[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7507701B2 - Silica scale inhibitor - Google Patents

Silica scale inhibitor Download PDF

Info

Publication number
JP7507701B2
JP7507701B2 JP2021011386A JP2021011386A JP7507701B2 JP 7507701 B2 JP7507701 B2 JP 7507701B2 JP 2021011386 A JP2021011386 A JP 2021011386A JP 2021011386 A JP2021011386 A JP 2021011386A JP 7507701 B2 JP7507701 B2 JP 7507701B2
Authority
JP
Japan
Prior art keywords
salt
group
sulfonic acid
present disclosure
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021011386A
Other languages
Japanese (ja)
Other versions
JP2022114909A (en
Inventor
尊子 張替
義貴 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2021011386A priority Critical patent/JP7507701B2/en
Publication of JP2022114909A publication Critical patent/JP2022114909A/en
Application granted granted Critical
Publication of JP7507701B2 publication Critical patent/JP7507701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、シリカスケール防止剤に関する。より詳しくは、各種水処理の過程で発生するシリカスケール抑制に用いられるシリカスケール防止剤に関する。 The present invention relates to a silica scale inhibitor. More specifically, the present invention relates to a silica scale inhibitor used to inhibit silica scale generation during various water treatment processes.

例えば、地熱発電や、工業用冷却水、海水の淡水処理化等において、炭酸カルシウムやシリカなどのスケールの発生が問題になる。
例えば、特許文献1に記載のスルホン酸基含有単量体由来の構造単位が5モル%以上、22モル%以下であり、(メタ)アクリル酸(塩)由来の構造単位が78モル%以上95モル%以下であり、少なくとも一つの主鎖末端にスルホン酸(塩)基を有し重量平均分子量が13000から50000である共重合体は耐ゲル性優れ、高いカルシウムイオンのキレート能を有することから、スケール防止剤などの水処理剤として好適に用いることが出来ることが開示されている。例えば、特許文献2に記載の共重合体は、疎水粒子の分散性を向上させ、また、カルシウムイオンへの優れたキレート能を発揮するため、地熱発電装置の配管や装置内部に対して極めて良好なスケール防止能を発揮することが可能となることから、地熱発電装置用スケール防止剤として好適に用いることができることが開示されている。
For example, in geothermal power generation, industrial cooling water, and seawater desalination, the generation of scale such as calcium carbonate and silica can be a problem.
For example, it is disclosed that a copolymer having 5 mol% or more and 22 mol% or less of a structural unit derived from a sulfonic acid group-containing monomer, 78 mol% or more and 95 mol% or less of a structural unit derived from (meth)acrylic acid (salt), a sulfonic acid (salt) group at at least one main chain end, and a weight average molecular weight of 13,000 to 50,000 has excellent gel resistance and high calcium ion chelating ability, and therefore can be suitably used as a water treatment agent such as a scale inhibitor. For example, it is disclosed that the copolymer described in Patent Document 2 improves the dispersibility of hydrophobic particles and also exhibits excellent chelating ability to calcium ions, so that it is possible to exhibit extremely good scale prevention ability for the piping and inside of a geothermal power generation device, and therefore can be suitably used as a scale inhibitor for a geothermal power generation device.

特開2012-188586号公報JP 2012-188586 A 特開2016-064382号公報JP 2016-064382 A

上記のとおりスケール防止剤などの水処理剤が提案されているが、シリカスケールの抑制能をさらに向上させる要望があり、また、入手が容易である汎用の単量体を用いて製造する重合体による、様々な水処理用途でのシリカスケール防止に適用可能であるシリカスケール防止剤が望まれていた。本発明は、シリカスケールの抑制能に優れることから、例えばシリカスケール防止剤として好適に使用することが可能な(メタ)アクリル酸系共重合体を提供することを目的とする。 As described above, water treatment agents such as scale inhibitors have been proposed, but there is a demand for further improvement in the silica scale inhibition ability, and there has been a demand for a silica scale inhibitor that can be applied to prevent silica scale in various water treatment applications and is made of a polymer produced using a general-purpose monomer that is easily available. The present invention aims to provide a (meth)acrylic acid-based copolymer that has excellent silica scale inhibition ability and can therefore be suitably used, for example, as a silica scale inhibitor.

本発明者は、上記目的を達成する為に種々検討を行ない、本発明に想到した。
すなわち本開示のスケール防止剤は、(メタ)アクリル酸(塩)由来の構造単位と、スルホン酸(塩)基含有単量体由来の構造単位とを含む共重合体であって、全単量体由来の構造100モル%に対して、スルホン酸(塩)基含有単量体由来の構造単位が11モル%以上であり、共重合体の少なくとも一つの主鎖末端にスルホン酸(塩)基を有し、重量平均分子量が20000以上であることを特徴とする(メタ)アクリル酸系共重合体を含む。
The present inventors have conducted various investigations to achieve the above object and have arrived at the present invention.
That is, the scale inhibitor of the present disclosure is a copolymer containing structural units derived from (meth)acrylic acid (salt) and structural units derived from a sulfonic acid (salt) group-containing monomer, wherein the structural units derived from the sulfonic acid (salt) group-containing monomer account for 11 mol % or more of the structures derived from all monomers (100 mol %), the copolymer has a sulfonic acid (salt) group at at least one main chain end, and includes a (meth)acrylic acid-based copolymer having a weight average molecular weight of 20,000 or more.

本開示の(メタ)アクリル酸系共重合体を含むシリカスケール防止剤は、シリカスケールの良好な抑制能を発現することにより、シリカスケール防止剤として好ましく使用することができる。 The silica scale inhibitor containing the (meth)acrylic acid-based copolymer of the present disclosure exhibits good silica scale inhibition ability and can therefore be preferably used as a silica scale inhibitor.

以下、本発明を詳細に説明する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
The present invention will be described in detail below.
In addition, a combination of two or more of the individual preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.

[本開示の共重合体]
本開示の共重合体は、(メタ)アクリル酸(塩)由来の構造単位と、スルホン酸(塩)基含有単量体由来の構造単位とを含む共重合体であって、全単量体由来の構造100モル%に対して、スルホン酸(塩)基含有単量体由来の構造単位が11モル%以上であり、共重合体の少なくとも一つの主鎖末端にスルホン酸(塩)基を有し、重量平均分子量が20000以上であることを特徴とする(メタ)アクリル酸系共重合体である。なお、上記共重合体を、本開示の共重合体と呼ぶことがある。
[Copolymer of the present disclosure]
The copolymer of the present disclosure is a copolymer containing a structural unit derived from (meth)acrylic acid (salt) and a structural unit derived from a monomer containing a sulfonic acid (salt), the structural unit derived from the monomer containing a sulfonic acid (salt) group is 11 mol% or more relative to 100 mol% of the structures derived from all monomers, the copolymer has a sulfonic acid (salt) group at at least one main chain end, and is a (meth)acrylic acid-based copolymer characterized by having a weight average molecular weight of 20000 or more. The above copolymer may be referred to as the copolymer of the present disclosure.

<(メタ)アクリル酸(塩)由来の構造単位>
本開示において、(メタ)アクリル酸とは、アクリル酸、メタクリル酸、およびそれらの塩をいう。
上記塩としては、特に制限はないが、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩、アンモニウム塩などが例示される。
本開示において、(メタ)アクリル酸(塩)由来の構造単位とは、(メタ)アクリル酸(塩)の炭素炭素二重結合が炭素炭素単結合に置き換わった構造単位を表す。例えば、アクリル酸、CH=CH(COOH)、であれば、アクリル酸由来の構造単位は、-CH-CH(COOH)-、で表すことができる。(メタ)アクリル酸(塩)由来の構造単位は、例えば、(メタ)アクリル酸(塩)をラジカル重合することにより形成することができる。なお、(メタ)アクリル酸(塩)由来の構造単位は、(メタ)アクリル酸(塩)の炭素炭素二重結合が炭素炭素単結合に置き換わった構造と同じ構造であればよく、(メタ)アクリル酸(塩)が重合することにより形成された構造単位に限定されず、例えば重合後の後反応により形成された構造単位であってもよい。
<Structural Unit Derived from (Meth)acrylic Acid (Salt)>
In this disclosure, (meth)acrylic acid refers to acrylic acid, methacrylic acid, and salts thereof.
The above salt is not particularly limited, but examples thereof include alkali metal salts, alkaline earth metal salts, transition metal salts, and ammonium salts.
In the present disclosure, a structural unit derived from (meth)acrylic acid (salt) refers to a structural unit in which a carbon-carbon double bond of (meth)acrylic acid (salt) is replaced with a carbon-carbon single bond. For example, if acrylic acid is CH 2 ═CH(COOH), the structural unit derived from acrylic acid can be represented as —CH 2 —CH(COOH)—. A structural unit derived from (meth)acrylic acid (salt) can be formed, for example, by radical polymerization of (meth)acrylic acid (salt). Note that the structural unit derived from (meth)acrylic acid (salt) is not limited to a structural unit formed by polymerization of (meth)acrylic acid (salt), as long as it has the same structure as the structure in which a carbon-carbon double bond of (meth)acrylic acid (salt) is replaced with a carbon-carbon single bond, and may be, for example, a structural unit formed by a post-reaction after polymerization.

本開示の共重合体における、(メタ)アクリル酸(塩)由来の構造単位の含有量は、本開示の共重合体を構成するすべての単量体に由来する構造単位100モル%に対し、好ましくは50モル%以上、より好ましくは60モル%以上、さらに好ましくは70モル%以上である。また、好ましくは89モル%以下、より好ましくは86モル%以下、さらに好ましくは82モル%以下である。なお、上記(メタ)アクリル酸(塩)由来の構造単位の含有量は、(メタ)アクリル酸換算で算出する。(メタ)アクリル酸換算とは、(メタ)アクリル酸(塩)由来の構造単位が(メタ)アクリル酸塩由来の構造単位である場合でも、(メタ)アクリル酸として質量計算することをいう。上記範囲であることにより、本開示のスケール防止のシリカスケール抑制能が向上する傾向にある。 The content of structural units derived from (meth)acrylic acid (salt) in the copolymer of the present disclosure is preferably 50 mol% or more, more preferably 60 mol% or more, and even more preferably 70 mol% or more, based on 100 mol% of structural units derived from all monomers constituting the copolymer of the present disclosure. Also, it is preferably 89 mol% or less, more preferably 86 mol% or less, and even more preferably 82 mol% or less. The content of structural units derived from (meth)acrylic acid (salt) is calculated in terms of (meth)acrylic acid. "In terms of (meth)acrylic acid" means that even if the structural units derived from (meth)acrylic acid (salt) are structural units derived from a (meth)acrylic acid salt, the mass is calculated as (meth)acrylic acid. By being in the above range, the silica scale inhibition ability of the scale prevention of the present disclosure tends to be improved.

<スルホン酸(塩)基含有単量体由来の構造単位>
本開示において、スルホン酸(塩)基含有単量体とは、少なくとも1つの炭素炭素二重結合と、スルホン酸(塩)基とを含む化合物をいう。上記少なくとも1つの炭素炭素二重結合は、通常はラジカル重合性を有する。
上記塩としては、特に制限はないが、アルカリ金属塩、アルカリ土類金属塩、遷移金属塩、アンモニウム塩などが例示される。
本開示において、スルホン酸(塩)基含有単量体由来の構造単位とは、スルホン酸(塩)基含有単量体の少なくとも一つの炭素炭素二重結合が炭素炭素単結合に置き換わった構造単位を表す。なお、スルホン酸(塩)基含有単量体由来の構造単位は、スルホン酸(塩)基含有単量体の少なくとも1つの炭素炭素二重結合が炭素炭素単結合に置き換わった構造と同じ構造であればよく、スルホン酸(塩)基含有単量体が重合することにより形成された構造単位に限定されず、例えば重合後の後反応により形成された構造単位であってもよい。
スルホン酸(塩)基含有単量体としては、例えば、ビニルスルホン酸及びその塩、スチレンスルホン酸及びその塩、(メタ)アリルスルホン酸及びその塩、3-(メタ)アリルオキシ-2-ヒドロキシプロパンスルホン酸及びその塩、3-(メタ)アリルオキシ-1-ヒドロキシプロパンスルホン酸及びその塩、2-(メタ)アリルオキシエチレンスルホン酸及びその塩、2-アクリルアミド-2-メチルプロパンスルホン酸及びその塩等が挙げられる。
<Structural Unit Derived from Sulfonic Acid (Salt) Group-Containing Monomer>
In the present disclosure, a sulfonic acid (salt) group-containing monomer refers to a compound that contains at least one carbon-carbon double bond and a sulfonic acid (salt) group. The at least one carbon-carbon double bond is usually radically polymerizable.
The above salt is not particularly limited, but examples thereof include alkali metal salts, alkaline earth metal salts, transition metal salts, and ammonium salts.
In the present disclosure, the structural unit derived from a sulfonic acid (salt) group-containing monomer refers to a structural unit in which at least one carbon-carbon double bond of a sulfonic acid (salt) group-containing monomer is replaced with a carbon-carbon single bond. Note that the structural unit derived from a sulfonic acid (salt) group-containing monomer may have the same structure as the structure in which at least one carbon-carbon double bond of a sulfonic acid (salt) group-containing monomer is replaced with a carbon-carbon single bond, and is not limited to a structural unit formed by polymerization of a sulfonic acid (salt) group-containing monomer, and may be, for example, a structural unit formed by a post-reaction after polymerization.
Examples of the sulfonic acid (salt) group-containing monomer include vinyl sulfonic acid and its salts, styrene sulfonic acid and its salts, (meth)allyl sulfonic acid and its salts, 3-(meth)allyloxy-2-hydroxypropanesulfonic acid and its salts, 3-(meth)allyloxy-1-hydroxypropanesulfonic acid and its salts, 2-(meth)allyloxyethylenesulfonic acid and its salts, and 2-acrylamido-2-methylpropanesulfonic acid and its salts.

例えば、スルホン酸(塩)基含有単量体由来の構造単位は下記一般式(1)で表される。

Figure 0007507701000001
(一般式(1)中、Rは、水素原子またはメチル基を表し、XおよびYは、それぞれ独立
に水酸基またはスルホン酸(塩)基を表す(但し、X、Yのうち少なくとも一方はスルホ
ン酸(塩)基を表す。スルホン酸(塩)とは、スルホン酸、スルホン酸塩をいう。スルホン酸塩における塩とは、金属塩、アンモニウム塩、有機アミン塩である。具体的には、ナトリウム塩、リチウム塩、カリウム塩等のアルカリ金属塩;マグネシウム塩、カルシウム塩等のアルカリ土類金属塩;鉄の塩等の遷移金属塩;モノエタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩;モノエチルアミン塩、ジエチルアミン塩、トリエチルアミン塩等のアルキルアミン塩;エチレンジアミン塩、トリエチレンジアミン塩等のポリアミン等の有機アミンの塩;等が挙げられる。この中でもナトリウム塩、カリウム塩が特に好ましい。アスタリスクは、一般式(1)で表される構造単位が結合している同種もしくは異種の他の構造単位に含まれる原子を表す。)上記アスタリスクが表す原子が含まれる構造単位としては、特に制限はないが、単量体由来の構造単位、開始剤由来の構造単位、連鎖移動剤に由来する構造単位等が例示される。
本開示のスケール抑制剤のスケール抑制能が向上する傾向にあることから、3-(メタ)アリルオキシ-2-ヒドロキシプロパンスルホン酸及びその塩であることが好ましく、より好ましくは、3-アリルオキシ-2-ヒドロキシプロパンスルホン酸及びそのナトリウム塩である For example, a structural unit derived from a sulfonic acid (salt) group-containing monomer is represented by the following general formula (1).

Figure 0007507701000001
(In the general formula (1), R1 represents a hydrogen atom or a methyl group, and X and Y each independently represent a hydroxyl group or a sulfonic acid (salt) group (provided that at least one of X and Y represents a sulfonic acid (salt) group. Sulfonic acid (salt) refers to sulfonic acid and sulfonate salts. The salts of sulfonate salts are metal salts, ammonium salts, and organic amine salts. Specific examples of such salts include alkali metal salts such as sodium salts, lithium salts, and potassium salts; alkaline earth metal salts such as magnesium salts and calcium salts; transition metal salts such as iron salts; and alkali salts such as monoethanolamine salts, diethanolamine salts, and triethanolamine salts. Nolamine salts; alkylamine salts such as monoethylamine salts, diethylamine salts, and triethylamine salts; salts of organic amines such as polyamines such as ethylenediamine salts and triethylenediamine salts; and the like. Among these, sodium salts and potassium salts are particularly preferred. The asterisk represents an atom contained in another structural unit of the same type or different type to which the structural unit represented by general formula (1) is bonded.) The structural unit containing the atom represented by the asterisk is not particularly limited, but examples thereof include a structural unit derived from a monomer, a structural unit derived from an initiator, and a structural unit derived from a chain transfer agent.
Since the scale inhibitor of the present disclosure has a tendency to have improved scale inhibition ability, 3-(meth)allyloxy-2-hydroxypropanesulfonic acid and its salts are preferred, and 3-allyloxy-2-hydroxypropanesulfonic acid and its sodium salt are more preferred.

本開示の共重合体における、スルホン酸(塩)基含有単量体由来の構造単位の含有量は、本開示の共重合体を構成するすべての単量体に由来する構造単位100質量%に対し、11モル%以上、好ましくは12モル%以上、より好ましくは、13モル%以上である。また、好ましくは40モル%以下、好ましくは30モル%以下、より好ましくは25モル%以下である。なお、上記スルホン酸(塩)基含有単量体由来の構造単位の含有量は、ナトリウム塩換算で算出する。上記ナトリウム塩換算で算出するとは、スルホン酸(塩)基含有単量体由来の構造単位に含まれるスルホン酸(塩)基が例えば酸型のスルホン酸基である場合でも、スルホン酸基のナトリウム塩であるとして計算することをいう。
上記範囲であることにより、本開示のスケール抑制剤のシリカスケール抑制能が向上する傾向にある。例えば、上記範囲であることにより、スルホン酸(塩)基を多く含むポリマーはシリカ粒子に吸着しやすく、よってシリカ粒子の分散性が向上し、シリカ粒子の凝集を抑制することが可能となる。
The content of the structural unit derived from the sulfonic acid (salt) group-containing monomer in the copolymer of the present disclosure is 11 mol% or more, preferably 12 mol% or more, more preferably 13 mol% or more, based on 100% by mass of the structural units derived from all monomers constituting the copolymer of the present disclosure. It is also preferably 40 mol% or less, preferably 30 mol% or less, more preferably 25 mol% or less. The content of the structural unit derived from the sulfonic acid (salt) group-containing monomer is calculated in terms of sodium salt. The calculation in terms of sodium salt means that even if the sulfonic acid (salt) group contained in the structural unit derived from the sulfonic acid (salt) group-containing monomer is, for example, an acid type sulfonic acid group, it is calculated as the sodium salt of the sulfonic acid group.
The above ranges tend to improve the silica scale inhibition ability of the scale inhibitor of the present disclosure. For example, the above ranges tend to improve the silica scale inhibition ability of the scale inhibitor of the present disclosure, and thus improve the dispersibility of the silica particles and suppress the aggregation of the silica particles.

<その他の単量体由来の構造単位>
本開示の共重合体は、所望に応じて、(メタ)アクリル酸(塩)由来の構造単位、スルホン酸(塩)基含有単量体由来の構造単位以外の単量体に由来する構造単位(その他の単量体に由来する構造単位ともいう)を有していてもよい。
本開示において、その他の単量由来の構造単位とはその他の有単量の少なくとも一つの炭素炭素二重結合が炭素炭素単結合に置き換わった構造単位を表す。なお、その他の単量体由来の構造単位は、その他の単量体の少なくとも1つの炭素炭素二重結合が炭素炭素単結合に置き換わった構造と同じ構造であればよく、その他の単量体が重合することにより形成された構造単位に限定されず、例えば重合後の後反応により形成された構造単位であってもよい。
本開示の共重合体における、その他の単量体に由来する構造単位の含有量は、本開示の共重合体を構成するすべての単量体に由来する構造単位100モル%に対し、0モル%以上、15モル%以下、好ましくは0モル%以上、10モル%以下、より好ましくは0モル%以上、5モル%以下であり、さらに好ましくは0モル%以上、3モル%以下であり、特に好ましくは0モル%以上、2モル%以下であり、最も好ましくは0モル%である。
<Structural units derived from other monomers>
The copolymer of the present disclosure may, if desired, have structural units derived from monomers other than (meth)acrylic acid (salt)-derived structural units and sulfonic acid (salt) group-containing monomers (also referred to as structural units derived from other monomers).
In the present disclosure, the structural unit derived from the other monomer refers to a structural unit in which at least one carbon-carbon double bond of the other monomer is replaced with a carbon-carbon single bond. Note that the structural unit derived from the other monomer may have the same structure as the structure in which at least one carbon-carbon double bond of the other monomer is replaced with a carbon-carbon single bond, and is not limited to a structural unit formed by polymerization of the other monomer, and may be, for example, a structural unit formed by a post-reaction after polymerization.
In the copolymer of the present disclosure, the content of structural units derived from other monomers, relative to 100 mol% of structural units derived from all monomers constituting the copolymer of the present disclosure, is 0 mol% or more and 15 mol% or less, preferably 0 mol% or more and 10 mol% or less, more preferably 0 mol% or more and 5 mol% or less, even more preferably 0 mol% or more and 3 mol% or less, particularly preferably 0 mol% or more and 2 mol% or less, and most preferably 0 mol%.

前記その他の単量体としては、マレイン酸、イタコン酸、及びこれらの塩等のカルボキシル基含有単量体;(メタ)アリルアルコール、イソプレノール等の不飽和アルコール及びこれらにアルキレンオキサイドを付加した単量体、アルコキシアルキレングリコールの(メタ)アクリル酸エステル等のポリアルキレングリコール鎖含有単量体;ビニルピリジン、ビニルイミダゾール等の複素環式芳香族炭化水素基を有するビニル芳香族系単量体;ジメチルアミノエチルアクリレート、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリレート等のジアルキルアミノアルキル(メタ)アクリレート、ジメチルアミノエチルアクリルアミド、ジメチルアミノエチルメタクリルアミド、ジメチルアミノプロピルアクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミド、ジアリルアミン、ジアリルジメチルアミン等のジアリルアルキルアミン等のアリルアミン等のアミノ基含有単量体及びこれらの四級化物;N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルホルムアミド、N-ビニル-N-メチルアセトアミド、N-ビニルオキサゾリドン等のN-ビニル単量体;(メタ)アクリルアミド、N,N-ジメチルアクリルアミド、N-イソプロピルアクリルアミド、t-ブチルアクリルアミド等のアミド系単量体;(メタ)アリルアルコール、イソプレノール等の水酸基含有単量体;ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル系単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシヘキシル(メタ)アクリレート等の(メタ)アクリル酸ヒドロキシアルキル系単量体;スチレン、インデン、ビニルアニリン等のビニルアリール単量体;イソブチレン、酢酸ビニル等;エーテル結合含有単量体としては、エチルビニルエーテル、ブチルビニルエーテル、ベンジルビニルエーテル等のビニルエーテル;エチルメタリルエーテル、ブチルメタリルエーテル、ベンジルメタリルエーテル等の(メタ)アリルエーテル;エチルイソプレニルエーテル、ブチルイソプレニルエーテル、ベンジルイソプレニルエーテル等のイソプレニルエーテル等が挙げられる。 The other monomers include carboxyl group-containing monomers such as maleic acid, itaconic acid, and their salts; unsaturated alcohols such as (meth)allyl alcohol and isoprenol, and monomers obtained by adding alkylene oxides to these, polyalkylene glycol chain-containing monomers such as (meth)acrylic acid esters of alkoxyalkylene glycols; vinyl aromatic monomers having heterocyclic aromatic hydrocarbon groups such as vinylpyridine and vinylimidazole; dialkyl monomers such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, and dimethylaminopropyl acrylate. amino group-containing monomers such as dialkylaminoalkyl(meth)acrylates, dialkylaminoalkyl(meth)acrylamides such as dimethylaminoethylacrylamide, dimethylaminoethylmethacrylamide, dimethylaminopropylacrylamide, and allylamines such as diallylamine and diallyldimethylamine; N-vinyl monomers such as N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinyl-N-methylformamide, N-vinyl-N-methylacetamide, and N-vinyloxazolidone; Amide monomers such as (meth)acrylamide, N,N-dimethylacrylamide, N-isopropylacrylamide, and t-butylacrylamide; hydroxyl group-containing monomers such as (meth)allyl alcohol and isoprenol; (meth)acrylic acid alkyl ester monomers such as butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, and dodecyl (meth)acrylate; 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxypropyl ... Examples of monomers containing an ether bond include hydroxyalkyl (meth)acrylate monomers such as hydroxyhexyl (meth)acrylate; vinyl aryl monomers such as styrene, indene, and vinyl aniline; isobutylene and vinyl acetate; and examples of monomers containing an ether bond include vinyl ethers such as ethyl vinyl ether, butyl vinyl ether, and benzyl vinyl ether; (meth)allyl ethers such as ethyl methallyl ether, butyl methallyl ether, and benzyl methallyl ether; and isoprenyl ethers such as ethyl isoprenyl ether, butyl isoprenyl ether, and benzyl isoprenyl ether.

<その他の構造単位>
本開示の共重合体は、重合体の主鎖の少なくとも一つの末端にスルホン酸(塩)基を有することを特徴としている。重合体の主鎖の少なくとも一つの末端にスルホン酸(塩)基を有するとは、1又は2以上の主鎖末端にスルホン酸(塩)基を有することをいう。例えば直鎖状の重合体であれば、主鎖末端が2か所存在し、そのうちの1つ又は両方にスルホン酸基を有していてもよく、例えば分岐構造を持つ重合体であれば3以上の主鎖末端が存在し、そのうちの1つ又は2つ以上にスルホン酸基を有していても良い。少なくとも一つの鎖末端にスルホ酸(塩)基を有することにより、シリカスケール抑制能が向上する。共重合体100質量%に対する、共重合体の主鎖末端のスルホン酸基の質量%が0.01%以上、10%以下であることが好ましく、0.01%以上、5%以下がさらに好ましい。なお、スルホン酸基の換算は酸基で計算するものとする。
<Other structural units>
The copolymer of the present disclosure is characterized in that it has a sulfonic acid (salt) group at at least one end of the main chain of the polymer. Having a sulfonic acid (salt) group at at least one end of the main chain of the polymer means having a sulfonic acid (salt) group at one or more main chain ends. For example, if the polymer is linear, there are two main chain ends, one or both of which may have a sulfonic acid group, and if the polymer has a branched structure, there are three or more main chain ends, one or more of which may have a sulfonic acid group. By having a sulfonic acid (salt) group at at least one chain end, the silica scale inhibition ability is improved. The mass% of the sulfonic acid group at the main chain end of the copolymer relative to 100 mass% of the copolymer is preferably 0.01% or more and 10% or less, and more preferably 0.01% or more and 5% or less. The conversion of the sulfonic acid group is calculated based on the acid group.

<本開示の共重体の物性等>
本開示の共重合体は、重量平均分子量(Mw)が20000以上であることが好ましく、30000以上であることがより好ましく、37000以上であることがさらに好ましい。10万以下であることが好ましく、80000以下であることがより好ましく、60000以下であることがさらに好ましい。上記範囲であることにより、本開示のスケール抑制剤のシリカスケール抑制能がより向上する傾向にある。
本開示の共重合体は、カルボン酸(塩)基やスルホン酸(塩)基などの酸基を含むが、本開示の共重合体の酸基は中和されていても良い。酸基の合計の中和率は1モル%以上、90モル%以下であることが好ましい。なお、上記中和率は、例えば通常の酸塩基滴定などにより算出することができる。
<Physical properties of copolymers of the present disclosure>
The copolymer of the present disclosure preferably has a weight average molecular weight (Mw) of 20,000 or more, more preferably 30,000 or more, and even more preferably 37,000 or more. It is preferably 100,000 or less, more preferably 80,000 or less, and even more preferably 60,000 or less. By being in the above range, the silica scale inhibition ability of the scale inhibitor of the present disclosure tends to be further improved.
The copolymer of the present disclosure contains acid groups such as carboxylic acid (salt) groups and sulfonic acid (salt) groups, but the acid groups of the copolymer of the present disclosure may be neutralized. The total neutralization rate of the acid groups is preferably 1 mol% or more and 90 mol% or less. The neutralization rate can be calculated, for example, by ordinary acid-base titration.

<本開示の共重合体の製造方法>
本開示の共重合体の製造方法は、特に制限されないが、通常は(メタ)アクリル酸(塩)、スルホン酸(塩)基含有単量体、必要に応じてその他の単量体に由来する構造単位を重合することにより製造することが好ましい。本開示の共重合体の製造工程においては、単量体の重合において重合開始剤を用いることが出来る。本開示の共重合体の製造工程において、分子量の調整のために必要に応じて連鎖移動剤を用いることが出来る。
<Method for producing the copolymer of the present disclosure>
The method for producing the copolymer of the present disclosure is not particularly limited, but it is usually preferable to produce the copolymer by polymerizing structural units derived from (meth)acrylic acid (salt), a sulfonic acid (salt) group-containing monomer, and other monomers as necessary. In the production process of the copolymer of the present disclosure, a polymerization initiator can be used in the polymerization of the monomer. In the production process of the copolymer of the present disclosure, a chain transfer agent can be used as necessary to adjust the molecular weight.

<本開示の連鎖移動剤>
本開示の連鎖移動剤は、分子量の調整のために用いることが出来る。例えば重亜硫酸(塩)類である重亜硫酸、メタ重亜硫酸、重亜硫酸ナトリウム、重亜硫酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸カリウム、メルカプトエタノール、チオグリセロール、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸オクチル、3-メルカプトプロピオン酸オクチル、2-メルカプトエタンスルホン酸、n-ドデシルメルカプタン、オクチルメルカプタン、ブチルチオグリコレート等の、チオール系連鎖移動剤;四塩化炭素、塩化メチレン、ブロモホルム、ブロモトリクロロエタン等の、ハロゲン化物;イソプロパノール、グリセリン等の、第2級アルコール;亜リン酸、次亜リン酸、及びその塩(次亜リン酸ナトリウム、次亜リン酸カリウム等)などが挙げられる。これらのうち本開示にかかる共重合体の製造においては少なくとも一つの主鎖末端にスルホン酸基を含有するために、重亜硫酸(塩)類を用いることができる。これにより得られる共重合体の少なくとも一つの主鎖末端に効率よくスルホン酸基を導入することが出来る。連鎖移動剤は1種類を用いてもよく、2種類以上を用いても良い。連鎖移動剤の添加量は、単量体が良好に重合可能である量であれば制限されないが、共重合に供する単量体混合物1モルに対して、0.001モル以上、0.02モル以下が好ましい。
Chain Transfer Agents of the Present Disclosure
The chain transfer agent of the present disclosure can be used to adjust the molecular weight. Examples of the chain transfer agent include thiol-based chain transfer agents such as bisulfite (salts) such as bisulfite, metabisulfite, sodium bisulfite, potassium bisulfite, sodium metabisulfite, potassium metabisulfite, mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, thiomalic acid, octyl thioglycolate, octyl 3-mercaptopropionate, 2-mercaptoethanesulfonic acid, n-dodecyl mercaptan, octyl mercaptan, and butyl thioglycolate; halides such as carbon tetrachloride, methylene chloride, bromoform, and bromotrichloroethane; secondary alcohols such as isopropanol and glycerin; phosphorous acid, hypophosphorous acid, and salts thereof (sodium hypophosphite, potassium hypophosphite, etc.); and the like. Among these, in the production of the copolymer according to the present disclosure, bisulfites (salts) can be used to contain a sulfonic acid group at at least one main chain end. This allows efficient introduction of a sulfonic acid group at at least one main chain end of the copolymer obtained. One type of chain transfer agent may be used, or two or more types may be used. The amount of the chain transfer agent added is not limited as long as the monomers can be polymerized well, but is preferably 0.001 mol or more and 0.02 mol or less per mol of the monomer mixture to be copolymerized.

<本開示の重合開始剤>
本開示の共重合体を製造する工程において、通常は重合開始剤を使用する。重合開始剤としては公知のものが使用出来る。例えば過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩、過酸化水素、ジメチル2,2-’アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n水和物、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二硫酸塩二水和物、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系化合物、過酸化ベンゾイル、過酸化ラウロイル、過酢酸、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド等の有機過酸化物等を用いることが出来る。これらの中でも過硫酸塩であることが好ましく、上記連鎖移動剤を組み合わせることで、重合体主鎖末端にスルホン酸基を効率よく導入することが出来る。
<Polymerization initiator of the present disclosure>
In the process of producing the copolymer of the present disclosure, a polymerization initiator is usually used. Known polymerization initiators can be used. For example, persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate, hydrogen peroxide, dimethyl 2,2-'azobis(2-methylpropionate), 2,2'-azobis(isobutyronitrile), 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyric acid) dimethyl, 4,4'-azobis(4-cyanovaleric acid), 2,2'-azobis(2-methylpropionate), Examples of the azo compounds that can be used include 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] dihydrochloride, 2,2'-azobis[N-(2-carboxyethyl)-2-methylpropionamidine] n-hydrate, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride, 2,2'-azobis[2-(2-imidazolin-2-yl)propane] disulfate dihydrate, and 1,1'-azobis(cyclohexane-1-carbonitrile), as well as organic peroxides such as benzoyl peroxide, lauroyl peroxide, peracetic acid, di-t-butyl peroxide, and cumene hydroperoxide. Among these, persulfates are preferred, and by combining the above chain transfer agent, sulfonic acid groups can be efficiently introduced into the polymer main chain terminals.

[本開示の共重合体の用途]
本開示の共重合体は、水系用途において高い性能を発揮でき、地熱発電プロセス、油井やガス井のプロセス、正浸透膜もしくは逆浸透膜を用いた海水淡水化プロセスもしくは廃液濃縮プロセス、ボイラー水循環系、冷却水の循環系などに用いるスケール抑制剤として好ましく適用できる。
本開示の共重合体は、例えばシリカスケールや炭酸カルシウムのスケール抑制剤として好ましく適用できる。特にシリカスケールの抑制能にすぐれるため、シリカスケール防止剤として最も好ましく適用できる。
[Uses of the copolymer of the present disclosure]
The copolymer of the present disclosure can exhibit high performance in aqueous applications and can be preferably used as a scale inhibitor for use in geothermal power generation processes, oil well and gas well processes, seawater desalination processes or waste liquid concentration processes using forward osmosis membranes or reverse osmosis membranes, boiler water circulation systems, cooling water circulation systems, and the like.
The copolymer of the present disclosure can be preferably used as a scale inhibitor for, for example, silica scale or calcium carbonate, and is most preferably used as a silica scale inhibitor because of its excellent silica scale inhibition ability.

[本開示のシリカスケール防止剤]
本開示のシリカスケール防止剤は、本開示の共重合体を含む。本開示のシリカスケール防止剤は、本開示の共重合体を例えば1質量%以上、100質量%以下含むことが好ましい。1質量%以上、80質量%以下含むことがより好ましく、1質量%以上、50質量%以下含むことがさらに好ましい。
本開示のシリカスケール防止剤は、本開示の共重合体以外の成分を含んでいても良い。本開示の共重合体以外の成分としては、水などの溶剤;アルカリや酸などのpH調整剤;脱酸素剤;防食剤;キレート剤;アミノトリメチレンホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、およびこれらの塩などのホスホン酸(塩);本開示の共重合体以外のカルボキシ基含有重合体;界面活性剤;消泡剤;ピッチコントロール剤;スライムコントロール剤などが例示される。
[Silica scale inhibitor of the present disclosure]
The silica scale inhibitor of the present disclosure includes the copolymer of the present disclosure. The silica scale inhibitor of the present disclosure preferably includes, for example, 1% by mass or more and 100% by mass or less of the copolymer of the present disclosure. More preferably, the silica scale inhibitor includes 1% by mass or more and 80% by mass or less, and even more preferably, the silica scale inhibitor includes 1% by mass or more and 50% by mass or less of the copolymer of the present disclosure.
The silica scale inhibitor of the present disclosure may contain a component other than the copolymer of the present disclosure. Examples of the component other than the copolymer of the present disclosure include a solvent such as water, a pH adjuster such as an alkali or acid, an oxygen scavenger, an anticorrosive agent, a chelating agent, a phosphonic acid (salt) such as aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, and salts thereof, a carboxyl group-containing polymer other than the copolymer of the present disclosure, a surfactant, an antifoaming agent, a pitch control agent, a slime control agent, and the like.

[本開示の水処理薬剤]
本開示の水処理薬剤は、本開示のスケール防止剤を含む。本開示の水処理薬剤は、本開示の共重合体を例えば1質量%以上、70質量%以下含むことが好ましい。1質量%以上、50質量%以下含むことがより好ましく、1質量%以上、40質量%以下含むことがさらに好ましく、1質量%以上、30質量%以下含むことが特に好ましく、1質量%以上、20質量%以下含むことが最も好ましい。本開示の水処理薬剤は、本開示のスケール防止剤以外の成分を含んでいても良い。本開示のスケール防止剤以外の成分としては、水などの溶剤;アルカリや酸などのpH調整剤;脱酸素剤;防食剤;キレート剤;アミノトリメチレンホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、およびこれらの塩などのホスホン酸(塩);本開示の共重合体以外のカルボキシ基含有重合体;界面活性剤;消泡剤;ピッチコントロール剤;スライムコントロール剤などが例示される。
[Water treatment agent of the present disclosure]
The water treatment agent of the present disclosure includes the scale inhibitor of the present disclosure. The water treatment agent of the present disclosure preferably contains, for example, 1% by mass or more and 70% by mass or less of the copolymer of the present disclosure. It is more preferable to contain 1% by mass or more and 50% by mass or less, even more preferable to contain 1% by mass or more and 40% by mass or less, particularly preferable to contain 1% by mass or more and 30% by mass or less, and most preferable to contain 1% by mass or more and 20% by mass or less. The water treatment agent of the present disclosure may contain components other than the scale inhibitor of the present disclosure. Examples of components other than the scale inhibitor of the present disclosure include solvents such as water; pH adjusters such as alkalis and acids; oxygen scavengers; anticorrosive agents; chelating agents; phosphonic acids (salts) such as aminotrimethylenephosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, and salts thereof; carboxyl group-containing polymers other than the copolymer of the present disclosure; surfactants; defoamers; pitch control agents; slime control agents, etc.

[本開示のシリカスケール防止方法]
本開示のシリカスケール防止方法は、本開示のシリカスケール防止剤あるいは本開示の共重合体を使用する。本開示のシリカスケール防止方法は、好ましくは、シリカスケール防止の対象となる系に、本開示のシリカスケール防止剤あるいは本開示の共重合体を添加する工程を含む。また、好ましくは、シリカスケール防止の対象となる系中の、本開示の共重合体の存在量が、所定の範囲内となるように制御する工程を含む。シリカスケール防止の対象となる系中の本開示の共重合体の含有量は、0.1ppm以上、500ppm以下であることが好ましく、0.1ppm以上、300ppmであることがより好ましい。
[Silica scale prevention method of the present disclosure]
The silica scale prevention method of the present disclosure uses the silica scale inhibitor of the present disclosure or the copolymer of the present disclosure. The silica scale prevention method of the present disclosure preferably includes a step of adding the silica scale inhibitor of the present disclosure or the copolymer of the present disclosure to a system to be prevented from silica scale. Also, preferably, the method includes a step of controlling the amount of the copolymer of the present disclosure in the system to be prevented from silica scale so that it is within a predetermined range. The content of the copolymer of the present disclosure in the system to be prevented from silica scale is preferably 0.1 ppm or more and 500 ppm or less, more preferably 0.1 ppm or more and 300 ppm.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「質量部」を、「%」は「質量%」を意味するものとする。
<重量平均分子量の測定条件(GPC)>
装置:東ソー株式会社製HLC8320
カラム:株式会社昭和電工製 SHODEX Asahipak GF-310-HQ、
GF-710-HQ、GF-1G-7B
カラム温度:40℃
流速:0.5ml/min
検量線:American Polymer Standards Corporaion社製 Polyacrylic acid standard
溶離液:0.1N酢酸ナトリウム
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. In addition, unless otherwise specified, "parts" means "parts by mass" and "%" means "% by mass".
<Conditions for measuring weight average molecular weight (GPC)>
Equipment: Tosoh Corporation HLC8320
Column: SHODEX Asahipak GF-310-HQ manufactured by Showa Denko Corporation;
GF-710-HQ, GF-1G-7B
Column temperature: 40°C
Flow rate: 0.5 ml/min
Calibration curve: Polyacrylic acid standard manufactured by American Polymer Standards Corporation
Eluent: 0.1N sodium acetate

<合成例1>
還流冷却器、攪拌機(パドル翼)を備えた容量3LのSUS製反応容器に、純水251.5g及びモール塩0.031gを仕込み、攪拌しながら85℃まで昇温して重合反応系とした。次に、攪拌下、85℃に保持された重合反応系中に、80%アクリル酸水溶液(以下、「80%AA」とも称する。)517.5g、3-アリルオキシ-2-ヒドロキシプロパンスルホン酸ナトリウムの40%水溶液(以下、「40%HAPS」とも称する。)533.2g、15%過硫酸ナトリウム水溶液(以下、「15%NaPS」とも称する。)179.3g、及び、32.5%亜硫酸水素ナトリウム水溶液(以下、「32.5%SBS」とも称する。)18.6gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、80%AAについては180分間、40%HAPSについては140分間、15%NaPSについては200分間、32.5%SBSについては170分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、前記反応溶液を85℃に保持(熟成)して重合を終了した。このようにして、固形分濃度44.8%の重合体水溶液(1)を得た。重合体(1)の重量平均分子量は37000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 1>
In a 3 L SUS reaction vessel equipped with a reflux condenser and a stirrer (paddle blade), 251.5 g of pure water and 0.031 g of Mohr's salt were charged and heated to 85° C. with stirring to prepare a polymerization reaction system. Next, 517.5 g of an 80% aqueous acrylic acid solution (hereinafter also referred to as "80% AA"), 533.2 g of a 40% aqueous solution of sodium 3-allyloxy-2-hydroxypropanesulfonate (hereinafter also referred to as "40% HAPS"), 179.3 g of a 15% aqueous sodium persulfate solution (hereinafter also referred to as "15% NaPS"), and 18.6 g of a 32.5% aqueous sodium hydrogensulfite solution (hereinafter also referred to as "32.5% SBS") were dropped from separate nozzles into the polymerization reaction system maintained at 85° C. with stirring. The drop time of each solution was 180 minutes for 80% AA, 140 minutes for 40% HAPS, 200 minutes for 15% NaPS, and 170 minutes for 32.5% SBS. The drop speed of each solution was constant, and each solution was continuously dropped. After the drop of 15% NaPS was completed, the reaction solution was kept at 85°C (ripening) for another 30 minutes to complete the polymerization. In this way, a polymer aqueous solution (1) with a solid content concentration of 44.8% was obtained. The weight average molecular weight of the polymer (1) was 37,000. The composition ratio of the charged polymer and the produced polymer was the same.

<合成例2>
還流冷却器、攪拌機(パドル翼)を備えた容量3LのSUS製反応容器に、純水250.78g、及びモール塩0.031gを仕込み、攪拌しながら、85℃まで昇温して重合反応系とした。次に、攪拌下、85℃に保持された重合反応系中に、80%AA508.9g、40%HAPS524.3g、15%NaPS176.3g、及び、10%SBS39.7gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、80%AAについては180分間、40%HAPSについては140分間、15%NaPSについては200分間、10%SBSについては170分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、上記反応溶液を85℃に保持(熟成)して重合を終了した。このようにして、固形分濃度44.5%の重合体水溶液(2)を得た。重合体(2)の重量平均分子量は49000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 2>
250.78g of pure water and 0.031g of Mohr's salt were charged into a 3L SUS reaction vessel equipped with a reflux condenser and a stirrer (paddle blade), and the temperature was raised to 85°C while stirring to prepare a polymerization reaction system. Next, 508.9g of 80% AA, 524.3g of 40% HAPS, 176.3g of 15% NaPS, and 39.7g of 10% SBS were dropped from separate nozzles into the polymerization reaction system maintained at 85°C under stirring. The drop time of each solution was 180 minutes for 80% AA, 140 minutes for 40% HAPS, 200 minutes for 15% NaPS, and 170 minutes for 10% SBS. The drop speed of each solution was constant, and each solution was continuously dropped. After the drop of 15% NaPS was completed, the reaction solution was maintained (aged) at 85°C for another 30 minutes to complete the polymerization. In this way, an aqueous polymer solution (2) having a solid content of 44.5% was obtained. The weight average molecular weight of the polymer (2) was 49000. The composition ratio of the charged polymer and the produced polymer was the same.

<合成例3>
還流冷却器、攪拌機(パドル翼)を備えた容量3LのSUS製反応容器に、純水250.8g、及びモール塩0.031gを仕込み、攪拌しながら、85℃まで昇温して重合反応系とした。次に、攪拌下、85℃に保持された重合反応系中に、80%AA457.2g、40%HAPS609.7g、15%NaPS165.2g、及び、32.5%SBS17.2gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、80%AAについては180分間、40%HAPSについては140分間、15%NaPSについては200分間、32.5%SBSについては170分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。15%NaPSの滴下終了後、更に30分間、上記反応溶液を85℃に保持(熟成)して重合を終了した。
このようにして、固形分濃度43.6%の重合体水溶液(3)を得た。重合体(3)の重量平均分子量は37000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 3>
250.8g of pure water and 0.031g of Mohr's salt were charged into a 3L SUS reaction vessel equipped with a reflux condenser and a stirrer (paddle blade), and the temperature was raised to 85°C while stirring to prepare a polymerization reaction system. Next, 457.2g of 80% AA, 609.7g of 40% HAPS, 165.2g of 15% NaPS, and 17.2g of 32.5% SBS were dropped from separate nozzles into the polymerization reaction system maintained at 85°C under stirring. The drop time of each solution was 180 minutes for 80% AA, 140 minutes for 40% HAPS, 200 minutes for 15% NaPS, and 170 minutes for 32.5% SBS. The drop speed of each solution was constant, and each solution was continuously dropped. After the dropwise addition of 15% NaPS was completed, the reaction solution was maintained (aged) at 85° C. for an additional 30 minutes to complete the polymerization.
In this way, an aqueous polymer solution (3) having a solid content of 43.6% was obtained. The weight average molecular weight of the polymer (3) was 37000. The composition ratio of the charged polymer and the produced polymer was the same.

<合成例4>
流冷却器、攪拌機(パドル翼)を備えた容量3LのSUS製反応容器に、純水462.6g、及びモール塩0.031gを仕込み、攪拌しながら、85℃まで昇温して重合反応系とした。次に、攪拌下、85℃に保持された重合反応系中に、80%AA674.3g、40%HAPS238.0g、15%NaPS103.1g、及び、32.5%SBS21.9gを、それぞれ別々のノズルより滴下した。各溶液の滴下時間は、80%AAについては180分間、40%HAPSについては155分間、15%NaPSについては200分間、32.5%SBSについては170分間とした。また、各溶液の滴下速度は一定とし、各溶液の滴下は連続的に行った。80%AAの滴下終了後、更に30分間、上記反応溶液を85℃に保持(熟成)し、重合を終了した。このようにして、固形分濃度43.6%の重合体水溶液(4)を得た。重合体(4)の重量平均分子量は44000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 4>
462.6 g of pure water and 0.031 g of Mohr's salt were charged into a 3 L SUS reactor equipped with a flow condenser and a stirrer (paddle blade), and the temperature was raised to 85° C. while stirring to prepare a polymerization reaction system. Next, 674.3 g of 80% AA, 238.0 g of 40% HAPS, 103.1 g of 15% NaPS, and 21.9 g of 32.5% SBS were dropped from separate nozzles into the polymerization reaction system maintained at 85° C. under stirring. The drop times of each solution were 180 minutes for 80% AA, 155 minutes for 40% HAPS, 200 minutes for 15% NaPS, and 170 minutes for 32.5% SBS. The drop speed of each solution was constant, and each solution was continuously dropped. After the dropwise addition of 80% AA was completed, the reaction solution was kept (aged) at 85° C. for another 30 minutes to complete the polymerization. In this way, a polymer aqueous solution (4) having a solid content concentration of 43.6% was obtained. The weight average molecular weight of the polymer (4) was 44,000. The composition ratio of the charged polymer and the produced polymer was the same.

<合成例5>
還流冷却器、攪拌機を備えた容量5LのSUS製反応容器に、イオン交換水611.3gを仕込み、攪拌しながら沸点還流状態まで昇温した。次いで攪拌下、沸点還流状態の重合反応系中に、80%AA57.6g、37%アクリル酸ナトリウム(以下「37%SA」とも称する)1145・9g、40%HAPS502.9g、15%NaPS132.2g、35%過酸化水素水(以下、「35%H」とも称する)19.0g、イオン交換水367.9gをそれぞれ別々のノズルより滴下した。各溶液の滴下時間は80%AAおよび37%SAが120分、40%HAPS、イオン交換水が90分、15%NaPSが140分、35%Hが120分であった。このようにして、固形分50.2%の重合体水溶液(5)を得た。重合体(5)の重量平均分子量は5000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 5>
611.3g of ion-exchanged water was charged into a 5L SUS reaction vessel equipped with a reflux condenser and an agitator, and the temperature was raised to the boiling point reflux state while stirring. Next, 57.6g of 80% AA, 1145.9g of 37% sodium acrylate (hereinafter also referred to as "37% SA"), 502.9g of 40% HAPS, 132.2g of 15% NaPS, 19.0g of 35% hydrogen peroxide solution (hereinafter also referred to as "35% H 2 O 2 "), and 367.9g of ion-exchanged water were dropped from separate nozzles into the polymerization reaction system in the boiling point reflux state while stirring. The dropping time of each solution was 120 minutes for 80% AA and 37% SA, 90 minutes for 40% HAPS and ion-exchanged water, 140 minutes for 15% NaPS, and 120 minutes for 35% H 2 O 2 . In this way, an aqueous polymer solution (5) having a solid content of 50.2% was obtained. The weight average molecular weight of the polymer (5) was 5000. The composition ratio of the charged polymer and the produced polymer was the same.

<合成例6>
還流冷却器、攪拌機を備えた容量5LのSUS製反応容器に、イオン交換水1620gを仕込み、攪拌しながら沸点還流状態まで昇温した。次いで攪拌下、沸点還流状態の重合反応系中に、80%AA455g、15%NaPS133gをそれぞれ別々のノズルより滴下した。各溶液の滴下時間は80%AAが180分、15%NaPSが185分、イオン交換水が170分であった。15%NaPS溶液滴下終了後、更に30分間、上記反応液を沸点還流状態に保持(熟成)し、重合を完結させた。このようにして固形分45.7%の重合体水溶液(6)を得た。重合体(6)の重量平均分子量は10000であった。なお、仕込みと生成した重合体の組成比は同じである。
<Synthesis Example 6>
1620 g of ion-exchanged water was charged into a 5 L SUS reaction vessel equipped with a reflux condenser and a stirrer, and the temperature was raised to a boiling point reflux state while stirring. Next, 455 g of 80% AA and 133 g of 15% NaPS were dropped from separate nozzles into the polymerization reaction system in a boiling point reflux state while stirring. The drop times of each solution were 180 minutes for 80% AA, 185 minutes for 15% NaPS, and 170 minutes for ion-exchanged water. After the drop of the 15% NaPS solution was completed, the reaction solution was kept in a boiling point reflux state (ripening) for another 30 minutes to complete the polymerization. In this way, a polymer aqueous solution (6) with a solid content of 45.7% was obtained. The weight average molecular weight of the polymer (6) was 10,000. The composition ratio of the charged polymer and the produced polymer was the same.

<シリカスケール抑制率評価試験>
珪酸ナトリウム水溶液:メタケイ酸ナトリウム9水和物(Aldrich社製)2.129gにイオン交換水を加えて合計150gとなるように調整する。
硫酸マグネシウム水溶液:硫酸マグネシウム7水和物(和光純薬株式会社製)8.115gにイオン交換水を加えて合計1000gとなるように調整する。
ホウ酸バッファー:ホウ酸(関東化学株式会社製)7.42g、ホウ酸ナトリウム・10水和物)(和光純薬株式会社製)19.07gを混合し、ホウ酸バッファーを調製する。
容器に脱イオン水73gを入れ攪拌しながら上記ホウ酸バッファー2g、上記珪酸ナトリウム水溶液10g、重合体濃度が1000ppmになるように希釈した重合体水溶液5g、上記の硫酸マグネシウム水溶液10gを添加し、60℃の温浴につけ5h放置した。5h放置後、吸引ろ過装置に0.1μm目開きの濾紙を使用して、試験液を吸引ろ過した。得られた濾液をXR-Fで測定してSi濃度をSiO換算で測定した。
シリカスケール抑制率(%)=試験後SiO(ppm)/試験前SiO濃度(ppm)×100
シリカスケール抑制率は以下の基準で判定した。
<抑制率評価基準>
90%以上:◎
70~90%:○
30~70%:△
30%未満:×
<実施例1>
合成例1で得られた重合体(1)の1000ppm水溶液5gについて、上記シリカスケール抑制率価試験を行った。
<実施例2>
合成例2で得られた重合体(2)の1000ppm水溶液5gについて、上記シリカスケール抑制率評価試験を行った。
<実施例3>
合成例3で得られた重合体(3)の1000ppm水溶液5gについて、上記シリカスケール抑制率評価試験を行った。
<比較例1>
合成例4で得られた重合体(4)の1000ppm水溶液5gについて、上記シリカスケール抑制率評価試験を行った。
<比較例2>
合成例5で得られた重合体(5)の1000ppm水溶液5gについて、上記シリカスケール抑制率評価試験を行った。
<比較例3>
合成例6で得られた重合体(6)の1000ppm水溶液5gについて、上記シリカスケール抑制率評価試験を行った。
<比較例4>
重合体水溶液を添加しない以外は上記シリカスケール抑制率評価試験と同様に評価試験を行った。
<Silica scale inhibition rate evaluation test>
Sodium silicate aqueous solution: 2.129 g of sodium metasilicate nonahydrate (manufactured by Aldrich) is mixed with ion-exchanged water to make a total of 150 g.
Magnesium sulfate aqueous solution: 8.115 g of magnesium sulfate heptahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) is mixed with ion-exchanged water to make a total of 1000 g.
Boric acid buffer: 7.42 g of boric acid (Kanto Chemical Co., Ltd.) and 19.07 g of sodium borate decahydrate (Wako Pure Chemical Industries, Ltd.) are mixed to prepare a boric acid buffer.
A container was charged with 73 g of deionized water, and while stirring, 2 g of the boric acid buffer, 10 g of the sodium silicate aqueous solution, 5 g of a polymer aqueous solution diluted to a polymer concentration of 1000 ppm, and 10 g of the magnesium sulfate aqueous solution were added, and the mixture was left in a warm bath at 60°C for 5 hours. After leaving the mixture for 5 hours, the test liquid was suction filtered using a suction filtration device and a filter paper with 0.1 μm openings. The obtained filtrate was measured by XR-F to measure the Si concentration in terms of SiO2 .
Silica scale inhibition rate (%) = SiO 2 after test (ppm) / SiO 2 concentration before test (ppm) × 100
The silica scale inhibition rate was judged according to the following criteria.
<Inhibition rate evaluation criteria>
Over 90%: ◎
70-90%: ○
30-70%: △
Less than 30%: ×
Example 1
The above-mentioned silica scale inhibition rate test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (1) obtained in Synthesis Example 1.
Example 2
The above-mentioned silica scale inhibition rate evaluation test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (2) obtained in Synthesis Example 2.
Example 3
The above-mentioned silica scale inhibition rate evaluation test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (3) obtained in Synthesis Example 3.
<Comparative Example 1>
The above-mentioned silica scale inhibition rate evaluation test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (4) obtained in Synthesis Example 4.
<Comparative Example 2>
The above-mentioned silica scale inhibition rate evaluation test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (5) obtained in Synthesis Example 5.
<Comparative Example 3>
The above-mentioned silica scale inhibition rate evaluation test was carried out on 5 g of a 1000 ppm aqueous solution of the polymer (6) obtained in Synthesis Example 6.
<Comparative Example 4>
The evaluation test was carried out in the same manner as in the above silica scale inhibition rate evaluation test, except that the aqueous polymer solution was not added.

実施例1から実施例3、比較例1から比較例4の実験結果を表1に記載した。 The experimental results for Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 1.

Figure 0007507701000002
表1中、「組成」は、アクリル酸(塩)に由来する構造単位/スルホン酸(塩)基に由来する構造単位を表す。
表1の結果から、本開示の共重合体は、シリカスケール抑制能に優れることがわかった。
Figure 0007507701000002
In Table 1, "composition" indicates the ratio of structural units derived from acrylic acid (salt) to structural units derived from sulfonic acid (salt) groups.
The results in Table 1 show that the copolymer of the present disclosure has excellent silica scale inhibition ability.

Claims (4)

(メタ)アクリル酸(塩)由来の構造単位と、スルホン酸(塩)基含有単量体由来の構造単位とを含む共重合体であって、全単量体由来の構造100モル%に対して、スルホン酸(塩)基含有単量体由来の構造単位が11モル%以上であり、共重合体の少なくとも一つの主鎖末端にスルホン酸(塩)基を有し、重量平均分子量が20000以上であることを特徴とする(メタ)アクリル酸系共重合体を含むシリカスケール防止剤。 A silica scale inhibitor containing a (meth)acrylic acid-based copolymer, which is a copolymer containing structural units derived from (meth)acrylic acid (salt) and structural units derived from a monomer containing a sulfonic acid (salt) group, characterized in that the structural units derived from the monomer containing a sulfonic acid (salt) group account for 11 mol% or more of the total monomer-derived structures (100 mol%), the copolymer has a sulfonic acid (salt) group at at least one main chain end, and has a weight average molecular weight of 20,000 or more. 前記スルホン酸(塩)基含有単量体由来の構造単位が一般式(1)で表されることを特徴とする請求項1に記載のシリカスケール防止剤。
Figure 0007507701000003

(一般式(1)中、Rは、水素原子またはメチル基を表し、XおよびYは、それぞれ独立に水酸基またはスルホン酸(塩)基を表す(但しX、Yのうち少なくとも一方はスルホン酸(塩)基を表す。アスタリスクは、一般式(1)で表される構造単位が結合している同種もしくは異種の他の構造単位に含まれる原子を表す。)
2. The silica scale inhibitor according to claim 1, wherein the structural unit derived from the sulfonic acid (salt) group-containing monomer is represented by general formula (1).
Figure 0007507701000003

In the general formula (1), R1 represents a hydrogen atom or a methyl group, and X and Y each independently represent a hydroxyl group or a sulfonic acid (salt) group (provided that at least one of X and Y represents a sulfonic acid (salt) group. An asterisk represents an atom contained in another structural unit of the same type or different type to which the structural unit represented by the general formula (1) is bonded).
前記スルホン酸(塩)基含有単量体由来の構造単位が3-アリルオキシ-2-ヒドロキシプロパンスルホン酸もしくはその塩に由来する構造単位である、請求項1又は2のいずれか1項に記載のシリカスケール防止剤。 The silica scale inhibitor according to claim 1 or 2, wherein the structural unit derived from the sulfonic acid (salt) group-containing monomer is a structural unit derived from 3-allyloxy-2-hydroxypropanesulfonic acid or a salt thereof. 請求項1~3のいずれかに記載のシリカスケール防止剤を含む水処理薬剤 Water treatment agent containing a silica scale inhibitor according to any one of claims 1 to 3
JP2021011386A 2021-01-27 2021-01-27 Silica scale inhibitor Active JP7507701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021011386A JP7507701B2 (en) 2021-01-27 2021-01-27 Silica scale inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021011386A JP7507701B2 (en) 2021-01-27 2021-01-27 Silica scale inhibitor

Publications (2)

Publication Number Publication Date
JP2022114909A JP2022114909A (en) 2022-08-08
JP7507701B2 true JP7507701B2 (en) 2024-06-28

Family

ID=82747324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021011386A Active JP7507701B2 (en) 2021-01-27 2021-01-27 Silica scale inhibitor

Country Status (1)

Country Link
JP (1) JP7507701B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046679A (en) 2003-07-30 2005-02-24 Kurita Water Ind Ltd Scale inhibitor
JP2008534694A (en) 2005-03-31 2008-08-28 株式会社日本触媒 (Meth) acrylic acid copolymer, its production method and its use
JP2018030088A (en) 2016-08-24 2018-03-01 株式会社日本触媒 Scale inhibitor for geothermal power generation devices, and scale prevention method for geothermal water
WO2022153867A1 (en) 2021-01-15 2022-07-21 株式会社日本触媒 (meth)acrylic acid copolymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046679A (en) 2003-07-30 2005-02-24 Kurita Water Ind Ltd Scale inhibitor
JP2008534694A (en) 2005-03-31 2008-08-28 株式会社日本触媒 (Meth) acrylic acid copolymer, its production method and its use
JP2018030088A (en) 2016-08-24 2018-03-01 株式会社日本触媒 Scale inhibitor for geothermal power generation devices, and scale prevention method for geothermal water
WO2022153867A1 (en) 2021-01-15 2022-07-21 株式会社日本触媒 (meth)acrylic acid copolymer

Also Published As

Publication number Publication date
JP2022114909A (en) 2022-08-08

Similar Documents

Publication Publication Date Title
JP3650724B2 (en) (Meth) acrylic acid copolymer and method for producing the same
JP6753448B2 (en) Acrylic acid-based copolymer, its production method, and water treatment agent
JP4091092B2 (en) Metal corrosion inhibitor
JP7507701B2 (en) Silica scale inhibitor
JP7586721B2 (en) (Meth)acrylic acid copolymer
WO2022153867A1 (en) (meth)acrylic acid copolymer
WO2022054313A1 (en) Antiscaling agent and antiscaling method
JP2022114551A (en) (Meth)acrylic acid copolymer
US20150252129A1 (en) (meth)acrylate copolymer and method for producing same
JP6446084B2 (en) Copolymer
JP6699855B2 (en) Silica-based scale inhibitor and prevention method
JP7562433B2 (en) (Meth)acrylic acid copolymer
JP2022114873A (en) Silica scale preventive
WO2016052258A1 (en) Method for producing polycarboxylic acid polymer
JP2016064382A (en) Scale inhibitor for geothermal power generation
WO2019172365A1 (en) (meth)acrylic acid copolymer-containing composition and method for producing (meth)acrylic acid copolymer
JP6146957B2 (en) Amino group-containing copolymer
JP6014372B2 (en) Polycarboxylic acid polymer and process for producing the same
JP6177635B2 (en) (Meth) acrylic acid polymer composition and production method thereof
JP2022093833A (en) Water treatment agent
JP2022035933A (en) Scale prevention agent and water treatment agent
JP6195461B2 (en) Maleic acid copolymer composition, production method thereof and use thereof
JP2022141381A (en) Carboxylic acid polymer
JP6087690B2 (en) (Meth) acrylic acid (salt) -dicarboxylic acid (salt) copolymer and method for producing the same
JP2023032066A (en) Carboxyl group-containing copolymer composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231005

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240618