[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7507150B2 - Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device - Google Patents

Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device Download PDF

Info

Publication number
JP7507150B2
JP7507150B2 JP2021513591A JP2021513591A JP7507150B2 JP 7507150 B2 JP7507150 B2 JP 7507150B2 JP 2021513591 A JP2021513591 A JP 2021513591A JP 2021513591 A JP2021513591 A JP 2021513591A JP 7507150 B2 JP7507150 B2 JP 7507150B2
Authority
JP
Japan
Prior art keywords
phosphor particles
coated phosphor
mass
less
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021513591A
Other languages
Japanese (ja)
Other versions
JPWO2020209148A1 (en
Inventor
雅斗 赤羽
秀幸 江本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2020209148A1 publication Critical patent/JPWO2020209148A1/ja
Application granted granted Critical
Publication of JP7507150B2 publication Critical patent/JP7507150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/644Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置に関する。 The present invention relates to surface-coated phosphor particles, a method for manufacturing surface-coated phosphor particles, and a light-emitting device.

発光ダイオード(LED)と蛍光体を組み合わせて形成した発光装置は、照明装置や液晶表示装置のバックライト等に盛んに使用されている。特に、液晶表示装置に発光装置を使用する場合は、高い色再現性が求められるため、蛍光スペクトルの半値全幅(以下、単に「半値幅」と称する)の狭い蛍光体の使用が望まれている。Light-emitting devices formed by combining light-emitting diodes (LEDs) and phosphors are widely used in lighting devices and backlights for liquid crystal display devices. In particular, when using light-emitting devices in liquid crystal display devices, high color reproducibility is required, so the use of phosphors with a narrow full width at half maximum of the fluorescence spectrum (hereinafter simply referred to as "half width") is desirable.

従来使用されている半値幅の狭い赤色蛍光体としてEu2+で賦活された窒化物蛍光体又は酸窒化物蛍光体が知られている。これらの代表的な純窒化物蛍光体としては、SrSi:Eu2+、CaAlSiN:Eu2+(CASNと略記する)、(Ca,Sr)AlSiN:Eu2+(SCASNと略記する)などがある。CASN蛍光体及びSCASN蛍光体は、610~680nmの範囲にピーク波長を有しており、その半値幅は75nm以上90nm以下と比較的狭い。しかし、これらの蛍光体を液晶表示用の発光装置として用いる場合、色再現範囲の更なる拡大が望まれており、半値幅がより狭い蛍光体が望まれている。 Conventionally used red phosphors with narrow half-widths include nitride phosphors or oxynitride phosphors activated with Eu 2+ . Representative pure nitride phosphors include Sr 2 Si 5 N 8 :Eu 2+ , CaAlSiN 3 :Eu 2+ (abbreviated as CASN), (Ca,Sr)AlSiN 3 :Eu 2+ (abbreviated as SCASN), etc. CASN phosphors and SCASN phosphors have peak wavelengths in the range of 610 to 680 nm, and their half-widths are relatively narrow, ranging from 75 nm to 90 nm. However, when these phosphors are used as light-emitting devices for liquid crystal displays, a further expansion of the color reproduction range is desired, and phosphors with narrower half-widths are desired.

近年、半値幅が70nm以下を示す狭帯域赤色蛍光体として、SrLiAl:Eu2+(SLANと略記する)蛍光体が知られており、この蛍光体を応用した発光装置は優れた演色性や色再現性が期待できる。 In recent years, SrLiAl 3 N 4 :Eu 2+ (abbreviated as SLAN) phosphor has become known as a narrow band red phosphor with a half-width of 70 nm or less, and light emitting devices using this phosphor are expected to have excellent color rendering properties and color reproducibility.

特許文献1には、特定の組成を有するSLAN蛍光体が開示されている。Patent document 1 discloses a SLAN phosphor having a specific composition.

特開2017-088881号公報JP 2017-088881 A

SLAN蛍光体は、水と接触すると分解しやすいという性質を有している。この性質は、時間の経過とともに発光強度が低下する要因となっている。近年、SLAN蛍光体を用いた発光装置の信頼性についてより一層の向上が求められており、SLAN蛍光体の耐湿性についてもより一層の改善が求められている。SLAN phosphors have the property of easily decomposing when they come into contact with water. This property is the cause of the decrease in luminescence intensity over time. In recent years, there has been a demand for further improvement in the reliability of light-emitting devices that use SLAN phosphors, and there is also a demand for further improvement in the moisture resistance of SLAN phosphors.

本発明者が検討した結果、SLAN蛍光体やこれに結晶構造が類似する窒化物蛍光体を含む粒子において、詳細なメカニズムは定かではないが、その粒子全体に対するフッ素元素の含有量、及び高温高湿試験前後における質量増加率を指標とすることで、粒子における耐湿性を安定的に評価できること、そして、かかるフッ素元素の含有量を所定値以上及び質量増加率を所定値以下とすることによって、水暴露環境下における蛍光強度の低下を抑制できること、すなわち、耐湿性を向上できることが判明した。As a result of the inventor's investigations, it has been found that, although the detailed mechanism is unclear, in particles containing SLAN phosphors or nitride phosphors having a similar crystal structure, the moisture resistance of the particles can be stably evaluated by using the fluorine element content in the entire particle and the mass increase rate before and after high temperature and high humidity testing as indicators, and that by setting the fluorine element content to a predetermined value or above and the mass increase rate to a predetermined value or below, it is possible to suppress the decrease in fluorescence intensity in a water exposure environment, i.e., to improve moisture resistance.

本発明によれば、蛍光体を含む粒子と、前記粒子の表面を被覆する被覆部と、を含む表面被覆蛍光体粒子であって、前記蛍光体は、一般式M Al4-d(ただし、MはSr、Mg、Ca及びBaから選ばれる1種以上の元素であり、MはLi、およびNaから選ばれる1種以上の元素であり、MはEu、およびCeから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
を満たし、
前記表面被覆蛍光体粒子全体に対して、フッ素元素の含有率が15質量%以上30質量%以下であり、
以下の条件で測定して得られる質量増加率が15%以下である表面被覆蛍光体粒子が提供される。
(質量増加率測定条件)
前記表面被覆蛍光体粒子からなる粉体の初期質量をW1とし、温度60℃、湿度90%RHの条件下で50時間経過後の当該粉体の質量をW2とし、質量増加率を(W2-W1)/W1×100(%)として算出する。
According to the present invention, there is provided a surface-coated phosphor particle including a particle containing a phosphor and a coating portion coating the surface of the particle, the phosphor having a composition represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d O d (wherein M 1 is one or more elements selected from Sr, Mg, Ca, and Ba, M 2 is one or more elements selected from Li and Na, and M 3 is one or more elements selected from Eu and Ce), and a, b, c, and d are each within the range of the following formulas: 0.850≦a≦1.150.
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
The filling,
The content of fluorine element is 15% by mass or more and 30% by mass or less with respect to the entire surface-coated phosphor particles,
The surface-coated phosphor particles are provided with a mass increase rate of 15% or less as measured under the following conditions.
(Conditions for measuring mass increase rate)
The initial mass of the powder made of the surface-coated phosphor particles is W1, the mass of the powder after 50 hours under conditions of a temperature of 60° C. and a humidity of 90% RH is W2, and the mass increase rate is calculated as (W2-W1)/W1×100(%).

また、本発明によれば、上述した表面被覆蛍光体粒子の製造方法であって、原料を混合する混合工程と、前記混合工程により得た混合体を焼成する焼成工程と、前記焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程と、を含み、
前記混合工程において、前記Alのモル比を3としたときの前記Mの仕込み量が1.10以上1.20以下であることを特徴とする表面被覆蛍光体粒子が提供される。
According to the present invention, there is also provided a method for producing the above-mentioned surface-coated phosphor particles, comprising: a mixing step of mixing raw materials; a firing step of firing the mixture obtained in the mixing step; and an acid treatment step of mixing the fired product obtained in the firing step with an acidic solution,
The present invention provides surface-coated phosphor particles, characterized in that in the mixing step, the amount of M1 charged is 1.10 or more and 1.20 or less when the molar ratio of Al is 3.

また、本発明によれば、上述した表面被覆蛍光体粒子と、発光素子とを有する発光装置が提供される。 The present invention also provides a light-emitting device having the above-mentioned surface-coated phosphor particles and a light-emitting element.

本発明によれば、耐湿性が向上した窒化物蛍光体粒子に関する技術を提供することができる。 The present invention provides technology relating to nitride phosphor particles with improved moisture resistance.

以下、本発明の実施形態について、詳細に説明する。 Below, an embodiment of the present invention is described in detail.

実施形態に係る表面被覆蛍光体粒子は、蛍光体を含む粒子と、当該粒子の表面を被覆する被覆部とを含む。以下、表面被覆蛍光体粒子の詳細について説明する。The surface-coated phosphor particles according to the embodiment include a particle containing a phosphor and a coating portion that coats the surface of the particle. Details of the surface-coated phosphor particles are described below.

本実施形態の粒子を構成する蛍光体は一般式M Al4-dで表される。a、b、c、4-d、およびdは、各元素のモル比を示す。 The phosphor constituting the particles of this embodiment is represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d O d , where a, b, c, 4-d, and d represent the molar ratio of each element.

上記一般式中、MはSr、Mg、CaおよびBaから選ばれる1種以上の元素である。好ましくは、Mは、少なくともSrを含む。Mのモル比aの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比aの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比aを上記範囲とすることにより、結晶構造安定性を向上させることができる。 In the above general formula, M1 is one or more elements selected from Sr, Mg, Ca and Ba. Preferably, M1 contains at least Sr. The lower limit of the molar ratio a of M1 is preferably 0.850 or more, more preferably 0.950 or more. On the other hand, the upper limit of the molar ratio a of M1 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less. By setting the molar ratio a of M1 in the above range, the crystal structure stability can be improved.

上記一般式中、MはLi、およびNaから選ばれる1種以上の元素である。好ましくは、Mは、少なくともLiを含む。Mのモル比bの下限は、0.850以上が好ましく、0.950以上がより好ましい。一方、Mのモル比bの上限は、1.150以下が好ましく、1.100以下がより好ましく、1.050以下がさらに好ましい。Mのモル比bを上記範囲とすることにより、結晶構造安定性を向上させることができる。 In the above general formula, M2 is one or more elements selected from Li and Na. Preferably, M2 contains at least Li. The lower limit of the molar ratio b of M2 is preferably 0.850 or more, more preferably 0.950 or more. On the other hand, the upper limit of the molar ratio b of M2 is preferably 1.150 or less, more preferably 1.100 or less, and even more preferably 1.050 or less. By setting the molar ratio b of M2 in the above range, the crystal structure stability can be improved.

上記一般式中、Mは、母体結晶に添加される賦活剤、すなわち蛍光体の発光中心イオンを構成する元素であり、Eu、およびCeから選ばれる1種以上の元素である。Mは、求められる発光波長によって選択することができ、好ましくは少なくともEuを含む。
のモル比cの下限は0.001以上が好ましく、0.005以上がより好ましい。一方、Mのモル比cの上限は0.015以下が好ましく、0.010以下がより好ましい。Mのモル比cの下限を上記範囲とすることにより、十分な発光強度を得ることができる。また、Mのモル比cの上限を上記範囲とすることにより、濃度消光を抑制し、発光強度を十分な値に保つことができる。
In the above general formula, M3 is an activator added to the host crystal, i.e., an element constituting the luminescent center ion of the phosphor, and is one or more elements selected from Eu and Ce. M3 can be selected depending on the desired emission wavelength, and preferably contains at least Eu.
The lower limit of the molar ratio c of M3 is preferably 0.001 or more, more preferably 0.005 or more. On the other hand, the upper limit of the molar ratio c of M3 is preferably 0.015 or less, more preferably 0.010 or less. By setting the lower limit of the molar ratio c of M3 within the above range, sufficient luminescence intensity can be obtained. In addition, by setting the upper limit of the molar ratio c of M3 within the above range, concentration quenching can be suppressed and the luminescence intensity can be maintained at a sufficient value.

上記一般式において、酸素のモル比dの下限は0以上が好ましく、0.05以上がより好ましい。一方、酸素のモル比dの上限は、0.40以下が好ましく、0.35以下がより好ましい。酸素のモル比dを上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
また、蛍光体中の酸素元素の含有量は2質量%未満が好ましく、1.8質量%以下がより好ましい。酸素元素の含有量を2質量%未満とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。
In the above general formula, the lower limit of the oxygen molar ratio d is preferably 0 or more, more preferably 0.05 or more. On the other hand, the upper limit of the oxygen molar ratio d is preferably 0.40 or less, more preferably 0.35 or less. By setting the oxygen molar ratio d in the above range, the crystal state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.
The content of oxygen element in the phosphor is preferably less than 2 mass%, more preferably 1.8 mass% or less. By making the content of oxygen element less than 2 mass%, the crystal state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.

および酸素のモル比、即ちa、dから算出されるd/(a+d)の値の下限は、0以上が好ましく、0.05以上がより好ましい。一方、d/(a+d)の値の上限は、0.30未満が好ましく、0.25以下がより好ましい。d/(a+d)を上記範囲とすることにより、蛍光体の結晶状態を安定化させ、発光強度を十分な値に保つことができる。 The lower limit of the value of d/(a+d) calculated from the molar ratio of M1 and oxygen, i.e., a and d, is preferably 0 or more, and more preferably 0.05 or more. On the other hand, the upper limit of the value of d/(a+d) is preferably less than 0.30, and more preferably 0.25 or less. By setting d/(a+d) in the above range, the crystal state of the phosphor can be stabilized and the emission intensity can be maintained at a sufficient value.

本実施形態の表面被覆蛍光体粒子は、以下の条件で測定して得られる質量増加率が、15%以下である。
(質量増加率の測定条件)
表面被覆蛍光体粒子からなる粉体の初期質量をW1とし、温度60℃、湿度90%RHの条件下で50時間経過後の表面被覆蛍光体粒子からなる粉体の質量をW2とする。質量増加率を式(W2-W1)/W1×100(%)より算出する。
なお、測定前の表面被覆蛍光体粒子は、庫内湿度1%RH以下の超低湿ドライボックスで、所定時間保管しておくことが好ましい。
質量増加率は、蛍光体粒子の表面に形成される被覆部の成分や被覆形態を制御することにより調節されうる。
The surface-coated phosphor particles of this embodiment have a mass increase rate of 15% or less, measured under the following conditions.
(Conditions for measuring mass increase rate)
The initial mass of the powder made of surface-coated phosphor particles is W1, and the mass of the powder made of surface-coated phosphor particles after 50 hours under conditions of a temperature of 60° C. and a humidity of 90% RH is W2. The mass increase rate is calculated by the formula (W2-W1)/W1×100(%).
Before the measurement, the surface-coated phosphor particles are preferably stored for a predetermined period of time in an ultra-low humidity dry box with an internal humidity of 1% RH or less.
The mass increase rate can be adjusted by controlling the components of the coating portion formed on the surface of the phosphor particle and the coating form.

本実施形態の表面被覆蛍光体粒子は、上述した被覆部を備え、かつ、耐久試験前後の質量増加率を15%以下としたことにより、蛍光体の耐湿性を高めることができ、ひいては発光強度を長期間にわたって維持することができる。なお、表面被覆蛍光体粒子の質量増加は、未被覆部分の加水分解ならびに水酸化反応が原因と考えられる。The surface-coated phosphor particles of this embodiment have the above-mentioned coating portion, and the mass increase rate before and after the durability test is set to 15% or less, thereby improving the moisture resistance of the phosphor and thereby enabling the emission intensity to be maintained for a long period of time. The mass increase of the surface-coated phosphor particles is thought to be caused by hydrolysis and hydroxylation reactions of the uncoated portions.

本実施形態の表面被覆蛍光体粒子において、耐久試験前後の質量増加率は、12%以下が好ましく、5%以下がより好ましい。耐久試験前後の質量増加率を上記範囲とすることにより、蛍光体の耐湿性をより一層高めることができ、ひいては発光強度をより長期間にわたって維持することができる。In the surface-coated phosphor particles of this embodiment, the mass increase rate before and after the durability test is preferably 12% or less, and more preferably 5% or less. By setting the mass increase rate before and after the durability test within the above range, the moisture resistance of the phosphor can be further improved, and the luminous intensity can be maintained for a longer period of time.

本実施形態では、表面被覆蛍光体粒子全体に対するフッ素元素の含有率が15質量%以上30質量%以下である。表面被覆蛍光体粒子全体に対するフッ素元素の含有率を15質量%以上とすることにより、耐湿性を高めることができる。表面被覆蛍光体粒子全体に対するフッ素元素の含有率を30質量%以下とすることにより、耐湿性を高めつつ、発光強度を十分な値に保つことができる。
表面被覆蛍光体粒子全体に対するフッ素元素の含有率の下限は18質量%以上がより好ましく、20質量%以上がさらに好ましい。また、表面被覆蛍光体粒子全体に対するフッ素元素の含有率の上限は、27質量%以下がより好ましく、25質量%以下がさらに好ましい。フッ素元素の含有率の下限を上記範囲とすることにより、耐湿性をより一層高めることができる。また、フッ素元素の含有率の上限を上記範囲とすることにより、耐湿性をより一層高めつつ、発光強度を十分な値に保つことができる。
なお、フッ素元素は、後述する、原料として用いられる金属元素のフッ化物に由来するか、後述するフッ素処理工程により添加されるものであり、蛍光体の結晶構造を構成しない。
In this embodiment, the content of fluorine element relative to the entire surface-coated phosphor particles is 15 mass% or more and 30 mass% or less. By making the content of fluorine element relative to the entire surface-coated phosphor particles 15 mass% or more, it is possible to improve moisture resistance. By making the content of fluorine element relative to the entire surface-coated phosphor particles 30 mass% or less, it is possible to maintain a sufficient luminous intensity while improving moisture resistance.
The lower limit of the content of the fluorine element relative to the entire surface-coated phosphor particles is more preferably 18% by mass or more, and even more preferably 20% by mass or more. The upper limit of the content of the fluorine element relative to the entire surface-coated phosphor particles is more preferably 27% by mass or less, and even more preferably 25% by mass or less. By setting the lower limit of the content of the fluorine element within the above range, the moisture resistance can be further improved. Furthermore, by setting the upper limit of the content of the fluorine element within the above range, the moisture resistance can be further improved while maintaining a sufficient luminous intensity.
The fluorine element is derived from a fluoride of a metal element used as a raw material, which will be described later, or is added in a fluorine treatment step, which will be described later, and does not constitute the crystal structure of the phosphor.

本実施形態においては、酸処理工程における酸および溶媒の種類、酸の濃度、フッ酸処理工程における、フッ酸の濃度、フッ酸処理の時間、フッ酸処理後に行う加熱工程における加熱温度および加熱時間等を適切に調整すること等により、粒子中のフッ素元素の含有率及び質量増加率を所望の範囲内に制御することができる。In this embodiment, the fluorine element content and mass increase rate in the particles can be controlled within a desired range by appropriately adjusting the type of acid and solvent in the acid treatment process, the acid concentration, the hydrofluoric acid concentration in the hydrofluoric acid treatment process, the hydrofluoric acid treatment time, the heating temperature and heating time in the heating process performed after the hydrofluoric acid treatment, etc.

本実施形態の表面被覆蛍光体粒子によれば、水暴露環境下における蛍光強度の抑制でき、好ましくは90%RH以上等の高湿環境下における蛍光強度の低下を抑制でき、より好ましくは高温高湿環境下における蛍光強度の低下を抑制できる。The surface-coated phosphor particles of this embodiment can suppress the fluorescence intensity in a water exposure environment, preferably suppress the decrease in fluorescence intensity in a high humidity environment such as 90% RH or higher, and more preferably suppress the decrease in fluorescence intensity in a high temperature and high humidity environment.

被覆部は、上述した蛍光体を含む粒子の表面の少なくとも一部を構成することが好ましい。さらに、当該被覆部は、フッ素元素を含有するフッ素化合物を含むことが好ましく、フッ素元素およびアルミニウム元素を含有するフッ素含有化合物を含むことがより好ましい。
フッ素含有化合物において、フッ素とアルミニウム元素とが直接に共有結合していることが好ましく、より具体的には、フッ素含有化合物は、(NHAlFまたはAlFのいずれか一方または両方を含むことが好ましい。なお、フッ素含有化合物は、フッ素元素およびアルミニウム元素を含有する単一の化合物により構成されていてもよい。
上述の被覆部が蛍光体を含む粒子の最表面の少なくとも一部を構成することにより、粒子を構成する蛍光体の耐湿性を向上させることができる。なお、蛍光体の耐湿性をより一層向上させる観点から、被覆部がAlFを含むことがより好ましい。
The coating preferably constitutes at least a part of the surface of the particle containing the phosphor. Furthermore, the coating preferably contains a fluorine compound containing elemental fluorine, and more preferably contains a fluorine-containing compound containing elemental fluorine and elemental aluminum.
In the fluorine-containing compound, it is preferable that fluorine and aluminum element are directly covalently bonded, and more specifically, it is preferable that the fluorine-containing compound contains either or both of (NH 4 ) 3 AlF 6 and AlF 3. Note that the fluorine-containing compound may be composed of a single compound containing fluorine element and aluminum element.
The coating portion constitutes at least a part of the outermost surface of the phosphor-containing particle, and thus the moisture resistance of the phosphor constituting the particle can be improved. From the viewpoint of further improving the moisture resistance of the phosphor, it is more preferable that the coating portion contains AlF3 .

被覆部の態様は特に制限されないが、被覆部は粒子表面の少なくとも一部を覆うように構成されていればよく、粒子表面全体を覆うように構成されてもよい。被覆部の態様として、たとえば、粒子状のフッ素含有化合物が蛍光体を含む粒子の表面に多数分布している態様や、フッ素含有化合物が蛍光体を含む粒子の表面を連続的に被覆する態様が挙げられる。The form of the coating portion is not particularly limited, but it is sufficient that the coating portion is configured to cover at least a portion of the particle surface, and may be configured to cover the entire particle surface. Examples of the coating portion include a form in which a large number of particulate fluorine-containing compounds are distributed on the surface of the particle containing the phosphor, and a form in which the fluorine-containing compound continuously coats the surface of the particle containing the phosphor.

本実施形態の表面被覆蛍光体粒子における、波長300nmの光照射に対する拡散反射率が、例えば、56%以上、より好ましくは58%以上、より好ましくは60%以上である。
また、表面被覆蛍光体粒子における、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が、例えば85%以上、好ましくは86%以上である。このような特性を備えることにより、さらに発光効率が高くなり発光強度が向上する。
In the surface-coated phosphor particles of this embodiment, the diffuse reflectance with respect to light irradiation with a wavelength of 300 nm is, for example, 56% or more, more preferably 58% or more, and more preferably 60% or more.
Furthermore, the surface-coated phosphor particles have a diffuse reflectance of, for example, 85% or more, and preferably 86% or more, with respect to light irradiation at the peak wavelength of the fluorescent spectrum. By providing such characteristics, the luminous efficiency is further increased, and the luminous intensity is improved.

本実施形態の表面被覆蛍光体粒子の一例は、波長455nmの青色光で励起した場合、ピーク波長が640nm以上670nm以下の範囲にあり、半値幅が45nm以上60nm以下であることが好ましい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。An example of the surface-coated phosphor particles of this embodiment preferably has a peak wavelength in the range of 640 nm to 670 nm and a half-width of 45 nm to 60 nm when excited with blue light having a wavelength of 455 nm. By having such characteristics, excellent color rendering and color reproducibility can be expected.

本実施形態の表面被覆蛍光体粒子の一例は、波長455nmの青色光で励起した場合、発光色の色純度がCIE-xy色度図において、x値が0.680≦x<0.735を満たすことが好ましい。このような特性を備えることにより、優れた演色性や色再現性が期待できる。x値が0.680以上であれば色純度の良い赤色発光をさらに期待でき、x値が0.735以上の値はCIE-xy色度図内の最大値を超えるため、上記範囲を満たすことが好ましい。When an example of the surface-coated phosphor particles of this embodiment is excited with blue light having a wavelength of 455 nm, it is preferable that the color purity of the emitted color satisfies the x value of 0.680≦x<0.735 in the CIE-xy chromaticity diagram. By having such characteristics, excellent color rendering and color reproducibility can be expected. If the x value is 0.680 or more, red light emission with good color purity can be expected, and an x value of 0.735 or more exceeds the maximum value in the CIE-xy chromaticity diagram, so it is preferable that the above range is satisfied.

(表面被覆蛍光体粒子の製造方法)
本実施形態の表面被覆蛍光体粒子は、原料を混合する混合工程と、混合工程により得た混合体を焼成する焼成工程と、焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程によって製造することができる。上記の工程の他に、と、酸処理工程を経た焼成物と、フッ素元素を含む化合物とを混合するフッ素処理工程と、フッ素処理工程により得られる結果物に加熱処理を施す加熱工程を追加することが好ましい。
(Method for producing surface-coated phosphor particles)
The surface-coated phosphor particles of this embodiment can be manufactured by a mixing process for mixing the raw materials, a firing process for firing the mixture obtained by the mixing process, and an acid treatment process for mixing the fired product obtained by the firing process with an acidic solution. In addition to the above processes, it is preferable to add a fluorine treatment process for mixing the fired product that has been subjected to the acid treatment process with a compound containing fluorine element, and a heating process for applying a heat treatment to the result obtained by the fluorine treatment process.

(混合工程)
混合工程は、目的とする表面被覆蛍光体粒子が得られるように秤量した各原料を混合して粉末状の原料混合体を得る工程である。原料を混合する方法は特に限定されないが、たとえば、乳鉢、ボールミル、V型混合機、遊星ミルなどの混合装置を用いて十分に混合する方法がある。なお、空気中の水分や酸素と激しく反応する窒化ストロンチウム、窒化リチウム等は、内部が不活性雰囲気で置換されたグローブボックス内や混合装置を用いて取り扱うことが適切である。
(Mixing process)
The mixing step is a step of obtaining a powdered raw material mixture by mixing the raw materials weighed so as to obtain the desired surface-coated phosphor particles. The method of mixing the raw materials is not particularly limited, but for example, a method of thoroughly mixing the raw materials using a mixing device such as a mortar, a ball mill, a V-type mixer, or a planetary mill is available. Note that strontium nitride, lithium nitride, etc., which react violently with moisture and oxygen in the air, are appropriately handled in a glove box whose inside is replaced with an inert atmosphere or using a mixing device.

混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.10以上であることが好ましい。Mの仕込み量をモル比で1.10以上とすることにより、焼成工程中のMの揮発などにより蛍光体中のMが不足することが抑制され、Mに欠陥が生じにくくなり、結晶構造の結晶性が良好に保たれる。この結果、狭帯域の蛍光スペクトルが得られ、発光強度を高めることができると推測される。また、混合工程において、Alのモル比を3としたときのMの仕込み量がモル比で1.20以下であることが好ましい。Mの仕込み量をモル比で1.20以下とすることにより、Mを含む異相の増加を抑制し、酸処理工程により異相の除去が容易になり、発光強度を高めることができる。 In the mixing step, the amount of M 1 charged is preferably 1.10 or more in molar ratio when the molar ratio of Al is 3. By setting the amount of M 1 charged to 1.10 or more in molar ratio, the shortage of M 1 in the phosphor due to the volatilization of M 1 during the firing step is suppressed, defects in M 1 are less likely to occur, and the crystallinity of the crystal structure is well maintained. As a result, it is presumed that a narrow band fluorescent spectrum is obtained and the emission intensity can be increased. In addition, in the mixing step, the amount of M 1 charged is preferably 1.20 or less in molar ratio when the molar ratio of Al is 3. By setting the amount of M 1 charged to 1.20 or less in molar ratio, the increase of the heterophase containing M 1 is suppressed, and the heterophase is easily removed by the acid treatment step, and the emission intensity can be increased.

混合工程において用いられる各原料は、蛍光体の組成に含まれる金属元素の金属単体および当該金属元素を含む金属化合物からなる群より選ばれる1種以上を含むことができる。金属化合物としては、窒化物、水素化物、フッ化物、酸化物、炭酸塩、塩化物等が挙げられる。このうち、蛍光体の発光強度を向上させる観点から、MおよびMを含む金属化合物として窒化物が好ましく用いられる。具体的には、Mを含む金属化合物として、Sr、SrN、SrNなどが挙げられる。Mを含む金属化合物として、LiN、LiNなどが挙げられる。Mを含む金属化合物としては、Eu、EuN、EuFが挙げられる。Alを含む金属化合物としては、AlN、AlH、AlF、LiAlHなどが挙げられる。なお、必要に応じて、フラックスを添加してもよい。フラックスとしては、LiF、SrF、BaF,AlFなどが挙げられる。 Each raw material used in the mixing step may contain one or more selected from the group consisting of a metal element contained in the composition of the phosphor and a metal compound containing the metal element. Examples of the metal compound include nitrides, hydrides, fluorides, oxides, carbonates, chlorides, etc. Among these, from the viewpoint of improving the luminous intensity of the phosphor, nitrides are preferably used as the metal compound containing M 1 and M 2. Specifically, examples of the metal compound containing M 1 include Sr 3 N 2 , SrN 2 , SrN, etc. Examples of the metal compound containing M 2 include Li 3 N, LiN 3 , etc. Examples of the metal compound containing M 3 include Eu 2 O 3 , EuN, and EuF 3. Examples of the metal compound containing Al include AlN, AlH 3 , AlF 3 , and LiAlH 4. In addition, a flux may be added as necessary. Examples of the flux include LiF, SrF2 , BaF2 , and AlF3 .

(焼成工程)
焼成工程では、上述した原料の混合体を焼成容器の内部に充填して焼成する。前記焼成容器は、気密性を高められる構造を備えていることが好ましく、焼成容器の内部はアルゴン、ヘリウム、水素、窒素等の非酸化性ガスの雰囲気ガスで満たすことが好ましい。焼成容器は、高温の雰囲気ガス下において安定で、原料の混合体及びその反応生成物と反応しにくい材質で構成されることが好ましく、たとえば、窒化ホウ素製、カーボン製の容器や、モリブデンやタンタルやタングステン等の高融点金属製の容器を使用することが好ましい。
(Firing process)
In the firing step, the mixture of the raw materials is filled in a firing container and fired. The firing container is preferably provided with a structure that can enhance airtightness, and the inside of the firing container is preferably filled with an atmosphere gas of a non-oxidizing gas such as argon, helium, hydrogen, or nitrogen. The firing container is preferably made of a material that is stable under a high-temperature atmosphere gas and does not easily react with the mixture of the raw materials and its reaction products. For example, it is preferable to use a container made of boron nitride or carbon, or a container made of a high-melting point metal such as molybdenum, tantalum, or tungsten.

[焼成温度]
焼成工程における焼成温度の下限は、900℃以上が好ましく、1000℃以上がより好ましく、1100℃以上がさらに好ましい。一方、焼成温度の上限は、1500℃以下が好ましく、1400℃以下がより好ましく、1300℃以下がさらに好ましい。焼成温度を上記範囲とすることにより、焼成工程終了後の未反応原料を少なくでき、また主結晶相の分解を抑制することができる。
[Firing temperature]
The lower limit of the firing temperature in the firing step is preferably 900° C. or higher, more preferably 1000° C. or higher, and even more preferably 1100° C. or higher. On the other hand, the upper limit of the firing temperature is preferably 1500° C. or lower, more preferably 1400° C. or lower, and even more preferably 1300° C. or lower. By setting the firing temperature within the above range, it is possible to reduce the amount of unreacted raw materials after the firing step is completed, and also to suppress decomposition of the main crystal phase.

[焼成雰囲気ガスの種類]
焼成工程における焼成雰囲気ガスの種類としては、例えば元素としての窒素を含むガスを好ましく用いることができる。具体的には、窒素および/またはアンモニアを挙げることができ、特に窒素が好ましい。また同様に、アルゴン、ヘリウム等の不活性ガスも好ましく用いることができる。なお焼成雰囲気ガスは1種類のガスで構成されていても、複数の種類のガスの混合ガスであっても構わない。
[Type of firing atmosphere gas]
As the type of the firing atmosphere gas in the firing step, for example, a gas containing nitrogen as an element can be preferably used. Specifically, nitrogen and/or ammonia can be mentioned, and nitrogen is particularly preferable. Similarly, inert gases such as argon and helium can also be preferably used. The firing atmosphere gas may be composed of one type of gas or may be a mixed gas of multiple types of gases.

[焼成雰囲気ガスの圧力]
焼成雰囲気ガスの圧力は、焼成温度に応じて選択されるが、通常0.1MPa・G以上10MPa・G以下の範囲の加圧状態である。焼成雰囲気ガスの圧力が高いほど、蛍光体の分解温度は高くなるが、工業的生産性を考慮すると0.5MPa・G以上1MPa・G以下とすることが好ましい。
[Firing atmosphere gas pressure]
The pressure of the firing atmosphere gas is selected depending on the firing temperature, but is usually in a pressurized state in the range of 0.1 MPa·G to 10 MPa·G. The higher the pressure of the firing atmosphere gas, the higher the decomposition temperature of the phosphor. However, in consideration of industrial productivity, it is preferable to set the pressure to 0.5 MPa·G to 1 MPa·G.

[焼成時間]
焼成工程における焼成時間は、未反応物が多く存在したり、蛍光体の粒子が成長不足であったり、或いは生産性の低下という不都合が生じない時間範囲が選択される。実施形態に係る表面被覆蛍光体粒子の製造方法では、焼成時間の下限は、0.5時間以上が好ましく、1時間以上がより好ましく、2時間以上がさらに好ましい。また、焼成時間の上限は、48時間以下が好ましく、36時間以下がより好ましく、24時間以下がさらに好ましい。
[Baking time]
The firing time in the firing step is selected within a time range that does not cause problems such as a large amount of unreacted material, insufficient growth of phosphor particles, or reduced productivity. In the method for producing surface-coated phosphor particles according to the embodiment, the lower limit of the firing time is preferably 0.5 hours or more, more preferably 1 hour or more, and even more preferably 2 hours or more. The upper limit of the firing time is preferably 48 hours or less, more preferably 36 hours or less, and even more preferably 24 hours or less.

焼成工程により得られる焼成物の状態は、原料配合や焼成条件によって、粉体状、塊状と様々である。表面被覆蛍光体粒子として実際に使用する場合に備えて、得られた焼成物を所定のサイズの粉末にする解砕・粉砕工程及び/又は分級操作工程を備えていてもよい。なお、表面被覆蛍光体粒子の平均粒子径は、励起光の吸収効率および十分な発光効率を得るという点から、LED用の表面被覆蛍光体粒子として使用する場合には、表面被覆蛍光体粒子の平均粒子径が5μm以上30μm以下となるように調整することが好ましい。また上述の解砕・粉砕工程では、その処理に由来する不純物の混入を防ぐため、焼成物と接触する機器の部材が、窒化ケイ素、アルミナ、サイアロンといった高靭性セラミックス製であることが好ましい。The state of the fired product obtained by the firing process varies from powder to lumps depending on the raw material composition and firing conditions. In preparation for actual use as surface-coated phosphor particles, a crushing/grinding process and/or a classification process for powdering the fired product to a predetermined size may be provided. In addition, in order to obtain the absorption efficiency of excitation light and sufficient luminous efficiency, it is preferable that the average particle diameter of the surface-coated phosphor particles is adjusted to 5 μm or more and 30 μm or less when used as surface-coated phosphor particles for LEDs. In addition, in the above-mentioned crushing/grinding process, in order to prevent the inclusion of impurities derived from the process, it is preferable that the components of the equipment that come into contact with the fired product are made of high-toughness ceramics such as silicon nitride, alumina, and sialon.

(酸処理工程)
酸処理工程において用いられる酸性溶液は水溶液であることが好ましく、酸性溶液との接触は、たとえば、硝酸、塩酸、酢酸、硫酸、蟻酸、リン酸の1種以上を含む酸性の水溶液中に上述の焼成物を分散させ、数分から数時間撹拌する方法が一般的である。
具体的には、有機溶媒および酸性溶液の混合溶液中に上述の焼成物を分散させ、数分から数時間撹拌後、有機溶媒を用いて洗浄することができる。酸処理によって、原料に含まれる不純物元素、焼成容器に由来する不純物元素、焼成工程で生じた異相、粉砕工程にて混入した不純物元素を溶解除去できる。同時に微粉を取り除くことも可能なため、光の散乱を抑えられ、蛍光体の光吸収率も向上する。
なお、有機溶媒は、メタノール、エタノール、2-プロパノールなどのアルコールおよびアセトンなどのケトンを使用できる。酸性溶液は、硝酸、塩酸、酢酸、硫酸、蟻酸、リン酸の1種以上とする。これら溶液の混合比率としては、たとえば、有機溶媒に対して酸性溶液が0.1体積%以上3体積%以下の濃度となるように調製する。
(Acid treatment process)
The acidic solution used in the acid treatment step is preferably an aqueous solution, and the contact with the acidic solution is generally performed by dispersing the fired product in an acidic aqueous solution containing one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid, and phosphoric acid, followed by stirring for several minutes to several hours.
Specifically, the above-mentioned fired product can be dispersed in a mixed solution of an organic solvent and an acidic solution, stirred for several minutes to several hours, and then washed with an organic solvent. The acid treatment can dissolve and remove impurity elements contained in the raw materials, impurity elements originating from the firing vessel, foreign phases generated during the firing process, and impurity elements mixed in during the crushing process. At the same time, it is possible to remove fine powder, which suppresses light scattering and improves the light absorption rate of the phosphor.
The organic solvent may be an alcohol such as methanol, ethanol, or 2-propanol, or a ketone such as acetone. The acid solution may be one or more of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, formic acid, and phosphoric acid. The mixing ratio of these solutions is adjusted so that the concentration of the acid solution relative to the organic solvent is, for example, 0.1% by volume to 3% by volume.

(フッ素処理工程)
フッ素処理工程において、酸処理工程を経た焼成物に混合されるフッ素元素を含む化合物として、フッ酸水溶液が好ましく用いられる。フッ酸水溶液の濃度の下限は25%以上が好ましく、27%以上がより好ましく、30%以上がさらに好ましい。一方、フッ酸水溶液の濃度の上限は、38%以下が好ましく、36%以下がより好ましく、34%以下がさらに好ましい。フッ酸水溶液の濃度を25%以上とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を形成することができる。一方、フッ酸水溶液の濃度を38%以下とすることにより、粒子とフッ酸との反応が激しくなり過ぎることを抑制することができる。
酸処理工程を経た焼成物とフッ酸水溶液との混合は、スターラーなどの攪拌手段により行うことができる。上記焼成物とフッ酸水溶液との混合時間の下限は、5分以上が好ましく10分以上がより好ましく、15分以上がさらに好ましい。一方、上記焼成物とフッ酸水溶液との混合時間の上限は、30分以下が好ましく、25分以下がより好ましく、20分以下がさらに好ましい。上記焼成物とフッ酸水溶液との混合時間を上記範囲とすることにより、蛍光体を含む粒子の最表面の少なくとも一部に(NHAlFを含む被覆部を安定的に形成することができる。
(Fluorine treatment process)
In the fluorine treatment process, a hydrofluoric acid solution is preferably used as a compound containing fluorine element to be mixed with the fired product that has been subjected to the acid treatment process. The lower limit of the concentration of the hydrofluoric acid solution is preferably 25% or more, more preferably 27% or more, and even more preferably 30% or more. On the other hand, the upper limit of the concentration of the hydrofluoric acid solution is preferably 38% or less, more preferably 36% or less, and even more preferably 34% or less. By making the concentration of the hydrofluoric acid solution 25% or more, a coating portion containing (NH 4 ) 3 AlF 6 can be formed on at least a part of the outermost surface of the particles containing phosphor. On the other hand, by making the concentration of the hydrofluoric acid solution 38% or less, the reaction between the particles and hydrofluoric acid can be suppressed from becoming too intense.
The mixture of the calcined product having undergone the acid treatment process and the hydrofluoric acid aqueous solution can be carried out by a stirring means such as a stirrer. The lower limit of the mixing time of the calcined product and the hydrofluoric acid aqueous solution is preferably 5 minutes or more, more preferably 10 minutes or more, and even more preferably 15 minutes or more. On the other hand, the upper limit of the mixing time of the calcined product and the hydrofluoric acid aqueous solution is preferably 30 minutes or less, more preferably 25 minutes or less, and even more preferably 20 minutes or less. By setting the mixing time of the calcined product and the hydrofluoric acid aqueous solution within the above range, a coating portion containing (NH 4 ) 3 AlF 6 can be stably formed on at least a part of the outermost surface of the particles containing phosphor.

(加熱工程)
フッ素処理により得られる結果物が被覆部として(NHAlFを含む場合には、以上の工程の後に、加熱工程を実施してもよい。加熱工程における加熱温度の下限は220℃以上が好ましく、250℃以上がより好ましい。一方、上記加熱温度の上限は、500℃以下が好ましく、450℃以下がより好ましく、400℃以下がさらに好ましい。
加熱温度を220℃以上とすることにより、下記反応式(1)を進行させることにより、(NHAlFをAlFに変えることができる。
(NHAlF→AlF+3NH+3HF・・・(1)
一方、加熱温度を500℃以下とすることにより、蛍光体の結晶構造を良好に維持し、発光強度を高めることができる。
加熱時間の下限は、1時間以上が好ましく、1.5時間以上がより好ましく、2時間以上がさらに好ましい。一方、加熱時間の上限は、6時間以下が好ましく、5.5時間以下がより好ましく、5時間以下がさらに好ましい。加熱時間を上記範囲とすることにより、(NHAlFを耐湿性がより高いAlFに確実に変えることができる。
なお、加熱工程は大気中あるいは窒素雰囲気下で実施することが好ましい。これによれば、加熱雰囲気の物質自身が上記の反応式(1)を阻害することなく、目的の物質を生成することができる。
(Heating process)
When the resultant product obtained by the fluorine treatment contains (NH 4 ) 3 AlF 6 as the coating portion, a heating step may be performed after the above steps. The lower limit of the heating temperature in the heating step is preferably 220° C. or more, and more preferably 250° C. or more. On the other hand, the upper limit of the heating temperature is preferably 500° C. or less, more preferably 450° C. or less, and even more preferably 400° C. or less.
By setting the heating temperature to 220° C. or higher, the following reaction formula (1) proceeds, whereby (NH 4 ) 3 AlF 6 can be converted to AlF 3 .
( NH4 ) 3AlF6AlF3 + 3NH3 +3HF... ( 1 )
On the other hand, by setting the heating temperature to 500° C. or less, the crystal structure of the phosphor can be well maintained and the emission intensity can be increased.
The lower limit of the heating time is preferably 1 hour or more, more preferably 1.5 hours or more, and even more preferably 2 hours or more. On the other hand, the upper limit of the heating time is preferably 6 hours or less, more preferably 5.5 hours or less, and even more preferably 5 hours or less. By setting the heating time within the above range, (NH 4 ) 3 AlF 6 can be reliably converted into AlF 3 having higher moisture resistance.
The heating step is preferably carried out in air or a nitrogen atmosphere, so that the substance in the heating atmosphere itself does not inhibit the above reaction formula (1) and the target substance can be produced.

本実施形態においては、酸処理工程における酸および溶媒の種類、酸の濃度、フッ素処理工程における、フッ酸の濃度、フッ素処理の時間、フッ素処理後に行う加熱工程における加熱温度および加熱時間等を適切に調整することにより、蛍光体を含む粒子の表面を被覆する被覆部が形成され、かつ、表面被覆蛍光体粒子全体に対して、フッ素元素の含有率を15質量%以上30質量%以下であり、上述した条件で測定して得られる質量増加率が15%以下となるような表面被覆蛍光体粒子を得ることができる。
以上説明した表面被覆蛍光体粒子の製造方法によれば、耐湿性が向上し、ひいては発光強度を長期間にわたり維持することができる窒化物蛍光体粒子を製造することができる。
In this embodiment, by appropriately adjusting the type of acid and solvent in the acid treatment step, the acid concentration, the concentration of hydrofluoric acid in the fluorine treatment step, the fluorine treatment time, the heating temperature and heating time in the heating step performed after the fluorine treatment, etc., a coating portion that covers the surface of the particles containing phosphor can be formed, and surface-coated phosphor particles can be obtained in which the fluorine element content is 15 mass% or more and 30 mass% or less with respect to the entire surface-coated phosphor particles, and the mass increase rate measured under the above-mentioned conditions is 15% or less.
According to the method for producing surface-coated phosphor particles described above, it is possible to produce nitride phosphor particles having improved moisture resistance and capable of maintaining luminous intensity for a long period of time.

(発光装置)
実施形態に係る発光装置は、上述した実施形態の表面被覆蛍光体粒子と発光素子とを有する。
発光素子としては、紫外LED、青色LED、蛍光ランプの単体又はこれらの組み合わせを用いることができる。発光素子は、250nm以上550nm以下の波長の光を発するものが望ましく、なかでも420nm以上500nm以下の青色LED発光素子が好ましい。
(Light emitting device)
The light emitting device according to the embodiment includes the surface-coated phosphor particles according to the above-described embodiment and a light emitting element.
The light emitting element may be an ultraviolet LED, a blue LED, a fluorescent lamp, or a combination of these. The light emitting element is preferably one that emits light with a wavelength of 250 nm or more and 550 nm or less, and more preferably a blue LED light emitting element that emits light with a wavelength of 420 nm or more and 500 nm or less.

発光装置に使用する蛍光体粒子としては、上述した実施形態の表面被覆蛍光体粒子の他に、他の発光色を持つ蛍光体粒子を併用することができる。他の発光色の蛍光体粒子としては、青色発光蛍光体粒子、緑色発光蛍光体粒子、黄色発光蛍光体粒子、橙色発光蛍光体粒子、赤色蛍光体があり、例えば、CaScSi12:Ce、CaSc:Ce、β-SiAlON:Eu、YAl12:Ce、TbAl12:Ce、(Sr、Ca、Ba)SiO:Eu、LaSi11:Ce、α-SiAlON:Eu、SrSi:Eu等が挙げられる。上述した実施形態の表面被覆蛍光体粒子と併用できる蛍光体粒子は、特に限定されるものではなく、発光装置に要求される輝度や演色性等に応じて適宜選択可能である。上述した実施形態の表面被覆蛍光体粒子と他の発光色の蛍光体粒子とを混在させることにより、昼白色や電球色などの様々な色温度の白色を実現することができる。
発光装置としては、照明装置、バックライト装置、画像表示装置および信号装置がある。
As the phosphor particles used in the light emitting device, in addition to the surface-coated phosphor particles of the above-mentioned embodiment, phosphor particles having other luminous colors can be used in combination. Phosphor particles having other luminous colors include blue-emitting phosphor particles, green-emitting phosphor particles, yellow-emitting phosphor particles, orange-emitting phosphor particles, and red phosphors, such as Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, β-SiAlON: Eu, Y 3 Al 5 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, La 3 Si 6 N 11 : Ce, α-SiAlON: Eu, Sr 2 Si 5 N 8 : Eu, etc. Phosphor particles that can be used in combination with the surface-coated phosphor particles of the above-described embodiment are not particularly limited and can be appropriately selected according to the brightness, color rendering, etc. required for the light-emitting device. By mixing the surface-coated phosphor particles of the above-described embodiment with phosphor particles of other luminous colors, it is possible to realize white colors of various color temperatures, such as daylight white and warm white.
Light-emitting devices include lighting devices, backlight devices, image display devices, and signal devices.

本実施形態の発光装置は、上述した実施形態の表面被覆蛍光体粒子を採用することにより、高い発光強度を実現しつつ、信頼性を高めることができる。 By adopting the surface-coated phosphor particles of the above-mentioned embodiment, the light-emitting device of this embodiment can achieve high light-emitting intensity while improving reliability.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 The above describes embodiments of the present invention, but these are merely examples of the present invention and various configurations other than those described above can also be adopted.

以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these.

(実施例1)
Al4-dで表される組成を有する蛍光体であり、M=Sr、M=Li、M=Euを満たすものを得るため、Sr(太平洋セメント社製)、LiN(Materion社製)、AlN(トクヤマ社製)、Eu(信越化学工業社製)を各原料として用い、フラックスとしてLiF(和光純薬社製)を用いた。Alのモル比を3としたときのSrの仕込み量をモル比で1.15とするとともに、Euの仕込み量をモル比で0.0115とした。前記原料混合物とフラックスの合計量100質量%に対して、5質量%のLiFを添加した。なお、Euは前述したようにAlのモル比を3としたときの仕込み量をモル比で0.0115とした。
以下、実施例1の表面被覆蛍光体粒子の製造方法について具体的に記載する。
大気中で、AlN、EuおよびLiFを秤量、混合したのち、目開き150μmのナイロン篩で凝集を解砕し、プレ混合物を得た。
前記プレ混合物を、水分1ppm以下、酸素1ppm以下とした不活性雰囲気を保持しているグローブボックス中に移動させた。その後、化学量論比(a=1、b=1)でaの値が15%過剰、bの値が20%過剰になるように、前述のSrおよびLiNを秤量後、追加配合して混合後、目開き150μmのナイロン篩で凝集を解砕して蛍光体の原料混合物を得た。SrおよびLiは焼成中に飛散しやすいため、理論値より多めに配合した。
次いで、前記原料混合物を蓋付きの円筒型BN製容器(デンカ株式会社製)に充填した。
次いで、蛍光体の原料混合物を充填した前記容器をグローブボックスから取り出した後、グラファイト断熱材を備えたカーボンヒーター付きの電気炉(富士電波工業社製)にセットし、焼成工程を実施した。
焼成工程の開始にあっては、電気炉内を真空状態まで一旦脱ガスしたのち、室温から0.8MPa・Gの加圧窒素雰囲気下で焼成を開始した。電気炉内の温度が1100℃に到達後は、8時間温度を保ちながら焼成を続け、その後室温まで冷却した。得られた焼成物は乳鉢で粉砕後、目開き75μmのナイロン篩で分級し、回収した。
酸処理工程としてMeOH(99%)(国産化学株式会社製)にHNO(60%)(和光純薬社製)を加えた混合溶液中に焼成物の粉体を加えて3時間撹拌した後、分級し、蛍光体粉末を得た。
得られた蛍光体粉末を30%フッ酸水溶液中に加え、15分間撹拌することでフッ素処理工程を実施した。フッ素処理工程の後、MeOHによるデカンテーションで溶液が中性になるまで洗浄し、濾過による固液分離を行った後、固形分を乾燥し、それを目開き45μmの篩を全通させることで、凝集を解き、実施例1の表面被覆蛍光体粒子を得た。
Example 1
The phosphor has a composition represented by M 1 a M 2 b M 3 c Al 3 N 4-d O d , and in order to obtain a phosphor that satisfies M 1 = Sr, M 2 = Li, and M 3 = Eu, Sr 3 N 2 (manufactured by Taiheiyo Cement Corporation), Li 3 N (manufactured by Materion Co., Ltd.), AlN (manufactured by Tokuyama Corporation), and Eu 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd.) were used as raw materials, and LiF (manufactured by Wako Pure Chemical Industries Co., Ltd.) was used as a flux. When the molar ratio of Al was 3, the amount of Sr charged was set to 1.15 in molar ratio, and the amount of Eu charged was set to 0.0115 in molar ratio. 5% by mass of LiF was added to the total amount of the raw material mixture and the flux, 100% by mass. As described above, the amount of Eu charged was set to 0.0115 in molar ratio when the molar ratio of Al was 3.
The method for producing the surface-coated phosphor particles of Example 1 will be specifically described below.
AlN, Eu 2 O 3 and LiF were weighed and mixed in the air, and then agglomerations were broken down using a nylon sieve with 150 μm openings to obtain a pre-mixture.
The premix was moved into a glove box that maintained an inert atmosphere with moisture of 1 ppm or less and oxygen of 1 ppm or less. After that, the above-mentioned Sr 3 N 2 and Li 3 N were weighed out and mixed so that the value of a was 15% excess and the value of b was 20% excess in the stoichiometric ratio (a = 1, b = 1 ), and then the aggregates were broken down using a nylon sieve with an opening of 150 μm to obtain a raw material mixture of the phosphor. Since Sr and Li are easily scattered during firing, they were mixed in amounts larger than the theoretical values.
Next, the raw material mixture was filled into a cylindrical BN container with a lid (manufactured by Denka Co., Ltd.).
Next, the container filled with the mixture of phosphor raw materials was taken out of the glove box, and then placed in an electric furnace (manufactured by Fuji Dempa Kogyo Co., Ltd.) equipped with a graphite heat insulator and a carbon heater, where a firing step was carried out.
At the start of the firing process, the inside of the electric furnace was degassed to a vacuum state, and then firing was started under a pressurized nitrogen atmosphere of 0.8 MPa·G from room temperature. After the temperature in the electric furnace reached 1100°C, firing was continued while maintaining the temperature for 8 hours, and then cooled to room temperature. The obtained fired product was crushed in a mortar, classified with a nylon sieve with an opening of 75 μm, and collected.
In the acid treatment step, the fired powder was added to a mixed solution of MeOH (99%) (Kokusan Chemical Co., Ltd.) and HNO 3 (60%) (Wako Pure Chemical Industries, Ltd.), stirred for 3 hours, and then classified to obtain a phosphor powder.
The obtained phosphor powder was added to a 30% hydrofluoric acid aqueous solution and stirred for 15 minutes to carry out a fluorine treatment process. After the fluorine treatment process, the solution was washed by decantation with MeOH until it became neutral, and solid-liquid separation was performed by filtration. The solid content was dried and passed through a sieve with 45 μm openings to break up the agglomerates, and the surface-coated phosphor particles of Example 1 were obtained.

(実施例2)
フッ素処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で300℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例2の表面被覆蛍光体粒子を得た。
Example 2
After the fluorine treatment, the phosphor powder was passed through a sieve with 45 μm mesh to deflocculate the agglomerates. The surface-coated phosphor particles of Example 2 were obtained using the same amounts of raw materials and using the same procedures as in Example 1, except that the phosphor powder was heated at 300° C. for 4 hours in an air atmosphere.

(実施例3)
フッ素処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で400℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて実施例3の表面被覆蛍光体粒子を得た。
Example 3
After the fluorine treatment, the phosphor powder was passed through a sieve with 45 μm mesh to deflocculate the agglomerates. The surface-coated phosphor particles of Example 3 were obtained using the same amounts of raw materials and using the same procedures as in Example 1, except that the phosphor powder was heated at 400° C. for 4 hours in an air atmosphere.

(比較例1)
フッ素処理で20%フッ酸水溶液を用いたことを除いて、実施例1と同様な原料の仕込み量および手順にて比較例1の蛍光体粒子を得た。
(Comparative Example 1)
Phosphor particles of Comparative Example 1 were obtained using the same amounts of raw materials and following the same procedures as in Example 1, except that a 20% aqueous hydrofluoric acid solution was used in the fluorine treatment.

(比較例2)
フッ素処理で20%フッ酸水溶液を用い、フッ素処理が施された後、目開き45μmの篩を全通させることで凝集を解いた蛍光体粉末に対して、大気雰囲気下で400℃、4時間の加熱処理を実施したことを除いて、実施例1と同様な原料の仕込み量および手順にて比較例2の蛍光体粒子を得た。
(Comparative Example 2)
The phosphor particles of Comparative Example 2 were obtained using the same amounts of raw materials and using the same procedures as in Example 1, except that the phosphor powder was fluorine-treated using a 20% aqueous hydrofluoric acid solution, and then passed through a sieve with 45 μm openings to deflocculate the agglomerates, and then heated at 400° C. for 4 hours in an air atmosphere.

各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、全結晶相を合計した化学組成(即ち、一般式:M Al4-d)の各元素の添字a~dを求めた。
上記添字a~dを求めるに当たっては、得られた蛍光体粒子を以下の方法で分析することにより求めた。すなわち、Sr、Li、Al及びEuについてはICP発光分光分析装置(SPECTRO社製、CIROS-120)により、O及びNについては酸素窒素分析計(堀場製作所社製、EMGA-920)を用いた分析結果を用いて算出した。実施例および比較例の蛍光体に関するa~dの数値を表1に示す。
For the surface-coated phosphor particles of each Example and each Comparative Example, the subscripts a to d of each element in the chemical composition (that is, general formula: M 1 a M 2 b M 3 c Al 3 N 4-d O d ) of all crystal phases were determined.
The above subscripts a to d were obtained by analyzing the obtained phosphor particles by the following method. That is, Sr, Li, Al, and Eu were calculated using the analysis results obtained by an ICP optical emission spectrometer (SPECTRO, CIROS-120), and O and N were calculated using the analysis results obtained by an oxygen/nitrogen analyzer (HORIBA, EMGA-920). The numerical values of a to d for the phosphors of the examples and comparative examples are shown in Table 1.

(フッ素元素の含有率)
各実施例の表面被覆蛍光体粒子全体に対するフッ素元素の含有率および各比較例の蛍光体粒子全体に対するフッ素元素の含有率を、試料燃焼装置(三菱化学アナリテック社製、AQF-2100H)およびイオンクロマト(日本ダイオネクス社製、ICS1500)を用いた分析結果を用いて算出した。
(Fluorine content)
The fluorine element content relative to the entire surface-coated phosphor particles of each Example and the fluorine element content relative to the entire phosphor particles of each Comparative Example were calculated using the analysis results obtained using a sample combustion device (Mitsubishi Chemical Analytech Co., Ltd., AQF-2100H) and an ion chromatograph (Nippon Dionex Co., Ltd., ICS1500).

(X線回折法による分析)
各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、X線回折装置(株式会社リガク製UltimaIV)を用い、CuKα線を用いた粉末X線回折パターンによりその結晶構造を確認した。実施例1については、2θが16.5°以上17.5°以下の範囲に(NHAlFに対応するピークが確認された。実施例2、3については、2θが14°以上15°以下の範囲にAlFに対応するピークが確認された。
比較例1では、(NHAlFに対応する小さいピークが観察されたが、実施例1に比べると微弱であり、生成量がかなり少ないと考えられる。また、比較例2では、AlFに対応するピークが観察されたが、実施例2、3に比べると微弱であり、生成量がかなり少ないと考えられる。
(Analysis by X-ray diffraction method)
The crystal structure of the surface-coated phosphor particles of each Example and the phosphor particles of each Comparative Example was confirmed by powder X-ray diffraction pattern using CuKα radiation using an X-ray diffractometer (Ultima IV manufactured by Rigaku Corporation). For Example 1, a peak corresponding to (NH 4 ) 3 AlF 6 was confirmed in the range of 2θ from 16.5° to 17.5°. For Examples 2 and 3, a peak corresponding to AlF 3 was confirmed in the range of 2θ from 14° to 15°.
In Comparative Example 1, a small peak corresponding to ( NH4 ) 3AlF6 was observed, but it was weaker than in Example 1, and it is believed that the amount produced was significantly smaller. In Comparative Example 2 , a peak corresponding to AlF3 was observed, but it was weaker than in Examples 2 and 3, and it is believed that the amount produced was significantly smaller.

(XPSによる表面分析)
各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、XPSによる表面分析を実施した。各実施例の表面被覆蛍光体粒子については、蛍光体粒子の最表面において、AlとFが存在し、AlとFとが共有結合していることが確認された。XPSによる表面分析結果と、X線回折法による分析により、実施例1の表面被覆蛍光体粒子では、蛍光体粒子の最表面の少なくとも一部を(NHAlFが構成しており、実施例2、3の表面被覆蛍光体粒子では、蛍光体粒子の最表面の少なくとも一部をAlFが構成しているといえる。
(Surface analysis by XPS)
The surface-coated phosphor particles of each Example and the phosphor particles of each Comparative Example were subjected to surface analysis by XPS. It was confirmed that Al and F exist on the outermost surface of the phosphor particles of each Example, and that Al and F are covalently bonded. From the surface analysis results by XPS and the analysis by X-ray diffraction method, it can be said that in the surface-coated phosphor particles of Example 1, at least a part of the outermost surface of the phosphor particles is composed of (NH 4 ) 3 AlF 6 , and in the surface-coated phosphor particles of Examples 2 and 3, at least a part of the outermost surface of the phosphor particles is composed of AlF 3 .

(拡散反射率)
拡散反射率は、日本分光社製紫外可視分光光度計(V-550)に積分球装置(ISV-469)を取り付けて測定した。標準反射板(スペクトラロン)でベースライン補正を行い、各実施例の表面被覆蛍光体粒子または各比較例の蛍光体粒子を充填した固体試料ホルダーを取り付けて、波長300nmの光に対する拡散反射率、およびピーク波長の光に対する拡散反射率の測定を行った。
(Diffuse Reflectance)
The diffuse reflectance was measured by attaching an integrating sphere device (ISV-469) to a UV-visible spectrophotometer (V-550) manufactured by JASCO Corp. Baseline correction was performed using a standard reflector (Spectralon), and a solid sample holder filled with the surface-coated phosphor particles of each Example or the phosphor particles of each Comparative Example was attached to measure the diffuse reflectance for light with a wavelength of 300 nm and the diffuse reflectance for light with a peak wavelength.

(発光特性)
色度xは、分光光度計(大塚電子株式会社製MCPD-7000)により測定し、以下の手順で算出した。
各実施例の表面被覆蛍光体粒子または各比較例の蛍光体粒子を凹型セルの表面が平滑になるように充填し、積分球を取り付けた。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した青色単色光を、光ファイバーを用いて導入した。この青色単色光を励起源として、蛍光体の試料に照射し、試料の蛍光スペクトル測定を行った。
得られた蛍光スペクトルデータからピーク波長およびピークの半値幅を求めた。
また、色度xは蛍光スペクトルデータの465nmから780nmの範囲の波長域データからJIS Z 8724:2015に準じ、JIS Z 8781-3:2016で規定されるXYZ表色系におけるCIE色度座標x値(色度x)を算出した。
(Light Emitting Characteristics)
The chromaticity x was measured using a spectrophotometer (MCPD-7000 manufactured by Otsuka Electronics Co., Ltd.) and calculated according to the following procedure.
The surface-coated phosphor particles of each Example or the phosphor particles of each Comparative Example were filled into a concave cell so that the surface was smooth, and an integrating sphere was attached. Blue monochromatic light, which was split into a wavelength of 455 nm from a light emission source (Xe lamp), was introduced into the integrating sphere using an optical fiber. The blue monochromatic light was used as an excitation source to irradiate a phosphor sample, and the fluorescence spectrum of the sample was measured.
From the obtained fluorescence spectrum data, the peak wavelength and the half-width of the peak were determined.
In addition, the chromaticity x was calculated based on the wavelength range data of the fluorescence spectrum data in the range of 465 nm to 780 nm in accordance with JIS Z 8724:2015, and was expressed as the CIE chromaticity coordinate x value (chromaticity x) in the XYZ color system defined in JIS Z 8781-3:2016.

(質量増加率測定)
製造された各実施例の表面被覆蛍光体粒子からなる粉体を、当該粉体の劣化が進行しない庫内湿度1%RH以下の超低湿ドライボックスで保管した。各実施例の表面被覆蛍光体粒子からなる粉体1gを採取し、40mmφのシャーレ内に均一に広げた。粉体が載置されたシャーレごと質量を測定し、測定された質量から予め測定したシャーレの質量を差し引くことにより、シャーレ内の粉体の初期質量W1を測定した。
続いて、恒温恒湿器(ヤマト科学株式会社製、IW-222)を用いて、温度60℃、湿度90%RHの条件下で50時間保持する高温高湿試験を実施した。その後、恒温恒湿器からシャーレを取り出し、10分以内に粉体が載置されたシャーレごと質量を測定し、測定された質量から予め測定したシャーレの質量を差し引くことにより、シャーレ内の粉体の初期質量W2を測定した。
得られたW1、W2を用い、質量増加率を式(W2-W1)/W1×100(%)により算出した。また、比較例の蛍光体粒子についても上記と同様な方法で質量増加率を算出した。得られた結果を表1に示す。
(Mass increase rate measurement)
The powders made of the surface-coated phosphor particles of each Example were stored in an ultra-low humidity dry box with an internal humidity of 1% RH or less, which does not cause deterioration of the powder. 1 g of the powder made of the surface-coated phosphor particles of each Example was collected and uniformly spread in a 40 mmφ petri dish. The mass of the petri dish on which the powder was placed was measured, and the initial mass W1 of the powder in the petri dish was measured by subtracting the previously measured mass of the petri dish from the measured mass.
Next, a high temperature and humidity test was carried out by holding the petri dish for 50 hours under conditions of a temperature of 60° C. and a humidity of 90% RH using a thermo-hygrostat (IW-222, manufactured by Yamato Scientific Co., Ltd.). After that, the petri dish was removed from the thermo-hygrostat, and the mass of the dish with the powder placed thereon was measured within 10 minutes. The initial mass W2 of the powder in the petri dish was measured by subtracting the previously measured mass of the petri dish from the measured mass.
Using the obtained W1 and W2, the mass increase rate was calculated by the formula (W2-W1)/W1x100(%). The mass increase rate of the phosphor particles of the comparative example was also calculated in the same manner as above. The obtained results are shown in Table 1.

(発光強度比)
各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子について、高温高湿試験を開始する前の発光強度Iを測定した。続いて、60℃、90%RHの環境に50時間載置する高温高湿試験後の発光強度Iを測定した。得られた測定値から発光強度比I/I(%)を算出した。発光強度比I/Iに関して得られた結果を表1に示す。
なお、発光強度の測定は、ローダミンBと副標準光源により補正した分光蛍光光度計(日立ハイテクノロジーズ社製、F-7000)を用いて測定した。即ち、光度計に付属の固体試料ホルダーを使用し、励起波長455nmでの蛍光スペクトルを測定した。
各実施例の表面被覆蛍光体粒子および各比較例の蛍光体粒子の蛍光スペクトルのピーク波長は656nmであった。蛍光スペクトルのピーク波長における強度値を表面被覆蛍光体粒子または蛍光体粒子の発光強度とした。
(Emission intensity ratio)
The emission intensity I0 was measured for the surface-coated phosphor particles of each Example and the phosphor particles of each Comparative Example before the start of the high temperature and high humidity test. Then, the emission intensity I was measured after the high temperature and high humidity test in which the particles were placed in an environment of 60° C. and 90% RH for 50 hours. The emission intensity ratio I/ I0 (%) was calculated from the obtained measured values. The results obtained regarding the emission intensity ratio I/ I0 are shown in Table 1.
The emission intensity was measured using a spectrofluorophotometer (Hitachi High-Technologies Corporation, F-7000) calibrated with rhodamine B and a secondary standard light source. That is, a solid sample holder attached to the spectrophotometer was used to measure the fluorescence spectrum at an excitation wavelength of 455 nm.
The peak wavelength of the fluorescence spectrum of the surface-coated phosphor particles of each Example and the phosphor particles of each Comparative Example was 656 nm. The intensity value at the peak wavelength of the fluorescence spectrum was taken as the emission intensity of the surface-coated phosphor particles or phosphor particles.

Figure 0007507150000001
Figure 0007507150000001

表1に示すように、質量増加率が15%以下に抑えられる実施例1乃至3の表面被覆蛍光体粒子では、比較例1,2と比べて、高温高湿試験後における発光強度の低下が抑制されることが確認された。実施例1乃至3では、質量増加率を15%以下とするような被覆部を備えることにより耐湿性が向上し、ひいては発光強度を長期間にわたって維持することができると考えられる。これに対して、比較例1、2の蛍光体粒子では、質量増加率が15%を上回り、高温高湿試験後の発光強度が大幅に低下することが確認された。As shown in Table 1, it was confirmed that the surface-coated phosphor particles of Examples 1 to 3, in which the mass increase rate is kept to 15% or less, exhibit less decrease in luminescence intensity after high temperature and high humidity testing than Comparative Examples 1 and 2. In Examples 1 to 3, it is believed that by providing a coating portion that keeps the mass increase rate to 15% or less, moisture resistance is improved, and thus the luminescence intensity can be maintained for a long period of time. In contrast, the phosphor particles of Comparative Examples 1 and 2 have a mass increase rate of more than 15%, and it was confirmed that the luminescence intensity after the high temperature and high humidity testing decreases significantly.

この出願は、2019年4月9日に出願された日本出願特願2019-074460号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2019-074460, filed on April 9, 2019, the disclosure of which is incorporated herein in its entirety.

Claims (7)

蛍光体を含む粒子と、
前記粒子の表面を被覆する被覆部と、
を含む表面被覆蛍光体粒子であって、
前記蛍光体は、
一般式M Al4-d(ただし、MはSr、Mg、Ca及びBaから選ばれる1種以上の元素であり、MはLi、およびNaから選ばれる1種以上の元素であり、MはEu、およびCeから選ばれる1種以上の元素である。)で表される組成を有し、前記a、b、c、およびdが次の各式
0.850≦a≦1.150
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
を満たし、
前記表面被覆蛍光体粒子全体に対して、フッ素元素の含有率が15質量%以上30質量%以下であり、
以下の条件で測定して得られる質量増加率が、15%以下であり、
前記被覆部は、前記粒子の最表面の少なくとも一部を構成するとともに、フッ素元素およびアルミニウム元素を含有するフッ素化合物を含み、
前記M は、少なくともSrを含み、前記M は、少なくともLiを含み、前記M は、少なくともEuを含む表面被覆蛍光体粒子。
(質量増加率測定条件)
前記表面被覆蛍光体粒子からなる粉体の初期質量をW1とし、温度60℃、湿度90%RHの条件下で50時間経過後の当該粉体の質量をW2とし、質量増加率を(W2-W1)/W1×100(%)として算出する。
Particles containing a phosphor;
A coating portion that coats the surface of the particle;
A surface-coated phosphor particle comprising:
The phosphor is
The composition is represented by the general formula M 1 a M 2 b M 3 c Al 3 N 4-d O d (wherein M 1 is one or more elements selected from Sr, Mg, Ca and Ba, M 2 is one or more elements selected from Li and Na, and M 3 is one or more elements selected from Eu and Ce), and a, b, c and d are each represented by the following formulas: 0.850≦a≦1.150.
0.850≦b≦1.150
0.001≦c≦0.015
0≦d≦0.40
0≦d/(a+d)<0.30
The filling,
The content of fluorine element is 15% by mass or more and 30% by mass or less with respect to the entire surface-coated phosphor particles,
The mass increase rate measured under the following conditions is 15% or less,
the coating portion constitutes at least a part of the outermost surface of the particle, and contains a fluorine compound containing elemental fluorine and elemental aluminum,
The surface-coated phosphor particles, wherein M1 contains at least Sr, M2 contains at least Li, and M3 contains at least Eu .
(Conditions for measuring mass increase rate)
The initial mass of the powder made of the surface-coated phosphor particles is W1, the mass of the powder after 50 hours under conditions of a temperature of 60° C. and a humidity of 90% RH is W2, and the mass increase rate is calculated as (W2-W1)/W1×100(%).
波長300nmの光照射に対する拡散反射率が56%以上であり、蛍光スペクトルのピーク波長における光照射に対する拡散反射率が85%以上である請求項1に記載の表面被覆蛍光体粒子。 2. The surface-coated phosphor particle according to claim 1 , which has a diffuse reflectance of 56% or more for light irradiation with a wavelength of 300 nm and a diffuse reflectance of 85% or more for light irradiation at the peak wavelength of the fluorescent spectrum. 波長455nmの青色光で励起した場合、ピーク波長が640nm以上670nm以下の範囲にあり、半値幅が45nm以上60nm以下である請求項1または2に記載の表面被覆蛍光体粒子。 3. The surface-coated phosphor particle according to claim 1 , wherein when excited with blue light having a wavelength of 455 nm, the peak wavelength is in the range of 640 nm to 670 nm and the half-value width is 45 nm to 60 nm. 波長455nmの青色光で励起した場合、発光色の色純度がCIE-xy色度図において、x値が0.680≦x<0.735を満たす請求項1乃至のいずれか1項に記載の表面被覆蛍光体粒子。 4. The surface-coated phosphor particle according to claim 1, wherein when excited with blue light having a wavelength of 455 nm, the color purity of the emitted color satisfies the x value of 0.680≦x<0.735 in the CIE-xy chromaticity diagram. 請求項1乃至のいずれか1項に記載の表面被覆蛍光体粒子の製造方法であって、
原料を混合する混合工程と、
前記混合工程により得た混合体を焼成する焼成工程と、
前記焼成工程により得た焼成物と酸性溶液とを混合する酸処理工程と、
を含み、
前記混合工程において、前記Alのモル比を3としたときの前記Mの仕込み量がモル比で1.10以上1.20以下であることを特徴とする表面被覆蛍光体粒子の製造方法。
A method for producing surface-coated phosphor particles according to any one of claims 1 to 4 , comprising the steps of:
A mixing step of mixing the raw materials;
a firing step of firing the mixture obtained by the mixing step;
an acid treatment step of mixing the fired product obtained by the firing step with an acidic solution;
Including,
a molar ratio of Al being 3 in the mixing step, and a molar ratio of M1 being 1.10 or more and 1.20 or less in the mixing step.
前記酸処理工程において、前記酸性溶液に、フッ素濃度が25%以上のフッ酸水溶液を用いる、請求項に記載の表面被覆蛍光体粒子の製造方法。 The method for producing surface-coated phosphor particles according to claim 5 , wherein the acid solution used in the acid treatment step is an aqueous hydrofluoric acid solution having a fluorine concentration of 25% or more. 請求項1乃至のいずれか1項に記載の表面被覆蛍光体粒子と、発光素子とを有する発光装置。 A light emitting device comprising the surface-coated phosphor particle according to claim 1 and a light emitting element.
JP2021513591A 2019-04-09 2020-03-31 Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device Active JP7507150B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019074460 2019-04-09
JP2019074460 2019-04-09
PCT/JP2020/014911 WO2020209148A1 (en) 2019-04-09 2020-03-31 Surface-coated fluorescent particles, production method for surface-coated fluorescent particles, and light-emitting device

Publications (2)

Publication Number Publication Date
JPWO2020209148A1 JPWO2020209148A1 (en) 2020-10-15
JP7507150B2 true JP7507150B2 (en) 2024-06-27

Family

ID=72751691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021513591A Active JP7507150B2 (en) 2019-04-09 2020-03-31 Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device

Country Status (5)

Country Link
JP (1) JP7507150B2 (en)
KR (1) KR20210150475A (en)
CN (1) CN113677775A (en)
TW (1) TWI843841B (en)
WO (1) WO2020209148A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023166644A (en) * 2020-10-13 2023-11-22 デンカ株式会社 Phosphor and luminescence device
JP2023166643A (en) * 2020-10-13 2023-11-22 デンカ株式会社 Phosphor and luminescence device
JP2023166642A (en) * 2020-10-13 2023-11-22 デンカ株式会社 Phosphor, method for producing phosphor, and luminescence device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539925A (en) 1999-03-24 2002-11-26 サーノフ コーポレイション How to improve moisture resistance for moisture sensitive inorganic materials
JP2009286995A (en) 2007-09-03 2009-12-10 Showa Denko Kk Phosphor, method for producing the same, and light-emitting device using the same
WO2012098932A1 (en) 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
WO2014077240A1 (en) 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2015526532A (en) 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
JP2015224339A (en) 2014-05-30 2015-12-14 株式会社東芝 Phosphor, production method thereof, and light emitting device
CN105400513A (en) 2015-07-21 2016-03-16 杭州萤鹤光电材料有限公司 Red phosphor powder and preparation method thereof
JP2017155209A (en) 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379584B1 (en) * 1999-03-24 2002-04-30 Sarnoff Corporation Long persistence alkaline earth sulfide phosphors
JP6291675B2 (en) 2015-11-11 2018-03-14 日亜化学工業株式会社 Nitride phosphor manufacturing method, nitride phosphor and light emitting device
KR102399783B1 (en) * 2016-03-11 2022-05-19 덴카 주식회사 Phosphors, Light-Emitting Elements and Light-Emitting Devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539925A (en) 1999-03-24 2002-11-26 サーノフ コーポレイション How to improve moisture resistance for moisture sensitive inorganic materials
JP2009286995A (en) 2007-09-03 2009-12-10 Showa Denko Kk Phosphor, method for producing the same, and light-emitting device using the same
WO2012098932A1 (en) 2011-01-18 2012-07-26 シャープ株式会社 Semiconductor light-emitting device
JP2015526532A (en) 2012-05-22 2015-09-10 コーニンクレッカ フィリップス エヌ ヴェ Novel phosphors such as novel narrow-band red-emitting phosphors for solid state lighting
WO2014077240A1 (en) 2012-11-13 2014-05-22 電気化学工業株式会社 Phosphor, light-emitting element and lighting device
JP2015224339A (en) 2014-05-30 2015-12-14 株式会社東芝 Phosphor, production method thereof, and light emitting device
CN105400513A (en) 2015-07-21 2016-03-16 杭州萤鹤光电材料有限公司 Red phosphor powder and preparation method thereof
JP2017155209A (en) 2016-02-29 2017-09-07 日亜化学工業株式会社 Manufacturing method of nitride phosphor, nitride phosphor and light-emitting device

Also Published As

Publication number Publication date
KR20210150475A (en) 2021-12-10
TW202104538A (en) 2021-02-01
JPWO2020209148A1 (en) 2020-10-15
WO2020209148A1 (en) 2020-10-15
CN113677775A (en) 2021-11-19
TWI843841B (en) 2024-06-01

Similar Documents

Publication Publication Date Title
JP4422653B2 (en) Phosphor, production method thereof, and light source
TWI404792B (en) A phosphor and a method for manufacturing the same, and a light-emitting device using the same
JP5140061B2 (en) Phosphor, production method thereof, and light source
JP7577660B2 (en) Method for producing phosphor particles
KR20070053323A (en) Phospher and method for production thereof, and luminous utensil
JP7507150B2 (en) Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device
JPWO2006033418A1 (en) Phosphor, method for producing the same, and light emitting device
JP7507149B2 (en) Surface-coated phosphor particles, method for producing surface-coated phosphor particles, and light-emitting device
WO2012033122A1 (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
JP7498171B2 (en) Surface-coated phosphor particles and light-emitting device
WO2022080263A1 (en) Phosphor, method for producing phosphor, and light-emitting device
WO2022080265A1 (en) Fluorescent body, and light-emitting device
WO2022080262A1 (en) Phosphor and luminescence device
JP2019026657A (en) Fluophor, manufacturing method therefor, light-emitting element using the same, and silicon nitride powder for manufacturing fluophor
EP4418335A1 (en) Phosphor, light emitting device, lighting device, image display device and indicator lamp for vehicles
JP2023057391A (en) Phosphor
CN114605986A (en) Purple light excited chlorine-containing silicate blue-cyan fluorescent powder and preparation and application methods thereof
KR20230034287A (en) Phosphors, wavelength converters and light emitting devices
JP2018109079A (en) Green phosphor, light emitting element and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240617

R150 Certificate of patent or registration of utility model

Ref document number: 7507150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150