常判定部が、前記演算した基準値Trefと、設定した余裕時間ΔTと、前記ゼロクロス検出部により出力されたゼロクロストリガ信号間の時間間隔Tdetとに基づいて、Tdet<Tref-ΔT、又はTdet>Tref+ΔTであるときに電流検出のゲインずれが発生していると判定するステップと、
を備えたことを特徴とする。
A method for detecting a fault in a three-phase current detection unit according to claim 3,
In a current control system that controls a current flowing through a three-phase AC motor driven by an inverter,
a current detection unit detecting a three-phase current flowing through the three-phase AC motor;
a current difference calculation unit calculating a current difference for each phase of the three-phase current detected by the current detection unit;
a zero-cross detection unit outputting a zero-cross trigger signal at a timing when any of the current differences calculated by the current difference calculation unit becomes zero;
an abnormality determination unit calculating a reference value Tref corresponding to a time interval between zero-cross trigger signals in the case where there is no gain deviation in current detection, from a rotation speed detection value obtained by detecting the rotation speed of the three-phase AC motor or a motor rotation speed command value;
an abnormality determination unit determining that a gain deviation in current detection occurs when Tdet<Tref-ΔT or Tdet>Tref+ΔT based on the calculated reference value Tref, a set margin time ΔT, and a time interval Tdet between zero-cross trigger signals output by the zero-cross detection unit;
The present invention is characterized by comprising:
(1)請求項1~3に記載の発明によれば、3相電流検出のゲインずれによる3相電流のアンバランスを検出することができ、モータ回転時の3相電流検出ゲインずれ時の故障検出の精度が向上する。
(1) According to the inventions described in
また、電流差分のいずれかがゼロとなったタイミングを利用して、電流検出のゲインずれ発生を判定しているので、ゼロクロスタイミングでの検出電流のノイズ、リプルによる誤検出に強い。
(2)請求項2に記載の発明によれば、電流センサが3相中2相のみ設けられる場合でも電流検出のゲインずれ発生を判定することができる。
In addition, since the occurrence of a deviation in the gain of the current detection is judged by utilizing the timing at which any of the current differences becomes zero, it is resistant to erroneous detection due to noise and ripples in the detected current at the zero cross timing.
(2) According to the invention described in
以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。本実施形態例では、回転時に電流検出のゲインずれを見抜くため、3相電流の交差ポイントと回転数の比較により電流制御系の故障の検出を行う。 The following describes an embodiment of the present invention with reference to the drawings, but the present invention is not limited to the following embodiment. In this embodiment, in order to detect a deviation in the gain of the current detection during rotation, a fault in the current control system is detected by comparing the crossing point of the three-phase current with the rotation speed.
例えば図2のモータドライブ装置において、ゲインずれがないときの3相電流波形を図4に示し、U相電流のゲインずれがあるときの3相電流波形を図5に示す。図4、図5の電流波形は、3相電流値のうち1相(V相)に他2相の検出値を用いて導出した値を使用しており、3相各相の電流値を、Iu,Iw,Iv(計算)と表記している。 For example, in the motor drive device of Fig. 2, Fig. 4 shows the three-phase current waveforms when there is no gain misalignment, and Fig. 5 shows the three-phase current waveforms when there is a gain misalignment in the U-phase current. The current waveforms in Figs. 4 and 5 use values derived for one of the three phases (phase V) using the detected values of the other two phases, and the current values of each of the three phases are denoted as Iu, Iw, and Iv (calculated).
正常駆動時は、図4の交差時刻t1,t2,t3,t4,t5,t6に示すように1/6周期毎に3相電流が交差するが、3相電流のうち1相がゲインずれでアンバランスになっていると、図5の交差時刻t1’,t2’,t3’,t4’,t5’,t6’に示すように交差点の間隔が1/6周期からずれていく。 During normal operation, the three-phase currents cross over each other every 1/6 of a cycle, as shown at crossing times t1, t2, t3, t4, t5, and t6 in Figure 4. However, if one of the three-phase currents is unbalanced due to a gain shift, the distance between the crossing points will deviate from 1/6 of a cycle, as shown at crossing times t1', t2', t3', t4', t5', and t6' in Figure 5.
そこで、3相電流の偏差(Iu-Iv,Iv-Iw,Iw-Iu)を計算し、3相電流偏差の符号反転(ゼロクロス)ポイント(=3相電流の交差点)の間隔と、回転数から導出した1/6周期の比較を行う。 Therefore, the three-phase current deviation (Iu-Iv, Iv-Iw, Iw-Iu) is calculated, and the interval between the sign reversal (zero crossing) points (= intersection points of the three-phase currents) of the three-phase current deviation is compared with the 1/6 period derived from the rotation speed.
そして、1/6周期(図4、図5の電流交差点の間隔)Tdetと、回転数によって導出される基準値Trefが、Tdet<Tref-ΔT、又はTdet>Tref+ΔT(ΔT:余裕時間)のときに、電流検出のゲインずれが発生していると判断し、警報の発生、又はモータを制御するインバータの故障停止を行う。 When 1/6 cycle (the interval between current intersections in Figures 4 and 5) Tdet and the reference value Tref derived from the rotation speed are Tdet<Tref-ΔT or Tdet>Tref+ΔT (ΔT: margin of time), it is determined that a deviation in the current detection gain has occurred, and an alarm is issued or the inverter that controls the motor is shut down due to a fault.
図1は、本実施形態例による異常検出の制御ブロックを示し、例えば図2のモータドライブ装置に適用される。101は、インバータ(50a)-モータ(52)間を接続する各相のケーブルに各々設けられ、各相の電流Iu,Iw,Ivを検出する電流センサ(電流検出部)である。 Figure 1 shows a control block for detecting an abnormality according to this embodiment, which is applied to the motor drive device of Figure 2, for example. 101 denotes a current sensor (current detection unit) that is provided on each phase cable connecting the inverter (50a) and the motor (52) and detects the currents Iu, Iw, and Iv of each phase.
尚電流センサ101は、3相のうち、いずれか2相の電流を各々検出する2つの電流センサを備え、残りの1相の電流は前記2つの電流センサの検出電流から計算して求めるように構成してもよい。
The
102は、電流センサ101により検出された3相電流の各相の電流差分(Iu-Iv,Iv-Iw,Iw-Iu)を各々演算する減算器(電流差分演算部)である。
102 is a subtractor (current difference calculation unit) that calculates the current difference (Iu-Iv, Iv-Iw, Iw-Iu) of each phase of the three-phase current detected by the
103は、減算器102により演算された各電流差分(Iu-Iv,Iv-Iw,Iw-Iu)のいずれかがゼロとなったタイミングでゼロクロストリガ信号を出力するゼロクロス検出部である。
103 is a zero-cross detection unit that outputs a zero-cross trigger signal when any of the current differences (Iu-Iv, Iv-Iw, Iw-Iu) calculated by the
104はモータ(52)の回転数ωを検出する回転数センサである。 104 is a rotation speed sensor that detects the rotation speed ω of the motor (52).
105は、ゼロクロス検出部103から出力されたゼロクロストリガ信号間の時間間隔Tdetと、回転数センサ104により検出された回転数検出値ωに基づいて基準値Trefを各々演算する機能と、余裕時間ΔTを設定する機能と、前記時間間隔Tdetと基準値Tref、余裕時間ΔTを比較して、電流検出のゲインずれが発生しているか否かを判定する異常判定機能とを備えた異常判定部である。
105 is an abnormality determination unit that has a function of calculating a reference value Tref based on the time interval Tdet between zero-cross trigger signals output from the zero-
前記基準値Trefは、電流検出のゲインずれがない場合のゼロクロストリガ信号間の時間間隔に相当する値であり、前記異常判定機能は、比較結果がTdet<Tref-ΔT、又はTdet>Tref+ΔTであるときに電流検出のゲインずれが発生していると判定し、警報(異常信号)の発生、又はモータを制御するインバータの故障停止を行う機能を有している。 The reference value Tref is a value that corresponds to the time interval between zero-cross trigger signals when there is no gain deviation in current detection, and the abnormality determination function has the function of determining that a gain deviation in current detection has occurred when the comparison result is Tdet<Tref-ΔT or Tdet>Tref+ΔT, and generating an alarm (abnormality signal) or shutting down the inverter that controls the motor due to a fault.
尚、前記基準値Trefを導出するための回転数検出値ωはインバータへ入力する回転数指令値に置き換えてもよい。 The rotation speed detection value ω for deriving the reference value Tref may be replaced with the rotation speed command value input to the inverter.
図1の構成によれば、モータの正常駆動時は3相電流が等間隔(1/6周期毎)に交差するため、3相電流の交差点のズレから電流検出のゲインずれによる3相電流のアンバランスを検出することが可能となる。 According to the configuration in Figure 1, when the motor is operating normally, the three-phase currents cross at equal intervals (every 1/6 of a cycle), making it possible to detect imbalances in the three-phase currents due to deviations in the gain of current detection from the deviations in the crossing points of the three-phase currents.
また、3相電流検出のうち1相がオフセットずれにより実電流と乖離した場合は、図6のようにゼロクロス付近で3相総和値が0とならないため、「総和値が0からの乖離を一定時間継続で故障検出とする」従来の故障検出方法で検出可能である。 In addition, if one of the three-phase current detections deviates from the actual current due to an offset shift, the sum of the three phases does not become 0 near the zero crossing as shown in Figure 6. This means that it is possible to detect the fault using the conventional fault detection method, which considers the deviation of the sum from 0 for a certain period of time to be a fault.
そのため、本発明を、従来の3相電流の総和値を監視する方法と併せて使用することで、電流検出値のゲインずれとオフセットすれの場合の両方の故障状態をより高精度に見抜くことができる。 Therefore, by using this invention in conjunction with the conventional method of monitoring the sum of three-phase currents, it is possible to detect fault conditions in both gain and offset deviations in the current detection value with greater accuracy.
尚、実際の電流の異常は、電流実効値を検出する別手段による検出も可能であるため、前記別手段において異常なしとされた場合は、3相電流ゲインずれであることを特定可能である。 In addition, since an abnormality in the actual current can also be detected by another means for detecting the effective current value, if no abnormality is detected by the other means, it is possible to identify that there is a deviation in the three-phase current gain.
尚、本実施形態例は、電流センサが2相しかなく残りの1相での電流を計算で求める構成(例:電流センサではIuとIvを検出し、Iw=-Iu-Ivで演算する構成)に対しても、適用できる。 This embodiment can also be applied to a configuration in which there are only two phases of current sensors and the current in the remaining phase is calculated (e.g., a current sensor detects Iu and Iv and calculates Iw = -Iu - Iv).
本実施形態例によれば、従来の例えば特許文献2、3の故障診断方法に比べて次のような利点がある。
This embodiment has the following advantages over the conventional fault diagnosis methods described in, for example,
すなわち、特許文献2では電流ゼロクロス時の他2相の電流を比較し故障診断を行っているが、本実施形態例ではゼロクロス検出タイミングでの故障診断であり、且つ(電流検出系故障の観点からは)3相電流のうち2相を検出し残り1相を計算した値としても検出可能である。
In other words, in
また、ゼロクロスタイミングの各検出値ではなく、検出タイミング自体を比較しているためゼロクロスタイミングでのノイズ、リプルによる誤検出に強いといった特徴もある。さらに、電流検出系故障の診断の観点からは、電流検出が3相中2相のみでも検出可能といった利点がある。 In addition, since the detection timing itself is compared, rather than each detection value of the zero-cross timing, it is also resistant to false detection caused by noise and ripples at the zero-cross timing. Furthermore, from the viewpoint of diagnosing faults in the current detection system, it has the advantage that it can detect current even when only two of the three phases are detected.
また、特許文献3ではdq変換後の電流値を利用しているが、dq変換後の電流は位相(回転角)検出の故障時にも異常が発生するところ、本実施形態例ではdq変換後の電流値ではなく位相(回転角)を用いない相電流値によるものであることから、位相検出部の故障の影響を受けない。 In addition, in Patent Document 3, the current value after dq conversion is used, but an abnormality occurs in the current after dq conversion even when there is a failure in the phase (rotation angle) detection. In contrast, in this embodiment, the current value is based on the phase current value that does not use the phase (rotation angle) rather than the current value after dq conversion, so it is not affected by failure in the phase detection unit.
50…モータ制御装置
50a…インバータ
50b…制御部
51…蓄電池
52…モータ
53…直流電圧検出センサ
54a~54c…交流電流検出センサ
55…磁極位置センサ
101…電流センサ
102…減算器
103…ゼロクロス検出部
104…回転数センサ
105…異常判定部
50...
Claims (3)
前記3相交流モータに流れる3相電流を検出する電流検出部と、
前記電流検出部により検出された3相電流の各相の電流差分を演算する電流差分演算部と、
前記電流差分演算部により演算された電流差分のいずれかがゼロとなったタイミングでゼロクロストリガ信号を出力するゼロクロス検出部と、
前記3相交流モータの回転数を検出した回転数検出値又はモータの回転数指令値から演算した、電流検出のゲインずれがない場合のゼロクロストリガ信号間の時間間隔に相当する基準値Trefと、設定した余裕時間ΔTと、前記ゼロクロス検出部により出力されたゼロクロストリガ信号間の時間間隔Tdetとに基づいて、Tdet<Tref-ΔT、又はTdet>Tref+ΔTであるときに電流検出のゲインずれが発生していると判定する異常判定部と、
を備えたことを特徴とする3相電流検出部の故障検出装置。 In a current control system that controls a current flowing through a three-phase AC motor driven by an inverter,
a current detection unit that detects a three-phase current flowing through the three-phase AC motor;
a current difference calculation unit that calculates a current difference between each phase of the three-phase current detected by the current detection unit;
a zero-cross detection unit that outputs a zero-cross trigger signal when any of the current differences calculated by the current difference calculation unit becomes zero;
an abnormality determination unit which determines that a gain deviation in current detection has occurred when Tdet<Tref-ΔT or Tdet>Tref+ΔT, based on a reference value Tref, which corresponds to a time interval between zero-cross trigger signals in the case where there is no gain deviation in current detection and is calculated from a rotation speed detection value obtained by detecting the rotation speed of the three-phase AC motor or a motor rotation speed command value, a set margin time ΔT, and a time interval Tdet between zero-cross trigger signals output by the zero-cross detection unit;
A fault detection device for a three-phase current detection unit, comprising:
電流検出部が、前記3相交流モータに流れる3相電流を検出するステップと、
電流差分演算部が、前記電流検出部により検出された3相電流の各相の電流差分を演算するステップと、
ゼロクロス検出部が、前記電流差分演算部により演算された電流差分のいずれかがゼロとなったタイミングでゼロクロストリガ信号を出力するステップと、
異常判定部が、前記3相交流モータの回転数を検出した回転数検出値又はモータの回転数指令値から、電流検出のゲインずれがない場合のゼロクロストリガ信号間の時間間隔に相当する基準値Trefを演算するステップと、
異常判定部が、前記演算した基準値Trefと、設定した余裕時間ΔTと、前記ゼロクロス検出部により出力されたゼロクロストリガ信号間の時間間隔Tdetとに基づいて、Tdet<Tref-ΔT、又はTdet>Tref+ΔTであるときに電流検出のゲインずれが発生していると判定するステップと、
を備えたことを特徴とする3相電流検出部の故障検出方法。 In a current control system that controls a current flowing through a three-phase AC motor driven by an inverter,
a current detection unit detecting a three-phase current flowing through the three-phase AC motor;
a current difference calculation unit calculating a current difference for each phase of the three-phase current detected by the current detection unit;
a zero-cross detection unit outputting a zero-cross trigger signal at a timing when any of the current differences calculated by the current difference calculation unit becomes zero;
an abnormality determination unit calculating a reference value Tref corresponding to a time interval between zero-cross trigger signals in the case where there is no gain deviation in current detection, from a rotation speed detection value obtained by detecting the rotation speed of the three-phase AC motor or a motor rotation speed command value;
an abnormality determination unit determining that a gain deviation in current detection occurs when Tdet<Tref-ΔT or Tdet>Tref+ΔT based on the calculated reference value Tref, a set margin time ΔT, and a time interval Tdet between zero-cross trigger signals output by the zero-cross detection unit;
A method for detecting a fault in a three-phase current detection unit, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021008381A JP7517168B2 (en) | 2021-01-22 | 2021-01-22 | Fault detection device and fault detection method for three-phase current detection unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021008381A JP7517168B2 (en) | 2021-01-22 | 2021-01-22 | Fault detection device and fault detection method for three-phase current detection unit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022112557A JP2022112557A (en) | 2022-08-03 |
JP7517168B2 true JP7517168B2 (en) | 2024-07-17 |
Family
ID=82657281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021008381A Active JP7517168B2 (en) | 2021-01-22 | 2021-01-22 | Fault detection device and fault detection method for three-phase current detection unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7517168B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009072017A (en) | 2007-09-14 | 2009-04-02 | Toyota Motor Corp | Motor control device and abnormality detection method for motor control device |
US20100295492A1 (en) | 2009-05-22 | 2010-11-25 | Gm Global Technology Operations, Inc. | Methods and systems for detecting current sensor error |
JP2011050214A (en) | 2009-08-28 | 2011-03-10 | Nissan Motor Co Ltd | Electric motor control system |
JP2013055796A (en) | 2011-09-05 | 2013-03-21 | Hitachi Automotive Systems Ltd | Fault diagnosis method for current detector and apparatus thereof |
JP2015220852A (en) | 2014-05-16 | 2015-12-07 | 株式会社ジェイテクト | Current sensor abnormality identification device |
JP2015233371A (en) | 2014-06-09 | 2015-12-24 | 日立オートモティブシステムズ株式会社 | Current sensor failure diagnosis method, current sensor failure diagnosis device |
JP2018174655A (en) | 2017-03-31 | 2018-11-08 | 株式会社明電舎 | Control apparatus and control method for rotary machine |
-
2021
- 2021-01-22 JP JP2021008381A patent/JP7517168B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009072017A (en) | 2007-09-14 | 2009-04-02 | Toyota Motor Corp | Motor control device and abnormality detection method for motor control device |
US20100295492A1 (en) | 2009-05-22 | 2010-11-25 | Gm Global Technology Operations, Inc. | Methods and systems for detecting current sensor error |
JP2011050214A (en) | 2009-08-28 | 2011-03-10 | Nissan Motor Co Ltd | Electric motor control system |
JP2013055796A (en) | 2011-09-05 | 2013-03-21 | Hitachi Automotive Systems Ltd | Fault diagnosis method for current detector and apparatus thereof |
JP2015220852A (en) | 2014-05-16 | 2015-12-07 | 株式会社ジェイテクト | Current sensor abnormality identification device |
JP2015233371A (en) | 2014-06-09 | 2015-12-24 | 日立オートモティブシステムズ株式会社 | Current sensor failure diagnosis method, current sensor failure diagnosis device |
JP2018174655A (en) | 2017-03-31 | 2018-11-08 | 株式会社明電舎 | Control apparatus and control method for rotary machine |
Also Published As
Publication number | Publication date |
---|---|
JP2022112557A (en) | 2022-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5652434B2 (en) | Motor control device and electric power steering device using the same | |
JP3483805B2 (en) | Step-out detection device for sensorless brushless motor | |
JP5409678B2 (en) | Electric motor control device | |
KR101698302B1 (en) | Motor control device and motor control method | |
JP5603360B2 (en) | Motor control device and electric power steering device using the same | |
JPH08182103A (en) | Fail-safe control system of drive motor for electric vehicle | |
JPH07177602A (en) | Failure detection method for electric automobile and fail-safe control method employing it | |
JP2015202019A (en) | Controller of electric motor | |
KR102466981B1 (en) | Apparatus and Method for detecting fault of switching device in inverter | |
JP2011078291A (en) | Motor drive device | |
US10333311B2 (en) | Electric motor control device | |
JPH07227086A (en) | Failure detection system of inverter | |
JP2019193473A (en) | Motor control device and electric power steering device | |
JP4942425B2 (en) | Elevator control device | |
TW201531008A (en) | Electric vehicle and device for controlling power converter | |
JP5959349B2 (en) | Electric vehicle control device and vehicle drive system | |
JP7517168B2 (en) | Fault detection device and fault detection method for three-phase current detection unit | |
JP4534612B2 (en) | Motor drive control device | |
JP3800391B2 (en) | Phase loss detection method and circuit of voltage source inverter device. | |
JP4720334B2 (en) | Offset converter for PWM converter | |
JP2003319682A (en) | Control device for permanent magnet synchronous motor | |
JP2017127121A (en) | Motor control device | |
JP3666282B2 (en) | Elevator device using permanent magnet synchronous motor | |
JP6854925B2 (en) | Electric vehicle control device | |
JP3684940B2 (en) | Anomaly detection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230830 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240415 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240617 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7517168 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |