[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7510256B2 - Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method - Google Patents

Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method Download PDF

Info

Publication number
JP7510256B2
JP7510256B2 JP2020011680A JP2020011680A JP7510256B2 JP 7510256 B2 JP7510256 B2 JP 7510256B2 JP 2020011680 A JP2020011680 A JP 2020011680A JP 2020011680 A JP2020011680 A JP 2020011680A JP 7510256 B2 JP7510256 B2 JP 7510256B2
Authority
JP
Japan
Prior art keywords
mass
base material
flux
less
total amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011680A
Other languages
Japanese (ja)
Other versions
JP2021115611A (en
Inventor
太一 和田
一希 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Metal Products Co Ltd
Original Assignee
Nippon Steel Metal Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Metal Products Co Ltd filed Critical Nippon Steel Metal Products Co Ltd
Priority to JP2020011680A priority Critical patent/JP7510256B2/en
Publication of JP2021115611A publication Critical patent/JP2021115611A/en
Application granted granted Critical
Publication of JP7510256B2 publication Critical patent/JP7510256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

本発明は、製鋼用フラックスの製造に用いられる基材、製鋼用フラックス及びその製造方法に関する。 The present invention relates to a base material used in the manufacture of steelmaking flux, the steelmaking flux, and a method for manufacturing the same.

製鋼用フラックスは、例えば、鋼の鋳造工程で鋳型内において、あるいは、その前工程でタンディッシュにおいて用いられる。製鋼用フラックスの組成は、潤滑、保温、酸化防止、抜熱制御といった種々の特性や、製造する鋼の種類に応じて設計される。例えば、高炭素鋼の製造に用いられるフラックスには、低粘度かつ低溶融温度であることが求められる場合があり、このような場合、基材(プリメルト基材とも呼ばれる)に対して、NaFなどのフッ化物を添加することが一般的に行われている(例えば特許文献1参照)。 Steelmaking flux is used, for example, in a mold during the steel casting process, or in a tundish in the preceding process. The composition of steelmaking flux is designed according to various properties such as lubrication, heat retention, oxidation prevention, and heat removal control, as well as the type of steel to be produced. For example, flux used in the production of high carbon steel may be required to have low viscosity and a low melting temperature. In such cases, it is common to add a fluoride such as NaF to the base material (also called premelt base material) (see, for example, Patent Document 1).

特開2011-36889号公報JP 2011-36889 A

しかし、NaFは劇物扱い(毒物及び劇物取締法の対象物質)となる予定であるため、在庫管理や輸送管理などの取扱いの負担を低減する観点から、NaFを極力用いずに(例えばフラックス中のNaFが10質量%未満となるように)、製鋼用フラックスを得ることが望ましい。その一方で、NaFに含まれるNa及びFは、製鋼用フラックスの特性などの観点からは必要な元素であるため、NaFを用いない分のNa及びFを別途補う必要があるが、製鋼用フラックスの製造に問題が生じないようにNa及びFを補うことは必ずしも容易でない。 However, since NaF is expected to be treated as a deleterious substance (subject to the Poisonous and Deleterious Substances Control Act), it is desirable to obtain steelmaking flux using as little NaF as possible (for example, so that the NaF content in the flux is less than 10 mass%) in order to reduce the burden of handling, such as inventory management and transportation management. On the other hand, since the Na and F contained in NaF are necessary elements from the viewpoint of the properties of steelmaking flux, it is necessary to separately replenish the Na and F that are not used in NaF, but it is not necessarily easy to replenish the Na and F so as not to cause problems in the production of steelmaking flux.

そこで、本発明の一側面は、NaFを極力用いずに、Na及びFを含む製鋼用フラックスを好適に製造することを目的とする。 Therefore, one aspect of the present invention aims to suitably produce a steelmaking flux containing Na and F while using as little NaF as possible.

本発明者らの検討によれば、製鋼用フラックスの製造に用いられる基材の組成を工夫することにより、NaFを極力用いずに、Na及びFを含むフラックスを好適に製造できること、具体的には、基材におけるNaFの再晶出及び固まりの発生を抑制すると共に、フラックス製造時における臭気の発生も抑制しつつ、使用時の噴上げ及び発炎の発生をも抑制可能なフラックスを製造できることが見出された。 According to the inventors' research, it has been found that by devising the composition of the base material used in the production of steelmaking flux, it is possible to suitably produce a flux containing Na and F using as little NaF as possible; specifically, it is possible to produce a flux that suppresses the recrystallization and formation of lumps of NaF in the base material, as well as suppressing the generation of odors during flux production, while also suppressing the occurrence of spraying and flaming during use.

本発明の一側面は、製鋼用フラックスの製造に用いられる基材であって、基材の全量を基準として、合計で35質量%以上のSiO及びCaOと、12質量%以上40質量%以下のNaOと、を含有し、Fの含有量が、基材の全量を基準として24質量%以下である、基材である。この基材において、Fの含有量は、基材の全量を基準として6.5質量%以上であってよい。 One aspect of the present invention is a base material used for manufacturing a flux for steel making, the base material containing a total of 35 mass% or more of SiO2 and CaO, and 12 mass% to 40 mass% of Na2O , based on the total amount of the base material, and the F content is 24 mass% or less, based on the total amount of the base material. In this base material, the F content may be 6.5 mass% or more, based on the total amount of the base material.

本発明の他の一側面は、基材を含む原料から製鋼用フラックスを得る工程を備える製鋼用フラックスの製造方法であって、基材が、基材の全量を基準として、合計で35質量%以上のSiO及びCaOと、12質量%以上40質量%以下のNaOと、を含有し、基材中のFの含有量が、基材の全量を基準として24質量%以下である、製造方法である。 Another aspect of the present invention is a method for producing a steel-making flux, the method including a step of obtaining a steel-making flux from a raw material including a base material, the base material containing SiO2 and CaO in a total amount of 35 mass% or more and Na2O in a range of 12 mass% to 40 mass%, based on the total amount of the base material, and the content of F in the base material is 24 mass% or less, based on the total amount of the base material.

この基材中のFの含有量は、基材の全量を基準として6.5質量%以上であってよい。原料中のNaFの含有量は、原料の全量を基準として10質量%未満であってよい。原料は、基材に加えて、NaF以外のNa源を更に含んでよい。原料は、基材に加えて、NaF以外のF源を更に含んでよい。 The F content in the substrate may be 6.5 mass% or more based on the total amount of the substrate. The NaF content in the raw material may be less than 10 mass% based on the total amount of the raw material. In addition to the substrate, the raw material may further include a Na source other than NaF. In addition to the substrate, the raw material may further include a F source other than NaF.

本発明の他の一側面は、フラックスの全量を基準として、合計で30質量%以上のSiO及びCaOと、6質量%以上のNaOと、3質量%以上のFと、を含有し、NaFの含有量が、フラックスの全量を基準として10質量%未満である、製鋼用フラックスである。この製鋼用フラックスは、NaFを含有しなくてよい。 Another aspect of the present invention is a steelmaking flux that contains, based on the total amount of the flux, a total of 30 mass% or more of SiO2 and CaO, 6 mass% or more of Na2O , and 3 mass% or more of F, and a NaF content of less than 10 mass% based on the total amount of the flux. This steelmaking flux does not need to contain NaF.

本発明によれば、NaFを極力用いずに、Na及びFを含む製鋼用フラックスを好適に製造できる。 According to the present invention, it is possible to effectively produce a steelmaking flux containing Na and F while using as little NaF as possible.

以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 The following describes in detail the embodiments for implementing the present invention. However, the present invention is not limited to the following embodiments.

本発明の一実施形態は、基材を含む原料から製鋼用フラックス(以下、単に「フラックス」ともいう)を得る工程を備えるフラックスの製造方法である。当該工程は、例えば、基材にその他の原料を配合する配合工程を含んでおり、配合工程で得られた配合物を分散媒に分散させてスラリーを調製した後、当該スラリーを噴霧及び乾燥する造粒工程を更に含んでいてもよい。造粒工程が含まれない場合、例えば、粉末状のフラックスが得られる。造粒工程が含まれる場合、例えば、中空顆粒状のフラックスが得られる。 One embodiment of the present invention is a method for producing flux, which includes a step of obtaining a steelmaking flux (hereinafter, simply referred to as "flux") from raw materials including a base material. This step may include, for example, a blending step of blending other raw materials with the base material, and may further include a granulation step of dispersing the blend obtained in the blending step in a dispersion medium to prepare a slurry, and then spraying and drying the slurry. When the granulation step is not included, for example, a powdered flux is obtained. When the granulation step is included, for example, a hollow granular flux is obtained.

配合工程で用いられる基材は、主成分としてSiO及びCaOを含有する。SiO及びCaOの合計の含有量は、基材の全量を基準として、例えば、35質量%以上、40質量%以上、又は45質量%以上であってよく、90質量%以下、85質量%以下、又は80質量%以下であってよい。SiOの含有量は、基材の全量を基準として、例えば、20質量%以上であってよく、50質量%以下であってよい。CaOの含有量は、基材の全量を基準として、例えば、3質量%以上であってよく、50質量%以下であってよい。 The base material used in the blending step contains SiO 2 and CaO as main components. The total content of SiO 2 and CaO may be, for example, 35% by mass or more, 40% by mass or more, or 45% by mass or more, and 90% by mass or less, 85% by mass or less, or 80% by mass or less, based on the total amount of the base material. The content of SiO 2 may be, for example, 20% by mass or more, and 50% by mass or less, based on the total amount of the base material. The content of CaO may be, for example, 3% by mass or more, and 50% by mass or less, based on the total amount of the base material.

基材は、基材の全量を基準として、12質量%以上40質量%以下のNaOを含有する。これにより、NaFを極力用いずに、Naを含む製鋼用フラックスを好適に製造することができる。より具体的には、NaOの含有量が12質量%以上であると、NaFを極力用いずに、かつ、Naを補うためのNaF以外の原料の添加量を少なくすることができるため、フラックス製造時の臭気の発生や、フラックス使用時の噴上げ及び発炎を抑制できる。また、NaOの含有量が40質量%以下であると、基材におけるNaFの再晶出及び固まりの発生によりフラックスを製造できなくなることを抑制できる。 The base material contains 12% by mass or more and 40% by mass or less of Na 2 O based on the total amount of the base material. This allows the steelmaking flux containing Na to be suitably manufactured without using NaF as much as possible. More specifically, when the content of Na 2 O is 12% by mass or more, NaF can be used as little as possible and the amount of raw materials other than NaF added to supplement Na can be reduced, so that the generation of odor during flux manufacturing and the eruptions and flaming during use of the flux can be suppressed. In addition, when the content of Na 2 O is 40% by mass or less, it is possible to suppress the inability to manufacture flux due to the recrystallization and solidification of NaF in the base material.

同様の観点から、NaOの含有量は、基材の全量を基準として、14質量%以上、16質量%以上、又は18質量%以上であってもよく、37質量%以下、34質量%以下、又は31質量%以下であってもよい。 From a similar viewpoint, the content of Na 2 O may be 14 mass% or more, 16 mass% or more, or 18 mass% or more, based on the total amount of the base material, and may be 37 mass% or less, 34 mass% or less, or 31 mass% or less.

基材は、Fを含有しても含有しなくてもよいが、基材中にNaFが再晶出してフラックスを製造できなくなることを抑制できる観点から、Fの含有量は、基材の全量を基準として24質量%以下となっている。同様の観点から、Fの含有量は、基材の全量を基準として、23質量%以下、21質量%以下、又は19質量%以下であってもよい。 The base material may or may not contain F, but from the viewpoint of preventing NaF from recrystallizing in the base material, which would make it impossible to produce flux, the F content is 24 mass% or less based on the total amount of the base material. From the same viewpoint, the F content may be 23 mass% or less, 21 mass% or less, or 19 mass% or less based on the total amount of the base material.

基材は、NaFを極力用いずに、Fを含む製鋼用フラックスを更に好適に製造することができる観点から、好ましくはFを含有する。基材がFを含有する場合、Fの含有量は、基材の全量を基準として、好ましくは、6.5質量%以上、8質量%以上、10質量%以上、又は12質量%以上であってよい。この場合、基材中のNaOの含有量が多くなりすぎることによる固まりの発生を更に抑制できると共に、配合工程におけるF源(詳細は後述)の添加量を抑えられるため、原料中のNaOの濃度低下を抑制できる(すなわち、基材中のNaOの含有量は少なくてよい)。なお、基材中のFの含有量を多くする場合、基材製造時に用いるホタル石の量を多くすればよい。 The base material preferably contains F from the viewpoint of more suitably producing a steelmaking flux containing F without using NaF as much as possible. When the base material contains F, the content of F may be preferably 6.5 mass% or more, 8 mass% or more, 10 mass% or more, or 12 mass% or more based on the total amount of the base material. In this case, the generation of lumps due to the Na 2 O content in the base material being too high can be further suppressed, and the amount of F source (details will be described later) added in the blending step can be suppressed, so that the decrease in the concentration of Na 2 O in the raw material can be suppressed (i.e., the content of Na 2 O in the base material can be small). In addition, when the content of F in the base material is increased, the amount of fluorite used in the production of the base material can be increased.

SiO、CaO及びNaOの含有量は、基材について蛍光X線分析を行うことにより、Si、Ca及びNaの含有量を測定し、これらの含有量をそれぞれ酸化物(SiO、CaO及びNaO)の含有量に換算した値として求められる。Fの含有量は、基材について蛍光X線分析を行うことにより測定されるFの含有量として求められる。 The contents of SiO 2 , CaO and Na 2 O are determined by measuring the contents of Si, Ca and Na by performing fluorescent X-ray analysis on the substrate and converting these contents into the contents of their respective oxides (SiO 2 , CaO and Na 2 O). The content of F is determined as the content of F measured by performing fluorescent X-ray analysis on the substrate.

蛍光X線分析は、以下の手順により行われる。
まず、基材と四ホウ酸リチウム(融剤)とを、基材:四ホウ酸リチウム=3:5(質量比)の割合で混合する。得られた混合物を白金製の鋳型に入れ、1100℃で6分間加熱することで溶かした後、放冷することにより蛍光X線分析用試料(ガラスビード)が得られる。なお、基材が1100℃での加熱により化学反応を生じる場合や、基材が白金製の鋳型と反応する場合は、上述の方法に代えて、圧縮機によって基材を成形することにより蛍光X線分析用試料(ブリケット)を作製する。
続いて、得られた蛍光X線分析用試料を蛍光X線分析装置に設置し、各成分の含有量を分析する。なお、各成分の含有量は、標準試料を用いて作成された検量線に基づいて算出される。また、蛍光X線分析の条件は、蛍光X線分析用試料と標準試料とで互いに同一にする。
The X-ray fluorescence analysis is carried out according to the following procedure.
First, the base material and lithium tetraborate (flux) are mixed in a ratio of base material:lithium tetraborate = 3:5 (mass ratio). The resulting mixture is placed in a platinum mold, heated at 1100 ° C for 6 minutes to melt, and then allowed to cool to obtain a sample (glass bead) for X-ray fluorescence analysis. Note that, in cases where the base material undergoes a chemical reaction when heated at 1100 ° C or where the base material reacts with the platinum mold, instead of the above-mentioned method, the base material is molded by a compressor to produce a sample (briquette) for X-ray fluorescence analysis.
The obtained sample for X-ray fluorescence analysis is then placed in an X-ray fluorescence analyzer, and the content of each component is analyzed. The content of each component is calculated based on a calibration curve prepared using a standard sample. The conditions for the X-ray fluorescence analysis are the same for both the sample for X-ray fluorescence analysis and the standard sample.

基材は、SiO、CaO、NaO及びFに加えて、その他の成分を更に含有してもよい。その他の成分は、例えば、Al、MgO等であってよい。 The substrate may further contain other components in addition to SiO 2 , CaO, Na 2 O and F. The other components may be, for example, Al 2 O 3 , MgO, and the like.

基材は、一実施形態において、例えば、複数の原料をキュポラで溶融した後、溶融物をジェット水流によって急冷・水砕し、乾燥後に粉砕する工程を経て得られる。基材は、他の一実施形態において、例えば、複数の原料を電気炉や平炉で溶融し、溶融物を水槽などに入れて冷却して、乾燥後に粉砕する工程を経て得られる。前者の実施形態は、キュポラ(内壁が耐火物ではなく鉄皮水冷方式)で溶融するため、Fによる溶損が発生しにくく、かつ、溶融物が急冷されるため、NaFの再晶出が起こりにくい点で、後者の実施形態より好ましい。 In one embodiment, the substrate is obtained, for example, by melting multiple raw materials in a cupola, quenching and water granulating the molten material with a water jet, drying, and then pulverizing the material. In another embodiment, the substrate is obtained, for example, by melting multiple raw materials in an electric furnace or open hearth, cooling the molten material in a water tank, drying, and then pulverizing the material. The former embodiment is preferable to the latter embodiment in that melting is performed in a cupola (the inner wall is water-cooled steel shell, not refractory), so that melting damage due to F is less likely to occur, and recrystallization of NaF is less likely to occur because the molten material is quenched.

上記の各実施形態においては、得られる基材中のSiO、CaO、NaO及びFの含有量が上記の範囲内となるように、溶融する際の複数の原料の組成が、例えば、珪石粉、セメント、炭酸カルシウム、消石灰、ホタル石、ソーダ灰等から適切に選択される。 In each of the above embodiments, the composition of the multiple raw materials used in melting is appropriately selected from, for example, silica powder, cement, calcium carbonate, slaked lime, fluorite, soda ash , etc., so that the contents of SiO 2 , CaO, Na 2 O and F in the obtained base material are within the above ranges.

原料は、基材に加えて、その他の原料を更に含んでよい。原料は、NaFを含んでもよく含まなくてもよいが、一実施形態において、在庫管理や輸送管理などの取扱いの負担を低減する観点から、原料中のNaFの含有量は、原料の全量を基準として10質量%未満となっている。同様の観点から、NaFの含有量は、原料の全量を基準として、好ましくは、9質量%以下、8質量%以下、7質量%以下、6質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、又は1質量%以下であり、より好ましくは0質量%である(すなわち原料はNaFを含まない)。 The raw material may further include other raw materials in addition to the base material. The raw material may or may not include NaF, but in one embodiment, from the viewpoint of reducing the burden of handling such as inventory management and transportation management, the content of NaF in the raw material is less than 10 mass% based on the total amount of the raw material. From the same viewpoint, the content of NaF is preferably 9 mass% or less, 8 mass% or less, 7 mass% or less, 6 mass% or less, 5 mass% or less, 4 mass% or less, 3 mass% or less, 2 mass% or less, or 1 mass% or less based on the total amount of the raw material, and more preferably 0 mass% (i.e., the raw material does not include NaF).

原料中のNaFの含有量は、X線回折測定のピーク強度から測定できる。具体的には、ガラス粉(非晶質)にNaFを2質量%、4質量%、6質量%、8質量%、及び10質量%の含有量でそれぞれ添加した5点の比較用試料を準備し、それらのX線回折測定のピーク強度から検量線を作成した上で、検量線に基づき原料中のNaFの含有量を算出する。X線回折測定は、Cuターゲット、管電圧50KV、管電流40mAの測定条件で行い、2θ=38~39degreeにおける回折ピーク(第1ピーク)の強度をピーク強度として採用する。 The NaF content in the raw material can be measured from the peak intensity in X-ray diffraction measurement. Specifically, five comparative samples are prepared by adding NaF to glass powder (amorphous) at contents of 2 mass%, 4 mass%, 6 mass%, 8 mass%, and 10 mass%, respectively, and a calibration curve is created from the peak intensities in the X-ray diffraction measurement of these samples. The NaF content in the raw material is then calculated based on the calibration curve. The X-ray diffraction measurement is performed under the measurement conditions of a Cu target, a tube voltage of 50 KV, and a tube current of 40 mA, and the intensity of the diffraction peak (first peak) at 2θ = 38 to 39 degrees is used as the peak intensity.

その他の原料は、得られるフラックスを所望の組成とするために適宜用いられる。その他の原料としては、例えば、Siを構成元素とする化合物を主成分とする原料(Si源)、Caを構成元素とする化合物を主成分とする原料(Ca源)、Alを構成元素とする化合物を主成分とする原料(Al源)、NaF以外のNaを構成元素とする化合物を主成分とする原料(Na源)、NaF以外のFを構成元素とする化合物を主成分とする原料(F源)、及びCを構成元素とする化合物を主成分とする原料(C源)が挙げられる。Na源及びF源は、例えば物性調整剤として機能し得る。C源は、例えば溶融速度調整剤として機能し得る。 Other raw materials are used as appropriate to give the flux a desired composition. Examples of other raw materials include a raw material (Si source) whose main component is a compound having Si as a constituent element, a raw material (Ca source) whose main component is a compound having Al as a constituent element, a raw material (Al source) whose main component is a compound having Na as a constituent element other than NaF (Na source), a raw material (F source) whose main component is a compound having F as a constituent element other than NaF, and a raw material (C source) whose main component is a compound having C as a constituent element. The Na source and F source can function, for example, as physical property adjusters. The C source can function, for example, as a melting speed adjuster.

Si源は、例えば、珪石粉、ガラス粉であってよい。Ca源は、例えば、ホタル石、炭酸カルシウム、セメント、ダイカルシウムシリケ-トであってよい。Al源は、例えば、アルミナ、バンド頁岩であってよい。NaF以外のNa源は、例えば、ソーダ灰、氷晶石、硼砂であってよい。NaF以外のF源は、例えば、ホタル石、氷晶石、LiF等であってよい。 The Si source may be, for example, silica powder or glass powder. The Ca source may be, for example, fluorspar, calcium carbonate, cement, or dicalcium silicate. The Al source may be, for example, alumina or band shale. The Na source other than NaF may be, for example, soda ash, cryolite, or borax. The F source other than NaF may be, for example, fluorspar, cryolite, LiF, etc.

本実施形態では、上述した基材を用いるため、原料中の基材の含有量を多くし、その他の原料(特にNa源)の含有量を少なくすることができ、その結果、フラックス製造時の臭気の発生や、フラックス使用時の噴上げ及び発炎を抑制できる。 In this embodiment, the base material described above is used, so the content of the base material in the raw materials can be increased and the content of other raw materials (particularly the Na source) can be decreased. As a result, the generation of odor during flux production and the spraying and flaming during use of the flux can be suppressed.

具体的には、基材の含有量は、原料の全量を基準として、例えば、20質量%以上、30質量%以上、40質量以上、50質量%以上、又は60質量以上であってよい。その他の原料の合計の含有量は、原料の全量を基準として、例えば、5質量%以上であってよく、80質量%以下、70質量%以下、又は60質量以下であってよい。その他の原料のうち、NaF以外のNa源の含有量は、原料の全量を基準として、3質量%以上であってよく、16質量%以下、14質量%以下、12質量%以下、又は10質量以下であってよい。 Specifically, the content of the base material may be, for example, 20% by mass or more, 30% by mass or more, 40 % by mass or more, 50% by mass or more, or 60 % by mass or more based on the total amount of the raw materials. The total content of the other raw materials may be, for example, 5% by mass or more, and 80% by mass or less, 70% by mass or less, or 60 % by mass or less based on the total amount of the raw materials. Among the other raw materials, the content of the Na source other than NaF may be 3% by mass or more, and 16% by mass or less, 14% by mass or less, 12% by mass or less, or 10 % by mass or less based on the total amount of the raw materials.

また、一実施形態において、原料中のF源の含有量も少なくすることができる。その他の原料のうち、NaF以外のF源の含有量は、原料の全量を基準として、35質量%以下、30質量%以下、25質量%以下、又は20質量以下であってよい。 In one embodiment, the content of the F source in the raw material can also be reduced. The content of the F source other than NaF among the other raw materials may be 35 mass% or less, 30 mass% or less, 25 mass% or less, or 20 mass % or less based on the total amount of the raw materials.

造粒工程が含まれる場合、配合工程では、その他の原料として有機バインダーなどを更に配合してもよい。この場合、造粒工程では、まず、配合工程で得られた配合物を水などの分散媒に分散させてスラリーを調製する。その後、スラリーをスプレー等で噴霧した上で、乾燥させる。これにより、分散媒が蒸発し、中空顆粒状のフラックスが得られる。配合物の含有量は、スラリーの全量を基準として、例えば、40質量%以上、50質量%以上、又は60質量以上であってよく、80質量%以下であってよい。 When the granulation process is included, an organic binder or the like may be further blended as other raw materials in the blending process. In this case, in the granulation process, the blend obtained in the blending process is first dispersed in a dispersion medium such as water to prepare a slurry. The slurry is then sprayed with a spray or the like and then dried. This causes the dispersion medium to evaporate, and a hollow granular flux is obtained. The content of the blend may be, for example, 40 mass% or more, 50 mass% or more, or 60 mass % or more, and 80 mass% or less, based on the total amount of the slurry.

以上説明した製造方法により得られるフラックスは、フラックスの全量を基準として、合計で30質量%以上のSiO及びCaOと、6質量%以上のNaOと、3質量%以上のFと、を含有する。 The flux obtained by the manufacturing method described above contains a total of 30 mass % or more of SiO2 and CaO, 6 mass % or more of Na2O , and 3 mass % or more of F based on the total amount of the flux.

SiO及びCaOの合計の含有量は、フラックスの全量を基準として、35質量%以上、40質量%以上、又は50質量%以上であってもよく、90質量%以下、85質量%以下、又は80質量%以下であってもよい。SiOの含有量は、フラックスの全量を基準として、例えば、20質量%以上であってよく、50質量%以下であってよい。CaOの含有量は、フラックスの全量を基準として、例えば、3質量%以上であってよく、50質量%以下であってよい。 The total content of SiO2 and CaO may be 35 mass% or more, 40 mass% or more, or 50 mass% or more, and 90 mass% or less, 85 mass% or less, or 80 mass% or less, based on the total amount of the flux. The content of SiO2 may be, for example, 20 mass% or more and 50 mass% or less, based on the total amount of the flux. The content of CaO may be, for example, 3 mass% or more and 50 mass% or less, based on the total amount of the flux.

NaOの含有量は、フラックスの全量を基準として、7質量%以上、8質量%以上、9質量%以上、又は10質量%以上であってもよい。上記の製造方法によれば、所定の基材を用いることにより、このように比較的多い量のNaOを含有するフラックスが、NaFを極力用いずに好適に得られる。NaOの含有量は、フラックスの全量を基準として、例えば、50質量%以下、45質量%以下、又は40質量%以下であってもよい。 The content of Na 2 O may be 7 mass% or more, 8 mass% or more, 9 mass% or more, or 10 mass% or more based on the total amount of the flux. According to the above manufacturing method, by using a predetermined base material, a flux containing such a relatively large amount of Na 2 O can be suitably obtained with as little use of NaF as possible. The content of Na 2 O may be, for example, 50 mass% or less, 45 mass% or less, or 40 mass% or less based on the total amount of the flux.

Fの含有量は、フラックスの全量を基準として、例えば、4質量%以上、5質量%以上、6質量%以上、7質量%以上、又は8質量%以上であってもよい。上記の製造方法によれば、所定の基材を用いることにより、このように比較的多い量のFを含有するフラックスが、NaFを極力用いずに好適に得られる。Fの含有量は、フラックスの全量を基準として、例えば、30質量%以下、25質量%以下、又は20質量%以下であってもよい。 The F content may be, for example, 4 mass% or more, 5 mass% or more, 6 mass% or more, 7 mass% or more, or 8 mass% or more based on the total amount of the flux. According to the above manufacturing method, by using a specific base material, a flux containing such a relatively large amount of F can be suitably obtained with minimal use of NaF. The F content may be, for example, 30 mass% or less, 25 mass% or less, or 20 mass% or less based on the total amount of the flux.

SiO、CaO及びNaOの含有量は、フラックスについて蛍光X線分析を行うことにより、Si、Ca及びNaの含有量を測定し、これらの含有量をそれぞれ酸化物(SiO、CaO及びNaO)の含有量に換算した値として求められる。Fの含有量は、フラックスについて蛍光X線分析を行うことにより測定されるFの含有量として求められる。フラックスの蛍光X線分析は、上述した基材の蛍光X線分析と同様の手順により行われる。なお、フラックスの蛍光X線分析において、上述したガラスビードを作成した上で分析を行う場合、ガラスビード作製時にフラックスを一旦溶融させることになるため、各成分の含有量は、強熱減量を考慮すると溶融後のフラックスの全量を基準とした含有量に換算することもできる。 The contents of SiO 2 , CaO and Na 2 O are obtained by measuring the contents of Si, Ca and Na by performing fluorescent X-ray analysis on the flux, and converting these contents into the contents of oxides (SiO 2 , CaO and Na 2 O). The content of F is obtained as the content of F measured by performing fluorescent X-ray analysis on the flux. The fluorescent X-ray analysis of the flux is performed by the same procedure as the fluorescent X-ray analysis of the above-mentioned base material. In the fluorescent X-ray analysis of the flux, when the above-mentioned glass beads are prepared and then analyzed, the flux is melted once when the glass beads are prepared, so that the contents of each component can also be converted to the contents based on the total amount of the flux after melting, taking into account the ignition loss.

フラックスは、NaFを含んでもよく含まなくてもよいが、一実施形態において、在庫管理や輸送管理などの取扱いの負担を低減する観点から、フラックス中のNaFの含有量は、フラックスの全量を基準として10質量%未満となっている。同様の観点から、NaFの含有量は、フラックスの全量を基準として、好ましくは、9質量%以下、8質量%以下、7質量%以下、6質量%以下、5質量%以下、4質量%以下、3質量%以下、2質量%以下、又は1質量%以下であり、より好ましくは0質量%である(すなわちフラックスはNaFを含まない)。 The flux may or may not contain NaF, but in one embodiment, from the viewpoint of reducing the burden of handling such as inventory management and transportation management, the content of NaF in the flux is less than 10 mass% based on the total amount of the flux. From the same viewpoint, the content of NaF is preferably 9 mass% or less, 8 mass% or less, 7 mass% or less, 6 mass% or less, 5 mass% or less, 4 mass% or less, 3 mass% or less, 2 mass% or less, or 1 mass% or less based on the total amount of the flux, and more preferably 0 mass% (i.e., the flux does not contain NaF).

フラックス中にNaFが含まれるか否かは、フラックスについてX線回折測定を行ったときに、NaFに由来する回折ピークが観測される否か(検出限界以上であるか否か)によって確認できる。フラックス中のNaFの含有量は、X線回折測定のピーク強度から測定できる。フラックスのX線回折測定は、上述した基材のX線回折測定と同様の手順により行われる。 Whether or not NaF is contained in the flux can be confirmed by whether or not a diffraction peak derived from NaF is observed (whether or not it is above the detection limit) when X-ray diffraction measurement is performed on the flux. The content of NaF in the flux can be measured from the peak intensity of the X-ray diffraction measurement. The X-ray diffraction measurement of the flux is performed using the same procedure as the X-ray diffraction measurement of the substrate described above.

フラックスは、上述した各成分に加えて、その他の成分を更に含有してもよい。その他の成分は、例えば、Al、Fe、MgO、LiO、B等であってよい。 The flux may further contain other components in addition to the above-mentioned components. The other components may be, for example, Al2O3 , Fe2O3 , MgO, Li2O , B2O3 , and the like.

フラックスは、鋼の製造(製鋼)に好適に用いられ、より具体的には、例えば、連続鋳造用フラックス、遠心鋳造用フラックス、タンディッシュ排滓用フラックス等として好適に用いられる。フラックスは、連続鋳造用フラックス又は遠心鋳造用フラックスとしてより好適に用いられ、中炭素鋼の連続鋳造用フラックス、高炭素鋼の連続鋳造用フラックス、又は遠心鋳造用フラックスとして特に好適に用いられる。 The flux is preferably used in the production of steel (steelmaking), and more specifically, for example, as a flux for continuous casting, a flux for centrifugal casting, a flux for tundish slag disposal, etc. The flux is more preferably used as a flux for continuous casting or a flux for centrifugal casting, and is particularly preferably used as a flux for continuous casting of medium carbon steel, a flux for continuous casting of high carbon steel, or a flux for centrifugal casting.

以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

(基材の準備)
まず、所望の基材の組成に応じて、珪石粉、セメント、炭酸カルシウム、消石灰、ホタル石、ソーダ灰等を混合し、キュポラにて溶融した。得られた溶融物をジェット水流によって急冷・水砕し、乾燥後に粉砕して基材を得た。得られた基材の組成を表1に示す。
(Preparation of substrate)
First, silica powder, cement, calcium carbonate, slaked lime, fluorite, soda ash, etc. were mixed according to the desired composition of the base material and melted in a cupola. The resulting molten material was quenched and water-granulated by a water jet, dried, and then crushed to obtain the base material. The composition of the obtained base material is shown in Table 1.

<NaFの再晶出の有無の評価>
得られた各基材について、X線回折測定を行い、NaFに由来する回折ピークの有無を確認した。結果を表1に示す。なお、X線回折測定は、Cuターゲット、管電圧50KV、管電流40mAの条件で行った。また、比較用試料としてガラス粉(非晶質)を準備し、基材の2θ=38~39degreeにおける回折ピーク(第1ピーク)の強度が、比較用試料の当該回折ピークの強度を超えた場合に、NaFに由来する回折ピーク「有」と判断し、そうでない場合にNaFに由来する回折ピーク「無」と判断した。
<Evaluation of the Presence or Absence of Recrystallization of NaF>
X-ray diffraction measurements were performed on each of the obtained substrates to confirm the presence or absence of a diffraction peak derived from NaF. The results are shown in Table 1. The X-ray diffraction measurements were performed under the conditions of a Cu target, a tube voltage of 50 KV, and a tube current of 40 mA. In addition, glass powder (amorphous) was prepared as a comparative sample, and if the intensity of the diffraction peak (first peak) at 2θ = 38 to 39 degrees of the substrate exceeded the intensity of the diffraction peak of the comparative sample, it was determined that the diffraction peak derived from NaF was "present", and if not, it was determined that the diffraction peak derived from NaF was "absent".

<固まりの有無の評価>
得られた各基材と水とを、基材:水=10:1の質量比で混合した。得られた混合物を10mmφ円柱に成型し、24時間乾燥して試料を得た。得られた試料に対してプッシュゲージで圧力をかけ、試料が崩壊したときの圧力(N)を測定した。圧力が400N以下である場合を「A」と評価し、圧力が400Nを超える場合を「B」と評価した。結果を表1に示す。
<Evaluation of the presence or absence of lumps>
The obtained base materials and water were mixed in a mass ratio of base material:water = 10:1. The obtained mixture was molded into a 10 mmφ cylinder and dried for 24 hours to obtain a sample. Pressure was applied to the obtained sample with a push gauge, and the pressure (N) at which the sample collapsed was measured. When the pressure was 400 N or less, it was evaluated as "A", and when the pressure was more than 400 N, it was evaluated as "B". The results are shown in Table 1.

Figure 0007510256000001
Figure 0007510256000001

(中炭素鋼の連続鋳造用フラックスの製造)
上記で得られた基材のうち表2に示す種類の基材を用いた。得られるフラックスにおける各成分の含有量(上述した手順により作製されたガラスビードを蛍光X線分析で測定して求められる含有量)が、フラックス(溶融後のフラックス)の全量を基準として、SiO:33.3質量%、CaO:41.6質量%、NaO:10.4質量%、F:10.3質量%、Al:5.4質量%、LiO:1.2質量%、MgO、B等のその他の成分:1.0質量%以下となるように(この組成は、中炭素鋼の連続鋳造用フラックスとして好適である)、当該基材に対して表2に示すその他の原料を加えて配合し、原料を準備した。なお、表2中の「その他」は、珪石粉、ガラス粉、バンド頁岩、アルミナ、炭酸カルシウム、セメント、炭酸リチウム、骨材カーボン、及び有機バインダーを含む。続いて、原料に水を加えてスラリーを調製した後、当該スラリーを噴霧造粒することにより、中空顆粒状のフラックス(中炭素鋼の連続鋳造用フラックス)を得た。
(Manufacture of flux for continuous casting of medium carbon steel)
Among the substrates obtained above, the types of substrates shown in Table 2 were used. The contents of each component in the obtained flux (contents determined by measuring glass beads prepared by the above-mentioned procedure by X-ray fluorescence analysis) were SiO 2 : 33.3 mass%, CaO: 41.6 mass%, Na 2 O: 10.4 mass%, F: 10.3 mass%, Al 2 O 3 : 5.4 mass%, Li 2 O: 1.2 mass%, other components such as MgO and B 2 O 3 : 1.0 mass% or less based on the total amount of the flux (flux after melting) (this composition is suitable as a flux for continuous casting of medium carbon steel), and other raw materials shown in Table 2 were added to the substrate and blended to prepare raw materials. Note that "others" in Table 2 includes silica powder, glass powder, band shale, alumina, calcium carbonate, cement, lithium carbonate, aggregate carbon, and organic binder. Next, water was added to the raw material to prepare a slurry, and the slurry was then spray-granulated to obtain a hollow granular flux (flux for continuous casting of medium carbon steel).

<臭気の評価>
原料の準備及びスラリーの準備を行った作業者10名に対して、不快感の有無を質問し、不快感「有」と回答した作業者が1名でもいれば臭気「有」として評価し、当該作業者が1名もいなければ臭気「無」として評価した。結果を表2に示す。
<Odor Evaluation>
Ten workers who prepared the raw materials and the slurry were asked whether they felt uncomfortable, and if even one worker answered "yes," the odor was evaluated as "yes." If no worker answered "yes," the odor was evaluated as "no." The results are shown in Table 2.

<噴上げ及び発炎の評価>
高周波誘導加熱炉において、1550℃に保持した溶銑上に得られた各フラックスを散布し、噴上げ及び発炎の有無を目視により評価した。結果を表2に示す。
<Evaluation of Spouting and Flame Generation>
In a high-frequency induction heating furnace, each of the obtained fluxes was sprayed onto molten iron held at 1550° C., and the presence or absence of spraying and flame generation was visually evaluated. The results are shown in Table 2.

Figure 0007510256000002
Figure 0007510256000002

(高炭素鋼の連続鋳造用フラックスの製造)
上記で得られた基材のうち表3に示す種類の基材を用いた。得られるフラックスにおける各成分の含有量(上述した手順により作製されたガラスビードを蛍光X線分析で測定して求められる含有量)が、フラックス(溶融後のフラックス)の全量を基準として、SiO:31.0質量%、CaO:31.0質量%、NaO:20.9質量%、F:10.2質量%、Al:8.9質量%、MgO、B等のその他の成分:各1.0質量%以下となるように(この組成は、高炭素鋼の連続鋳造用フラックスとして好適である)、当該基材に対して表3に示すその他の原料を加えて配合し、原料を準備した。なお、表3中の「その他」は、珪石粉、ガラス粉、バンド頁岩、アルミナ、炭酸カルシウム、セメント、炭酸リチウム、骨材カーボン、及び有機バインダーを含む。これらの点以外は、中炭素鋼の連続鋳造用フラックスと同様にして、高炭素鋼の連続鋳造用フラックスの製造及び評価を行った。評価の結果を表3に示す。
(Manufacture of flux for continuous casting of high carbon steel)
Among the substrates obtained above, the types of substrates shown in Table 3 were used. The contents of each component in the obtained flux (contents determined by measuring glass beads prepared by the above-mentioned procedure by X-ray fluorescence analysis) were SiO 2 : 31.0 mass%, CaO: 31.0 mass%, Na 2 O: 20.9 mass%, F: 10.2 mass%, Al 2 O 3 : 8.9 mass%, and other components such as MgO and B 2 O 3 : 1.0 mass% or less based on the total amount of the flux (flux after melting) (this composition is suitable as a flux for continuous casting of high carbon steel), and other raw materials shown in Table 3 were added to the substrate and blended to prepare raw materials. Note that "others" in Table 3 includes silica powder, glass powder, band shale, alumina, calcium carbonate, cement, lithium carbonate, aggregate carbon, and organic binder. Except for these points, the flux for continuous casting of high carbon steel was produced and evaluated in the same manner as the flux for continuous casting of medium carbon steel. The evaluation results are shown in Table 3.

Figure 0007510256000003
Figure 0007510256000003

(遠心鋳造用フラックスの製造)
上記で得られた基材のうち表4に示す種類の基材を用いた。得られるフラックスにおける各成分の含有量(上述した手順により作製されたガラスビードを蛍光X線分析で測定して求められる含有量)が、フラックス(溶融後のフラックス)の全量を基準として、SiO:33.6質量%、CaO:3.9質量%、NaO:36.6質量%、F:17.8質量%、LiO:2.2質量%、MgO:4.6質量%、B:7.4質量%、Al等のその他の成分:各1.0質量%以下となるように(この組成は、遠心鋳造用フラックスとして好適である)、当該基材に対して表4に示すその他の原料を加えて配合し、粉末状のフラックス(遠心鋳造用フラックス)を得た。なお、表4中の「その他」は、珪石粉、ガラス粉、軽焼マグネサイト、炭酸リチウム、及び硼砂を含む。得られた遠心鋳造用フラックスについて、中炭素鋼の連続鋳造用フラックスと同様の評価を行った。評価の結果を表4に示す。
(Manufacture of flux for centrifugal casting)
Among the substrates obtained above, the types of substrates shown in Table 4 were used. The contents of each component in the obtained flux (contents determined by measuring glass beads prepared by the above-mentioned procedure by fluorescent X-ray analysis) were SiO 2 : 33.6 mass%, CaO: 3.9 mass%, Na 2 O: 36.6 mass%, F: 17.8 mass%, Li 2 O: 2.2 mass%, MgO: 4.6 mass%, B 2 O 3 : 7.4 mass%, Al 2 O 3 and other components: each 1.0 mass% or less based on the total amount of the flux (flux after melting) (this composition is suitable as a flux for centrifugal casting), and other raw materials shown in Table 4 were added and mixed to the substrate to obtain a powdered flux (flux for centrifugal casting). Note that "others" in Table 4 includes silica powder, glass powder, light-burned magnesite, lithium carbonate, and borax. The obtained flux for centrifugal casting was evaluated in the same manner as the flux for continuous casting of medium carbon steel. The evaluation results are shown in Table 4.

Figure 0007510256000004
Figure 0007510256000004

Claims (8)

製鋼用フラックス(金属発熱材としてCa-Si、Al-MgおよびCa-Al合金のうちの1種以上を5~20質量%、および助燃材として酸化鉄を5~20質量%含むモールドパウダーを除く)の製造に用いられるプリメルト基材であって、
プリメルト基材の全量を基準として、合計で35質量%以上のSiO及びCaOと、12質量%以上40質量%以下のNaOと、を含有し、
Fの含有量が、プリメルト基材の全量を基準として24質量%以下である、プリメルト基材(結晶を組成割合で50質量%以上含むものを除く)
A premelt base material used in the manufacture of a steelmaking flux (excluding a mold powder containing 5 to 20 mass % of one or more of Ca-Si, Al-Mg and Ca-Al alloy as a metal heating material, and 5 to 20 mass % of iron oxide as a combustion improver),
Based on the total amount of the premelt base material, the premelt base material contains a total of 35 mass% or more of SiO2 and CaO, and 12 mass% or more and 40 mass% or less of Na2O ,
A premelt base material (excluding those containing crystals in a composition ratio of 50% by mass or more), in which the F content is 24% by mass or less based on the total amount of the premelt base material.
前記Fの含有量が、前記プリメルト基材の全量を基準として6.5質量%以上である、請求項1に記載のプリメルト基材。 The premelt base material according to claim 1, wherein the F content is 6.5 mass% or more based on the total amount of the premelt base material. プリメルト基材(結晶を組成割合で50質量%以上含むものを除く)を含む原料から製鋼用フラックス(金属発熱材としてCa-Si、Al-MgおよびCa-Al合金のうちの1種以上を5~20質量%、および助燃材として酸化鉄を5~20質量%含むモールドパウダーを除く)を得る工程を備える製鋼用フラックスの製造方法であって、
前記プリメルト基材が、前記プリメルト基材の全量を基準として、合計で35質量%以上のSiO及びCaOと、12質量%以上40質量%以下のNaOと、を含有し、
前記プリメルト基材中のFの含有量が、前記プリメルト基材の全量を基準として24質量%以下である、製造方法。
A method for producing flux for steelmaking, comprising a step of obtaining flux for steelmaking (excluding mold powder containing 5 to 20 mass% of one or more of Ca-Si, Al-Mg and Ca-Al alloy as a metal heating material, and 5 to 20 mass% of iron oxide as a combustion improver) from a raw material containing a premelt base material ( excluding those containing 50 mass% or more of crystals in terms of composition ratio),
The premelt base material contains a total of 35 mass% or more of SiO2 and CaO, and 12 mass% or more and 40 mass% or less of Na2O , based on the total amount of the premelt base material;
The production method, wherein the F content in the premelt base material is 24 mass% or less based on the total amount of the premelt base material.
前記プリメルト基材中のFの含有量が、前記プリメルト基材の全量を基準として6.5質量%以上である、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the F content in the premelt base material is 6.5 mass% or more based on the total amount of the premelt base material. 前記原料中のNaFの含有量が、前記原料の全量を基準として10質量%未満である、請求項3又は4に記載の製造方法。 The method according to claim 3 or 4, wherein the content of NaF in the raw material is less than 10 mass% based on the total amount of the raw material. 前記原料がNaFを含まない、請求項3又は4に記載の製造方法。 The manufacturing method according to claim 3 or 4, wherein the raw material does not contain NaF. 前記原料が、前記プリメルト基材に加えて、NaF以外のNa源を更に含む、請求項3~6のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 6, wherein the raw material further contains a Na source other than NaF in addition to the premelt base material. 前記原料が、前記プリメルト基材に加えて、NaF以外のF源を更に含む、請求項3~7のいずれか一項に記載の製造方法。 The manufacturing method according to any one of claims 3 to 7, wherein the raw material further contains, in addition to the premelt base material, an F source other than NaF.
JP2020011680A 2020-01-28 2020-01-28 Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method Active JP7510256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020011680A JP7510256B2 (en) 2020-01-28 2020-01-28 Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011680A JP7510256B2 (en) 2020-01-28 2020-01-28 Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021115611A JP2021115611A (en) 2021-08-10
JP7510256B2 true JP7510256B2 (en) 2024-07-03

Family

ID=77173888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011680A Active JP7510256B2 (en) 2020-01-28 2020-01-28 Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7510256B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169136A (en) 1998-12-07 2000-06-20 Shinagawa Refract Co Ltd Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JP2005118802A (en) 2003-10-15 2005-05-12 Jfe Steel Kk Method for producing base material of mold powder for continuous casting
JP2013144311A (en) 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Corp Mold flux for continuous casting
JP2013163194A (en) 2012-02-09 2013-08-22 Shinagawa Refractories Co Ltd Spherical granule mold powder for continuous casting of steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927753A (en) * 1982-08-05 1984-02-14 Nippon Steel Metal Prod Co Ltd Production of base material for additive for casting of steel
JP3082572B2 (en) * 1994-07-07 2000-08-28 住友金属工業株式会社 Colored powder for continuous casting
JPH1034301A (en) * 1996-07-19 1998-02-10 Sumitomo Metal Ind Ltd Mold powder at initial stage for continuous casting
JP3179358B2 (en) * 1997-01-31 2001-06-25 日本鋼管株式会社 Mold powder for continuous casting
JP3500894B2 (en) * 1997-03-25 2004-02-23 Jfeスチール株式会社 Continuous casting of steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169136A (en) 1998-12-07 2000-06-20 Shinagawa Refract Co Ltd Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JP2005118802A (en) 2003-10-15 2005-05-12 Jfe Steel Kk Method for producing base material of mold powder for continuous casting
JP2013144311A (en) 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Corp Mold flux for continuous casting
JP2013163194A (en) 2012-02-09 2013-08-22 Shinagawa Refractories Co Ltd Spherical granule mold powder for continuous casting of steel

Also Published As

Publication number Publication date
JP2021115611A (en) 2021-08-10

Similar Documents

Publication Publication Date Title
KR102277782B1 (en) Casting powder, casting slag and method for casting steel
CA2079872A1 (en) Compositions and methods for synthesizing ladle slags, treating ladle slags, and coating refractory linings
JP2002346708A (en) Mold powder for continuous casting
CN111644582B (en) Tundish covering agent for titanium-containing steel and preparation method and application thereof
JP2013534895A (en) Refractory block and glass furnace
JP2000169136A (en) Synthetic calcium silicate and mold powder for continuous casting of steel using the same
JPWO2012133795A1 (en) Environmental protection molten steel desulfurization flux
JP7510256B2 (en) Base material used in the manufacture of steelmaking flux, steelmaking flux and its manufacturing method
Marschall et al. Identification of secondary raw materials in mold powders and their melting behavior
CN106111928B (en) It is a kind of novel containing Mn, Al steel covering slag and its application
JPS60258406A (en) Synthetic flux for molten steel
CN109702158B (en) Casting powder for high-aluminum steel continuous casting and preparation method and application thereof
TW201329243A (en) Modifier for steel refinement
EP4129904A1 (en) Method for synthesizing cuspidine and fluorosilicates and uses thereof
JP2020032428A (en) Mold powder for steel continuous casting
JP2021146347A (en) Sintering raw material, mold powder and method for producing sintering raw material
WO2022075197A1 (en) Flux added onto molten steel accommodated in container
JP7303989B2 (en) Method for modifying boron-containing substance and method for producing civil engineering and construction material
FR2541310A1 (en) Method for manufacturing steel-desulphurisation slag
RU2424343C2 (en) Procedure for melting refined ferro-chromium
KR20000015192A (en) Surface heat insulating material of smelting furnace
JP3698685B2 (en) Steel additive
RU2308350C2 (en) Heat insulation mixture for protection and heat insulation of metal in intermediate and steel casting ladles at steel continuous casting
JP2022116475A (en) Apparatus and method for controlling hue of slag
RU2031093C1 (en) Rammed mass for lining of induction oven

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240621