[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7506818B1 - Inorganic powder-filled resin composition, molded article for welding, and resin molded article - Google Patents

Inorganic powder-filled resin composition, molded article for welding, and resin molded article Download PDF

Info

Publication number
JP7506818B1
JP7506818B1 JP2023209481A JP2023209481A JP7506818B1 JP 7506818 B1 JP7506818 B1 JP 7506818B1 JP 2023209481 A JP2023209481 A JP 2023209481A JP 2023209481 A JP2023209481 A JP 2023209481A JP 7506818 B1 JP7506818 B1 JP 7506818B1
Authority
JP
Japan
Prior art keywords
welding
mass
fatty acid
resin composition
inorganic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023209481A
Other languages
Japanese (ja)
Inventor
稔 安達
望 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBM Co Ltd
Original Assignee
TBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBM Co Ltd filed Critical TBM Co Ltd
Priority to JP2023209481A priority Critical patent/JP7506818B1/en
Application granted granted Critical
Publication of JP7506818B1 publication Critical patent/JP7506818B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】成形品の溶着が可能な無機粉末充填樹脂組成物を提供すること。【解決手段】上記課題を解決する無機粉末充填樹脂組成物は、プロピレン・α-オレフィン系ランダム共重合体を含む熱可塑性樹脂と、無機粉末と、炭素数が15以上20以下の脂肪酸亜鉛と、炭素数が15以上20以下の脂肪酸と、パラフィンオイルと、を含む。前記熱可塑性樹脂および前記無機粉末の含有質量比は50:50~10:90であり、前記脂肪酸亜鉛の含有量は、0.1質量%以上0.9質量%以下であり、前記脂肪酸の含有量は、0.2質量%以上1.8質量%以下である。前記脂肪酸亜鉛の含有量と前記脂肪酸の含有量との質量比が10:30~10:15であり、かつ前記パラフィンオイルの量が0.5質量%以上3.5質量%以下である。【選択図】なし[Problem] To provide an inorganic powder-filled resin composition that allows welding of molded articles. [Solution] The inorganic powder-filled resin composition that solves the above problem comprises a thermoplastic resin containing a propylene-α-olefin random copolymer, an inorganic powder, a fatty acid zinc salt having a carbon number of 15 to 20, a fatty acid having a carbon number of 15 to 20, and paraffin oil. The mass ratio of the thermoplastic resin to the inorganic powder is 50:50 to 10:90, the content of the fatty acid zinc salt is 0.1% by mass to 0.9% by mass, and the content of the fatty acid is 0.2% by mass to 1.8% by mass. The mass ratio of the fatty acid zinc salt to the fatty acid salt is 10:30 to 10:15, and the amount of the paraffin oil is 0.5% by mass to 3.5% by mass. [Selected Figure] None

Description

本発明は、無機粉末充填樹脂組成物、溶着用成形品、および樹脂成形品に関する。 The present invention relates to an inorganic powder-filled resin composition, a molded article for welding, and a resin molded article.

従来、炭酸カルシウム粉末を熱可塑性樹脂に高充填した無機粉末充填樹脂組成物を用いた各種製品が知られている(例えば特許文献1)。このような無機粉末充填樹脂組成物は、熱収縮量が小さく、かつ耐衝撃性に優れる、という利点がある。 Conventionally, various products using inorganic powder-filled resin compositions in which calcium carbonate powder is highly filled into thermoplastic resins are known (for example, Patent Document 1). Such inorganic powder-filled resin compositions have the advantages of low thermal shrinkage and excellent impact resistance.

近年、当該無機粉末充填樹脂組成物を、さらに広い用途に適用することが望まれており、当該無機粉末樹脂組成物から得られる成形品を、従来の樹脂成形品と置き換えることが検討されている。そのため、当該無機粉末充填樹脂組成物から得られる成形品と他の部品とを組み合わせて一体化したり、当該成形品と他の部品とを溶着によって接合したりすることが求められている。 In recent years, there has been a demand for the inorganic powder-filled resin composition to be used in a wider range of applications, and consideration has been given to replacing conventional resin molded products with molded products obtained from the inorganic powder resin composition. This has led to a demand for the molded product obtained from the inorganic powder-filled resin composition to be combined and integrated with other parts, or for the molded product to be joined to other parts by welding.

特開2023-77472号公報JP 2023-77472 A

しかしながら、上記特許文献1に記載されているような、無機粉末充填樹脂組成物では、熱可塑性樹脂の量に対する無機粉末の量が非常に多い。そのため、当該無機粉末充填樹脂組成物から得られる成形品を他の部品と溶着によって接合することが難しく、接合できたとしても、その強度を十分に高めることが難しかった。 However, in the inorganic powder-filled resin composition described in Patent Document 1, the amount of inorganic powder relative to the amount of thermoplastic resin is very large. This makes it difficult to join a molded product obtained from the inorganic powder-filled resin composition to other parts by welding, and even if joining is possible, it is difficult to sufficiently increase the strength.

本発明は、上記従来技術の課題に鑑みなされたものである。具体的には、成形品を他の部品に溶着可能な無機粉末充填樹脂組成物や、これから得られる溶着用成形品、およびこれを用いた樹脂成形品の提供を目的とする。 The present invention has been made in consideration of the problems of the conventional technology described above. Specifically, the object is to provide an inorganic powder-filled resin composition that allows a molded article to be welded to another part, a molded article for welding obtained from the composition, and a resin molded article using the composition.

本発明者らは、熱可塑性樹脂および無機粉末を所定の比率で含む無機粉末充填樹脂組成物に、脂肪酸亜鉛、脂肪酸、およびパラフィンオイルを所定の量ずつ添加し、かつ脂肪酸亜鉛および脂肪酸の含有質量比を特定の範囲とすることで、成形品を他の部品と溶着することが可能であり、かつその接合強度が十分に高いことを見出し、本発明を完成させた。 The inventors discovered that by adding predetermined amounts of fatty acid zinc, fatty acid, and paraffin oil to an inorganic powder-filled resin composition containing a thermoplastic resin and inorganic powder in a predetermined ratio, and by setting the mass ratio of the fatty acid zinc and fatty acid within a specific range, it is possible to weld a molded product to other parts, and that the bonding strength is sufficiently high, thus completing the present invention.

本発明の一態様は、下記の無機粉末充填樹脂組成物を提供する。
[1]プロピレン・α-オレフィン系ランダム共重合体を含む熱可塑性樹脂と、無機粉末と、炭素数が15以上20以下の脂肪酸亜鉛と、炭素数が15以上20以下の脂肪酸と、パラフィンオイルと、を含み、前記熱可塑性樹脂および前記無機粉末の含有質量比が50:50~10:90であり、前記脂肪酸亜鉛の含有量が、0.1質量%以上0.9質量%以下であり、前記脂肪酸の含有量が、0.2質量%以上1.8質量%以下であり、前記脂肪酸亜鉛および前記脂肪酸の含有質量比が10:30~10:15であり、かつ前記パラフィンオイルの含有量が0.5質量%以上3.5質量%以下である、無機粉末充填樹脂組成物。
[2]ポリエチレン系ワックスを0.1質量%以上0.9質量%以下さらに含む、[1]に記載の無機粉末充填樹脂組成物。
[3]前記脂肪酸亜鉛がステアリン酸亜鉛であり、前記脂肪酸がステアリン酸である、[1]または[2]に記載の無機粉末充填樹脂組成物。
[4]前記無機粉末が、炭酸カルシウム粉末である、[1]~[3]のいずれかに記載の無機粉末充填樹脂組成物。
[5]前記炭酸カルシウム粉末が、重質炭酸カルシウム粉末である、[4]に記載の無機粉末充填樹脂組成物。
[6]前記重質炭酸カルシウム粉末の平均粒子径が、0.7μm以上6.0μm以下である[5]に記載の無機粉末充填樹脂組成物。
One aspect of the present invention provides an inorganic powder-filled resin composition as described below.
[1] An inorganic powder-filled resin composition comprising a thermoplastic resin containing a propylene-α-olefin random copolymer, an inorganic powder, a fatty acid zinc salt having a carbon number of 15 to 20, a fatty acid having a carbon number of 15 to 20, and paraffin oil, wherein the mass ratio of the thermoplastic resin to the inorganic powder is 50:50 to 10:90, the content of the fatty acid zinc salt is 0.1% by mass or more and 0.9% by mass or less, the content of the fatty acid is 0.2% by mass or more and 1.8% by mass or less, the content of the fatty acid zinc salt to the fatty acid is 10:30 to 10:15, and the content of the paraffin oil is 0.5% by mass or more and 3.5% by mass or less.
[2] The inorganic powder-filled resin composition according to [1], further comprising 0.1% by mass or more and 0.9% by mass or less of a polyethylene-based wax.
[3] The inorganic powder-filled resin composition according to [1] or [2], wherein the fatty acid zinc salt is zinc stearate and the fatty acid is stearic acid.
[4] The inorganic powder-filled resin composition according to any one of [1] to [3], wherein the inorganic powder is calcium carbonate powder.
[5] The inorganic powder-filled resin composition according to [4], wherein the calcium carbonate powder is ground calcium carbonate powder.
[6] The inorganic powder-filled resin composition according to [5], wherein the average particle size of the ground calcium carbonate powder is 0.7 μm or more and 6.0 μm or less.

本発明の一態様は、下記の溶着用成形品および樹脂成形品を提供する。
[7]上記[1]~[6]のいずれかに記載の無機粉末充填樹脂組成物の成形品であり、溶着法により他の部品と溶着するための溶着用領域を有する、溶着用成形品。
[8]前記溶着用領域が、超音波溶着法、振動溶着法、スピン溶着法、射出溶着法、マイクロ波溶着法、熱板溶着法、および熱風溶着法からなる群から選ばれるいずれかの溶着法により他の部品と溶着するための領域である、[7]に記載の溶着用成形品。
[9]前記[7]または[8]に記載の溶着用成形品と、前記溶着用成形品の前記溶着用領域に接合された他の部品と、を含む、樹脂成形品。
One aspect of the present invention provides the following weldable molded article and resin molded article.
[7] A molded article for welding, which is a molded article of the inorganic powder-filled resin composition according to any one of [1] to [6] above, and has a welding region for welding to another part by a welding method.
[8] The weldable molded product according to [7], wherein the weldable region is a region for welding to another component by any one of a welding methods selected from the group consisting of ultrasonic welding, vibration welding, spin welding, injection welding, microwave welding, hot plate welding, and hot air welding.
[9] A resin molded product comprising the molded product for welding according to [7] or [8] above, and another component joined to the welding region of the molded product for welding.

本発明によれば、成形品を他の部品に溶着可能な無機粉末充填樹脂組成物や、これから得られる溶着用成形品、およびこれを用いた樹脂成形品が提供される。 The present invention provides an inorganic powder-filled resin composition that can be used to weld molded products to other parts, a molded product for welding obtained from the composition, and a resin molded product using the composition.

図1Aおよび図1Bは、実施例で作製した測定サンプルの形状を説明するための図である。1A and 1B are diagrams for explaining the shape of a measurement sample prepared in an example.

以下、本発明の一実施形態について詳細に説明する。ただし、本発明は当該実施形態に限定されない。また、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 One embodiment of the present invention is described in detail below. However, the present invention is not limited to this embodiment. In addition, in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower and upper limits.

1.無機粉末充填樹脂組成物
本実施形態の無機粉末充填樹脂組成物(以下、単に「樹脂組成物」とも称する)は、プロピレン・α-オレフィン系ランダム共重合体を含む熱可塑性樹脂と、無機粉末と、炭素数が15以上20以下の脂肪酸亜鉛と、炭素数が15以上20以下の脂肪酸と、パラフィンオイルと、を含む。また、当該樹脂組成物では、熱可塑性樹脂および前記無機粉末の含有質量比が50:50~10:90であり、脂肪酸亜鉛の含有量が、0.1質量%以上0.9質量%以下であり、脂肪酸の含有量が、0.2質量%以上1.8質量%以下である。また、脂肪酸亜鉛および脂肪酸の含有質量比が10:30~10:15であり、パラフィンオイルの含有量が0.5質量%以上3.5質量%以下である。
1. Inorganic Powder-Filled Resin Composition The inorganic powder-filled resin composition of this embodiment (hereinafter also simply referred to as "resin composition") contains a thermoplastic resin containing a propylene-α-olefin random copolymer, an inorganic powder, a fatty acid zinc salt having a carbon number of 15 to 20, a fatty acid having a carbon number of 15 to 20, and paraffin oil. In addition, in this resin composition, the content mass ratio of the thermoplastic resin and the inorganic powder is 50:50 to 10:90, the content of the fatty acid zinc salt is 0.1 mass% to 0.9 mass%, and the content of the fatty acid is 0.2 mass% to 1.8 mass%. In addition, the content mass ratio of the fatty acid zinc salt and the fatty acid salt is 10:30 to 10:15, and the content of the paraffin oil is 0.5 mass% to 3.5 mass%.

上述のように、熱可塑性樹脂の含有量に対する、無機粉末の含有量が非常に多い樹脂組成物では、樹脂組成物内の熱可塑性樹脂量が少なく、その成形品を溶着によって、他の部品と接合することが難しかった。本明細書において、「溶着」とは、2つの部品を接合する方法であって、少なくとも一方の部品の溶着用領域を溶融させ、他方の部品と接合することをいう。本実施形態の樹脂組成物では、上記のように、脂肪酸亜鉛、脂肪酸、およびパラフィンオイルを所定の量含む。このように樹脂組成物がパラフィンオイルを含むと、その成形品において比較的低温で熱可塑性樹脂を可塑化させやすくなる。つまり、比較的低い温度でも熱可塑性樹脂の流動性を高めることができ、成形品の溶着性が良好になる。また、樹脂組成物が脂肪酸亜鉛および脂肪酸を、所定の比率で含むと、樹脂組成物の成形品の溶着性が格段に高まる。そのメカニズムは定かではないものの、脂肪酸亜鉛および脂肪酸が、熱可塑性樹脂と無機粉末との間で相互作用することで、成形品の溶着性が高まると考えられる。 As described above, in a resin composition in which the content of inorganic powder is very high relative to the content of thermoplastic resin, the amount of thermoplastic resin in the resin composition is small, and it is difficult to join the molded product to other parts by welding. In this specification, "welding" refers to a method of joining two parts, in which the welding area of at least one part is melted and joined to the other part. In the resin composition of this embodiment, as described above, a predetermined amount of fatty acid zinc, fatty acid, and paraffin oil is contained. When the resin composition contains paraffin oil in this way, the thermoplastic resin in the molded product is easily plasticized at a relatively low temperature. In other words, the fluidity of the thermoplastic resin can be increased even at a relatively low temperature, and the weldability of the molded product is improved. In addition, when the resin composition contains fatty acid zinc and fatty acid in a predetermined ratio, the weldability of the molded product of the resin composition is significantly improved. Although the mechanism is unclear, it is thought that the fatty acid zinc and fatty acid interact with the thermoplastic resin and the inorganic powder to increase the weldability of the molded product.

なお、本発明の樹脂組成物は、上記以外の成分をさらに含んでいてもよい。以下、本発明の樹脂組成物が含む各成分やその含有量、さらには製造方法等について詳しく説明する。 The resin composition of the present invention may further contain components other than those described above. Below, the components contained in the resin composition of the present invention, their contents, and the manufacturing method, etc. will be described in detail.

(熱可塑性樹脂)
本実施形態の熱可塑性樹脂は、プロピレン・α-オレフィン系ランダム共重合体を主成分として含んでいればよく、本実施形態の目的および効果を損なわない範囲で、プロピレン・α-オレフィン系ランダム共重合体以外の樹脂を一部に含んでいてもよい。なお、本明細書において、プロピレン・α-オレフィン系ランダム共重合体を「主成分」として含むとは、熱可塑性樹脂中のプロピレン・α-オレフィン系ランダム共重合体の量が、熱可塑性樹脂の総量に対して80質量%以上であることをいう。熱可塑性樹脂中のプロピレン・α-オレフィン系ランダム共重合体の量は、好ましくは90質量%以上であり、より好ましくは95質量%以上である。
(Thermoplastic resin)
The thermoplastic resin of this embodiment may contain a propylene-α-olefin random copolymer as a main component, and may contain a resin other than the propylene-α-olefin random copolymer as long as the purpose and effect of this embodiment are not impaired. In this specification, containing a propylene-α-olefin random copolymer as a "main component" means that the amount of the propylene-α-olefin random copolymer in the thermoplastic resin is 80% by mass or more with respect to the total amount of the thermoplastic resin. The amount of the propylene-α-olefin random copolymer in the thermoplastic resin is preferably 90% by mass or more, more preferably 95% by mass or more.

また、本明細書において、プロピレン・α-オレフィン系ランダム共重合体とは、多数のプロピレン由来の構成単位で構成されるポリマー鎖中に、ランダムにα-オレフィンの構成単位が分布した重合体をいう。当該プロピレン・α-オレフィン系ランダム共重合体は、プロピレンと、1種のα-オレフィンとの二元ランダム共重合体であってもよく、プロピレンと2種以上のα-オレフィンとの三元以上のランダム共重合体であってもよい。また、プロピレンと、1種以上のα-オレフィンと、これら以外のモノマーとの三元以上のランダム共重合体であってもよい。当該プロピレン・α-オレフィン系ランダム共重合体では、全構成単位の総量に対して、プロピレン由来の構成単位の量が50質量%超であればよい。ただし、プロピレン由来の構成単位の量は、全構成単位の総量に対して、80質量%以上が好ましく、82質量%以上がより好ましい。またプロピレン由来の構成単位は、全構成単位の総量に対して98質量%以下が好ましく、96質量%以下がより好ましい。プロピレン構成単位の量が十分に多いと、強度が高く、形状安定性に優れた成形品が得られやすくなる。 In this specification, the propylene-α-olefin random copolymer refers to a polymer in which α-olefin structural units are randomly distributed in a polymer chain composed of a large number of propylene-derived structural units. The propylene-α-olefin random copolymer may be a binary random copolymer of propylene and one type of α-olefin, or a ternary or higher random copolymer of propylene and two or more types of α-olefin. It may also be a ternary or higher random copolymer of propylene, one or more types of α-olefin, and a monomer other than these. In the propylene-α-olefin random copolymer, the amount of propylene-derived structural units may be more than 50% by mass relative to the total amount of all structural units. However, the amount of propylene-derived structural units is preferably 80% by mass or more, more preferably 82% by mass or more, relative to the total amount of all structural units. The amount of propylene-derived structural units is preferably 98% by mass or less, more preferably 96% by mass or less, relative to the total amount of all structural units. If the amount of propylene structural units is sufficiently large, it becomes easier to obtain molded products that are strong and have excellent shape stability.

ここで、ポリプロピレン鎖(プロピレン由来の構造単位を連続で含む領域)の立体構造は特に制限されず、例えばトライアドタクチシティとして、アイソタクチック構造、シンジオタクチック構造、アタクチック構造のいずれを含んでいてもよい。ただし、ポリプロピレン鎖の少なくとも一部にアイソタクチック構造を含むことが好ましい。これにより、プロピレン・α-オレフィン系ランダム共重合体が結晶領域を形成し得るため、さらに強靭さと形状安定性とを発現しやすくなる。当該トライアドタクチシティは13C-NMR等によって特定可能である。 Here, the three-dimensional structure of the polypropylene chain (the region containing a continuous propylene-derived structural unit) is not particularly limited, and may contain, for example, any of an isotactic structure, a syndiotactic structure, and an atactic structure as triad tacticity. However, it is preferable that at least a part of the polypropylene chain contains an isotactic structure. This allows the propylene-α-olefin random copolymer to form a crystalline region, which makes it easier to exhibit further toughness and shape stability. The triad tacticity can be identified by 13 C-NMR or the like.

一方、上記α-オレフィンの例には、エチレン、および炭素数4~10のα-オレフィンが含まれ、より具体的には、エチレン、1-ブテン、イソブチレン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセン、および1-オクテン等が含まれる。プロピレン・α-オレフィン系ランダム共重合体におけるα-オレフィン由来の構成単位の総量は、全構成単位の総量に対して、50質量%未満であればよいが、2質量%以上が好ましく、4質量%以上がより好ましい。また、全構成単位の総量に対して、20質量%以下が好ましく、18質量%以下がより好ましい。α-オレフィン由来の構成単位の総量が2質量%以上であると、プロピレン・α-オレフィン系ランダム共重合体の融点や結晶性を調整しやすくなり、成形品の溶着性がさらに高まりやすい。一方で、α-オレフィン由来の構成単位の量が20質量%以下であると、強度が高く、形状安定性に優れた成形品がさらに得られやすくなる。 On the other hand, examples of the α-olefins include ethylene and α-olefins having 4 to 10 carbon atoms, more specifically, ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, 3,4-dimethyl-1-butene, 1-heptene, 3-methyl-1-hexene, and 1-octene. The total amount of α-olefin-derived structural units in the propylene-α-olefin random copolymer may be less than 50% by mass relative to the total amount of all structural units, but is preferably 2% by mass or more, and more preferably 4% by mass or more. In addition, it is preferably 20% by mass or less, and more preferably 18% by mass or less, relative to the total amount of all structural units. If the total amount of α-olefin-derived structural units is 2% by mass or more, it becomes easier to adjust the melting point and crystallinity of the propylene-α-olefin random copolymer, and the weldability of the molded product is further improved. On the other hand, if the amount of structural units derived from α-olefin is 20% by mass or less, it becomes easier to obtain molded products with high strength and excellent shape stability.

また、プロピレンやα-オレフィンと共重合してもよい、他のモノマーは、本実施形態の目的および効果を損なわないものであれば特に制限されない。他のモノマーの例には、1,4-ヘキサジエン、1,6-オクタジエン、5-メチル-1,4-ヘキサジエン、3,7-ジメチル-1,6-オクタジエン、ジシクロペンタジエン(DCPD)、エチリデンノルボルネン(ENB)、ノルボルナジエン、5-ビニル-2-ノルボルネン等のジエン系モノマー;無水マレイン酸変性オレフィン等の酸(または酸無水物)変性オレフィン;(メタ)アクリル酸メチル等の(メタ)アクリレート;等が含まれる。プロピレン・α-オレフィン系ランダム共重合体が他のモノマー由来の構成単位を含む場合、その量は、α-オレフィン由来の構成単位の量より少ないことが好ましい。具体的には、プロピレン・α-オレフィン系ランダム共重合体の全構成単位の総量に対して、0.1質量%以上10質量%以下が好ましく、0.5質量%以上8質量%以下がより好ましい。プロピレン・α-オレフィン系ランダム共重合体が他のモノマー由来の構成単位を含むと、樹脂組成物や成形品の物性や加工性を調整しやすくなる。 In addition, other monomers that may be copolymerized with propylene or α-olefins are not particularly limited as long as they do not impair the purpose and effect of this embodiment. Examples of other monomers include diene monomers such as 1,4-hexadiene, 1,6-octadiene, 5-methyl-1,4-hexadiene, 3,7-dimethyl-1,6-octadiene, dicyclopentadiene (DCPD), ethylidene norbornene (ENB), norbornadiene, and 5-vinyl-2-norbornene; acid (or acid anhydride) modified olefins such as maleic anhydride modified olefins; (meth)acrylates such as methyl (meth)acrylate; and the like. When the propylene-α-olefin random copolymer contains structural units derived from other monomers, the amount of the structural units is preferably less than the amount of structural units derived from α-olefins. Specifically, the amount of the structural units of the propylene-α-olefin random copolymer is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 8% by mass or less. When the propylene-α-olefin random copolymer contains structural units derived from other monomers, it becomes easier to adjust the physical properties and processability of the resin composition and molded products.

上記プロピレン・α-オレフィン系ランダム共重合体の好ましい具体例には、プロピレン・エチレン共重合体や、プロピレン・ブチレン・エチレン共重合体等が含まれる。ただし、本実施形態で使用可能なプロピレン・α-オレフィン系ランダム共重合体は、これらに限定されない。また、熱可塑性樹脂は、プロピレン・α-オレフィン系ランダム共重合体を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Preferred specific examples of the propylene-α-olefin random copolymer include propylene-ethylene copolymer and propylene-butylene-ethylene copolymer. However, the propylene-α-olefin random copolymer usable in this embodiment is not limited to these. In addition, the thermoplastic resin may contain only one type of propylene-α-olefin random copolymer, or may contain two or more types.

ここで、上記プロピレン・α-オレフィン系ランダム共重合体の重量平均分子量は特に制限されないが、通常20,000~5,000,000が好ましく、50,000~1,000,000がより好ましく、70,000~1,000,000がさらに好ましい。当該重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値であり、ポリエチレン換算値である。さらに、プロピレン・α-オレフィン系ランダム共重合体の密度は、0.84~0.92g/cmが好ましく、0.85~0.91g/cmがより好ましい。さらに、プロピレン・α-オレフィン系ランダム共重合体の結晶化度は0.5~40%が好ましく、20~30%がより好ましい。 Here, the weight average molecular weight of the propylene-α-olefin random copolymer is not particularly limited, but is usually preferably 20,000 to 5,000,000, more preferably 50,000 to 1,000,000, and even more preferably 70,000 to 1,000,000. The weight average molecular weight is a value measured by gel permeation chromatography (GPC) and is a polyethylene equivalent value. Furthermore, the density of the propylene-α-olefin random copolymer is preferably 0.84 to 0.92 g/cm 3 , and more preferably 0.85 to 0.91 g/cm 3. Furthermore, the crystallinity of the propylene-α-olefin random copolymer is preferably 0.5 to 40%, and more preferably 20 to 30%.

プロピレン・α-オレフィン系ランダム共重合体のASTM D1238に準拠して測定されるメルトフローレート(2.16kg荷重、230℃)は0.1~90g/10分が好ましく、0.5~30g/10分がより好ましい。さらに、プロピレン・α-オレフィン系ランダム共重合体の融点は40~180℃が好ましく、80~160℃がより好ましく、100~140℃がさらに好ましい。プロピレン・α-オレフィン系ランダム共重合体がこのような物性を有すると、得られる成形品の溶着性がさらに良好になりやすい。 The melt flow rate (2.16 kg load, 230°C) of the propylene-α-olefin random copolymer measured in accordance with ASTM D1238 is preferably 0.1 to 90 g/10 min, more preferably 0.5 to 30 g/10 min. Furthermore, the melting point of the propylene-α-olefin random copolymer is preferably 40 to 180°C, more preferably 80 to 160°C, and even more preferably 100 to 140°C. When the propylene-α-olefin random copolymer has such physical properties, the weldability of the resulting molded product tends to be even better.

熱可塑性樹脂は、上述のように、プロピレン・α-オレフィン系ランダム共重合体以外の樹脂をさらに含んでもよい。プロピレン・α-オレフィン系ランダム共重合体以外の樹脂の例には、ポリ(メタ)アクリル酸(エステル)、ポリ酢酸ビニル、ポリアクリロニトリル、ポリスチレン、ABS樹脂、ポリカーボネート、ポリアミド、ポリビニルアルコール、石油炭化水素樹脂、クマロンインデン樹脂等の熱可塑性樹脂;スチレン・ブタジエン共重合体、スチレン・イソプレン共重合体、スチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・エチレン共重合体、アクリロニトリル・ブタジエン共重合体、フッ素系エラストマー等のエラストマー;が含まれる。 The thermoplastic resin may further contain a resin other than the propylene-α-olefin random copolymer, as described above. Examples of resins other than the propylene-α-olefin random copolymer include thermoplastic resins such as poly(meth)acrylic acid (ester), polyvinyl acetate, polyacrylonitrile, polystyrene, ABS resin, polycarbonate, polyamide, polyvinyl alcohol, petroleum hydrocarbon resin, and coumarone-indene resin; and elastomers such as styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-butadiene-ethylene copolymer, styrene-isoprene-ethylene copolymer, acrylonitrile-butadiene copolymer, and fluorine-based elastomer.

樹脂組成物中の熱可塑性樹脂の含有量は、上述のように、熱可塑性樹脂と無機粉末との含有質量比が50:50~10:90となる範囲であればよい。熱可塑性樹脂の総量は、熱可塑性樹脂および無機粉末の総量100質量部に対して15質量部以上40質量部以下がより好ましく、18質量部以上30質量部以下がより好ましい。熱可塑性樹脂の量が当該範囲であると、得られる成形品の溶着性が良好になりやすい。 As described above, the content of the thermoplastic resin in the resin composition may be in the range where the mass ratio of the thermoplastic resin to the inorganic powder is 50:50 to 10:90. The total amount of the thermoplastic resin is preferably 15 parts by mass or more and 40 parts by mass or less, and more preferably 18 parts by mass or more and 30 parts by mass or less, per 100 parts by mass of the total amount of the thermoplastic resin and the inorganic powder. When the amount of the thermoplastic resin is within this range, the weldability of the resulting molded product is likely to be good.

なお、樹脂組成物の総量に対する、熱可塑性樹脂および無機粉末の総量は、80質量%以上99.2質量%以下が好ましく、90質量%以上99質量%以下がより好ましい。熱可塑性樹脂および無機粉末の総量が当該範囲であると、強度の高い成形品が得られやすくなる。 The total amount of the thermoplastic resin and inorganic powder relative to the total amount of the resin composition is preferably 80% by mass or more and 99.2% by mass or less, and more preferably 90% by mass or more and 99% by mass or less. When the total amount of the thermoplastic resin and inorganic powder is within this range, it becomes easier to obtain a molded product with high strength.

(無機粉末)
無機粉末は、無機物質からなる粉末であればよく、樹脂組成物の用途に応じてその種類は選択される。当該無機物質の例には、カルシウム、マグネシウム、アルミニウム、チタン、鉄、亜鉛等の炭酸塩、硫酸塩、珪酸塩、リン酸塩、ホウ酸塩、酸化物、もしくはこれらの水和物が含まれる。無機物質の具体例には、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー(例えばタルクやカオリン等)、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、硫酸バリウム、珪砂、カーボンブラック、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、亜硫酸カルシウム、硫酸ナトリウム、チタン酸カリウム、ベントナイト、ウォラストナイト、ドロマイト、黒鉛等が含まれる。これらは合成のものであっても天然鉱物由来のものであってもよい。無機粉末は、これらを一種のみ、または二種以上含んでいてもよい。
(Inorganic powder)
The inorganic powder may be any powder made of an inorganic substance, and the type of the inorganic powder is selected according to the application of the resin composition. Examples of the inorganic substance include carbonates, sulfates, silicates, phosphates, borates, oxides, or hydrates of calcium, magnesium, aluminum, titanium, iron, zinc, etc., or hydrates thereof. Specific examples of the inorganic substance include calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay (e.g., talc, kaolin, etc.), aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate, aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, potassium titanate, bentonite, wollastonite, dolomite, graphite, etc. These may be synthetic or derived from natural minerals. The inorganic powder may contain only one of these, or two or more of them.

また、無機粉末の形状は特に制限されず、粒子状、フレーク状、顆粒状、繊維状等のいずれであってもよい。また、粒子状の場合、一般的に合成法により得られるような球形のものであってもよく、採集した天然鉱物を粉砕にかけることで得られるような不定形状のものであってもよい。 The shape of the inorganic powder is not particularly limited, and may be any of particles, flakes, granules, fibers, etc. In the case of particles, the powder may be spherical, as is generally obtained by synthetic methods, or irregularly shaped, as is obtained by crushing collected natural minerals.

無機粉末の好ましい例には、炭酸カルシウム、炭酸マグネシウム、ドロマイト、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、および水酸化マグネシウムの粉末が含まれ、特に炭酸カルシウム粉末が好ましい。炭酸カルシウムは、合成法により調製されたもの、いわゆる軽質炭酸カルシウムであってもよい。一方で、石灰石等のCaCOを主成分とする天然原料を機械的に粉砕分級して得られる、いわゆる重質炭酸カルシウムであってもよい。さらに、軽質炭酸カルシウムおよび重質炭酸カルシウムを組み合わせたものであってもよい。本実施形態では、無機粉末が重質炭酸カルシウム粉末を含むことが特に好ましい。なお、重質炭酸カルシウムは、化学的沈殿反応等によって製造される合成炭酸カルシウムとは明確に区別される。粉砕方法には乾式法と湿式法とがあるが、乾式法によるものが好ましい。 Preferred examples of inorganic powders include calcium carbonate, magnesium carbonate, dolomite, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, and magnesium hydroxide powders, and calcium carbonate powder is particularly preferred. Calcium carbonate may be prepared by a synthetic method, that is, so-called light calcium carbonate. On the other hand, it may be so-called heavy calcium carbonate obtained by mechanically grinding and classifying natural raw materials mainly composed of CaCO 3 such as limestone. Furthermore, it may be a combination of light calcium carbonate and heavy calcium carbonate. In this embodiment, it is particularly preferred that the inorganic powder contains heavy calcium carbonate powder. Note that heavy calcium carbonate is clearly distinguished from synthetic calcium carbonate produced by chemical precipitation reaction or the like. There are dry and wet grinding methods, and the dry method is preferred.

重質炭酸カルシウム粉末は、合成法等によって得られる軽質炭酸カルシウム粉末とは異なり、粉末形成が粉砕処理によって行われる。そのため、粉末表面の不定形性が大きく、比表面積が軽質炭酸カルシウム粉末より大きい。そのため、樹脂組成物が、重質炭酸カルシウム粉末を上記熱可塑性樹脂とともに含むと、これらの接触界面が大きくなり、重質炭酸カルシウムが、樹脂組成物内に均一に分散されやすい。当該重質炭酸カルシウム粉末の比表面積は、その平均粒子径等によっても左右されるが、3,000cm/g以上35,000cm/g以下であることが好ましい。比表面積が当該範囲であると、重質炭酸カルシウム粉末の分散性が良好になりやすい。その結果、樹脂組成物から得られる成形品の溶着性がさらに良好になりやすい。なお、上記比表面積は、空気透過法により測定される。 Unlike light calcium carbonate powder obtained by a synthetic method, the heavy calcium carbonate powder is formed by a pulverization process. Therefore, the powder surface has a large shapelessness, and the specific surface area is larger than that of light calcium carbonate powder. Therefore, when the resin composition contains the heavy calcium carbonate powder together with the thermoplastic resin, the contact interface between them becomes large, and the heavy calcium carbonate is easily dispersed uniformly in the resin composition. The specific surface area of the heavy calcium carbonate powder is preferably 3,000 cm 2 /g or more and 35,000 cm 2 /g or less, although it depends on the average particle size, etc. When the specific surface area is within this range, the dispersibility of the heavy calcium carbonate powder is easily improved. As a result, the adhesion of the molded product obtained from the resin composition is easily improved. The specific surface area is measured by an air permeability method.

また、重質炭酸カルシウム粉末は不定形性が高いことが好ましい。不定形性が高いことは、例えば真円度が低いことでも表すことができる。成形品の強度や成形加工性という観点から、重質炭酸カルシウム粉末の真円度は0.50以上0.95以下が好ましく、0.55以上0.93以下がより好ましく、0.60以上0.90以下がさらに好ましい。上記真円度は、(粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積)から求められる。真円度の測定方法は特に限定されず、例えば顕微鏡写真から粒子の投影面積と粒子の投影周囲長とを測定してもよく、汎用の画像解析ソフトにより算出してもよい。 It is also preferable that the ground calcium carbonate powder has high irregularity. High irregularity can be expressed, for example, by low circularity. From the viewpoint of the strength and moldability of the molded product, the roundness of the ground calcium carbonate powder is preferably 0.50 to 0.95, more preferably 0.55 to 0.93, and even more preferably 0.60 to 0.90. The roundness is calculated by (projected area of a particle)/(area of a circle having the same perimeter as the projected perimeter of a particle). The method for measuring the roundness is not particularly limited, and for example, the projected area and projected perimeter of a particle may be measured from a micrograph, or may be calculated using general-purpose image analysis software.

ここで、上記無機粉末は表面改質されたものであってもよく、表面改質されていないものであってもよいが、その分散性の観点では、表面改質されたものであることが好ましい。無機粉末の表面改質法の例には、プラズマ処理等による物理的な改質方法や、カップリング剤や界面活性剤等による化学的な改質方法が含まれる。化学的な改質方法に使用可能なカップリング剤の例には、シランカップリング剤やチタンカップリング剤等が含まれる。界面活性剤としては、アニオン性、カチオン性、ノニオン性および両性の何れのものも用いることができ、その例には高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩等が含まれる。 Here, the inorganic powder may be surface-modified or may not be surface-modified, but from the viewpoint of dispersibility, surface-modified is preferable. Examples of surface modification methods for inorganic powders include physical modification methods using plasma treatment, etc., and chemical modification methods using coupling agents, surfactants, etc. Examples of coupling agents that can be used in chemical modification methods include silane coupling agents and titanium coupling agents. As surfactants, any of anionic, cationic, nonionic, and amphoteric surfactants can be used, and examples include higher fatty acids, higher fatty acid esters, higher fatty acid amides, and higher fatty acid salts.

また、無機粉末の平均粒子径は、特に制限されず、成形品の形状や厚さ等により適宜選択されるが、例えば0.5μm以上9.0μm以下が好ましく、0.7μm以上6.0μm以下がより好ましく、1.0μm以上4.0μm以下がより好ましい。なお、本明細書における無機粉末の平均粒子径は、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値をいう。測定機器の一例として、島津製作所製の比表面積測定装置SS-100型が挙げられる。無機粉末の平均粒子径が9.0μm以下であると、成形品から無機粉末が脱落し難くなる。なお、無機粉末はその粒径分布において、粒子径が45μm以上である粒子を含有しないことが好ましい。他方で、上記平均粒子径が0.5μm以上であると、熱可塑性樹脂と混練する際の粘度が所望の範囲に収まりやすい。 The average particle size of the inorganic powder is not particularly limited and is appropriately selected depending on the shape and thickness of the molded product, but is preferably 0.5 μm to 9.0 μm, more preferably 0.7 μm to 6.0 μm, and more preferably 1.0 μm to 4.0 μm. The average particle size of the inorganic powder in this specification refers to a value calculated from the measurement results of the specific surface area by the air permeation method according to JIS M-8511. An example of a measuring instrument is the specific surface area measuring device SS-100 type manufactured by Shimadzu Corporation. If the average particle size of the inorganic powder is 9.0 μm or less, the inorganic powder is less likely to fall off from the molded product. It is preferable that the inorganic powder does not contain particles with a particle size of 45 μm or more in its particle size distribution. On the other hand, if the average particle size is 0.5 μm or more, the viscosity when kneaded with the thermoplastic resin is likely to fall within the desired range.

本実施形態の樹脂組成物中の無機粉末の量は、上述のように、熱可塑性樹脂および無機粉末の含有質量比が50:50~10:90となる範囲であればよい。無機粉末の量は、熱可塑性樹脂および無機粉末の総量100質量部に対して60質量部以上85質量部以下がより好ましく、70質量部以上82質量部以下がより好ましい。無機粉末の量が当該範囲であると、得られる成形品の強度がさらに高まりやすい。 The amount of inorganic powder in the resin composition of this embodiment may be in the range of 50:50 to 10:90 in terms of the mass ratio of the thermoplastic resin and the inorganic powder, as described above. The amount of inorganic powder is preferably 60 parts by mass or more and 85 parts by mass or less, and more preferably 70 parts by mass or more and 82 parts by mass or less, per 100 parts by mass of the total amount of the thermoplastic resin and the inorganic powder. When the amount of inorganic powder is within this range, the strength of the obtained molded product is likely to be further increased.

(脂肪酸亜鉛)
樹脂組成物が含む脂肪酸亜鉛は、炭素数が15以上20以下の脂肪酸と亜鉛とからなる塩である。当該脂肪酸亜鉛を構成する脂肪酸は、一価の脂肪酸であってもよく、多価脂肪酸であってもよいが、一価の脂肪酸であることが好ましい。また、当該脂肪酸は飽和脂肪酸であってもよく、不飽和脂肪酸であってもよいが、熱可塑性樹脂や無機粉末と相互作用しやすいとの観点で飽和脂肪酸が好ましい。
(Zinc fatty acid)
The fatty acid zinc contained in the resin composition is a salt of zinc and a fatty acid having 15 to 20 carbon atoms. The fatty acid constituting the fatty acid zinc may be a monovalent fatty acid or a polyvalent fatty acid, but is preferably a monovalent fatty acid. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, but is preferably a saturated fatty acid from the viewpoint of easy interaction with thermoplastic resins and inorganic powders.

当該脂肪酸亜鉛の具体例には、パルミチン酸亜鉛やステアリン酸亜鉛が含まれる。樹脂組成物は、脂肪酸亜鉛を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Specific examples of the zinc fatty acid include zinc palmitate and zinc stearate. The resin composition may contain only one type of zinc fatty acid, or may contain two or more types.

樹脂組成物の総量に対する脂肪酸亜鉛の含有量は、0.1質量%以上0.9質量%以下が好ましく、0.2質量%以上0.8質量%以下がより好ましい。脂肪酸亜鉛の含有量が0.1質量%以上であると、脂肪酸亜鉛の添加効果、すなわち溶着性の向上効果が得られる。一方で、脂肪酸亜鉛の含有量が0.9質量%以下であると、樹脂組成物や成形品から脂肪酸亜鉛がブリードアウトし難くなる。 The content of fatty acid zinc relative to the total amount of the resin composition is preferably 0.1% by mass or more and 0.9% by mass or less, and more preferably 0.2% by mass or more and 0.8% by mass or less. If the content of fatty acid zinc is 0.1% by mass or more, the effect of adding fatty acid zinc, that is, the effect of improving weldability, can be obtained. On the other hand, if the content of fatty acid zinc is 0.9% by mass or less, fatty acid zinc is less likely to bleed out from the resin composition or molded product.

(脂肪酸)
樹脂組成物が含む脂肪酸は、炭素数が15以上20以下の脂肪酸である。当該脂肪酸は、一価の脂肪酸であってもよく、多価脂肪酸であってもよいが、一価の脂肪酸であることが好ましい。また、当該脂肪酸は飽和脂肪酸であってもよく、不飽和脂肪酸であってもよいが、熱可塑性樹脂や無機粉末と相互作用しやすいとの観点で飽和脂肪酸が好ましい。また、当該脂肪酸の炭素数は、上記脂肪酸亜鉛を構成する脂肪酸の炭素数との差が小さいこと好ましく、その差は2以下が好ましく、より好ましくは0である。
(fatty acid)
The fatty acid contained in the resin composition is a fatty acid having a carbon number of 15 or more and 20 or less. The fatty acid may be a monovalent fatty acid or a polyvalent fatty acid, but is preferably a monovalent fatty acid. The fatty acid may be a saturated fatty acid or an unsaturated fatty acid, but is preferably a saturated fatty acid from the viewpoint of easy interaction with thermoplastic resins and inorganic powders. The carbon number of the fatty acid is preferably small compared to the carbon number of the fatty acid constituting the fatty acid zinc, and the difference is preferably 2 or less, more preferably 0.

当該脂肪酸の具体例には、パルミチン酸やステアリン酸、およびこれらの混合物が含まれる。樹脂組成物は、脂肪酸を一種のみ含んでいてもよく、二種以上含んでいてもよい。 Specific examples of the fatty acid include palmitic acid, stearic acid, and mixtures thereof. The resin composition may contain only one type of fatty acid, or may contain two or more types.

ここで、樹脂組成物中の脂肪酸の量は、上記脂肪酸亜鉛および脂肪酸の含有質量比が10:30~10:15となる範囲であればよい。当該質量比は10:29~10:16が好ましく、10:28~10:17がより好ましい。脂肪酸亜鉛および脂肪酸の含有質量比が当該範囲であると、上述のように成形品の溶着性が格段に高まる。 The amount of fatty acid in the resin composition may be in the range where the content mass ratio of the fatty acid zinc to the fatty acid is 10:30 to 10:15. The mass ratio is preferably 10:29 to 10:16, and more preferably 10:28 to 10:17. When the content mass ratio of the fatty acid zinc to the fatty acid is in this range, the weldability of the molded product is significantly improved as described above.

なお、樹脂組成物の総量に対する脂肪酸の含有量は、0.2質量%以上1.8質量%以下であればよく、0.4質量%以上1.6質量%以下が好ましい。脂肪酸の含有量が0.2質量%以上であると、脂肪酸の添加効果、すなわち成形品の溶着性の向上効果が得られる。一方で、脂肪酸の含有量が1.8質量%以下であると、樹脂組成物や成形品から脂肪酸がブリードアウトし難くなる。 The content of the fatty acid relative to the total amount of the resin composition may be 0.2% by mass or more and 1.8% by mass or less, and preferably 0.4% by mass or more and 1.6% by mass or less. If the content of the fatty acid is 0.2% by mass or more, the effect of adding the fatty acid, that is, the effect of improving the weldability of the molded product, can be obtained. On the other hand, if the content of the fatty acid is 1.8% by mass or less, the fatty acid is less likely to bleed out from the resin composition or molded product.

(パラフィンオイル)
パラフィンオイルは、23℃で液体状のパラフィンオイルであれば特に制限されず、公知のパラフィンオイルを用いることができる。パラフィンオイルは、例えば直鎖状または分岐鎖状の炭素数が14以上30以下の炭化水素であるが、一部に環状炭化水素(ナフテン)や芳香族炭化水素を含んでいてもよい。
(Paraffin oil)
The paraffin oil is not particularly limited as long as it is liquid at 23° C., and any known paraffin oil can be used. Paraffin oil is, for example, a linear or branched hydrocarbon having 14 to 30 carbon atoms, and may partially contain cyclic hydrocarbons (naphthenes) or aromatic hydrocarbons.

樹脂組成物の総量に対するパラフィンオイルの量は、0.5質量%以上3.5質量%以下であればよく、0.7質量%以上3.3質量%以下が好ましい。パラフィンオイルの量が0.5質量%以上であると、パラフィンオイルによって、熱可塑性樹脂を十分に可塑化させやすくなり、成形品の溶着性を高めることができる。一方、パラフィンオイルの量が3.5質量%以下であると、樹脂組成物や成形品からパラフィンオイルがブリードアウトし難くなる。 The amount of paraffin oil relative to the total amount of the resin composition may be 0.5% by mass or more and 3.5% by mass or less, and preferably 0.7% by mass or more and 3.3% by mass or less. When the amount of paraffin oil is 0.5% by mass or more, the paraffin oil can easily sufficiently plasticize the thermoplastic resin, thereby improving the weldability of the molded product. On the other hand, when the amount of paraffin oil is 3.5% by mass or less, the paraffin oil is less likely to bleed out from the resin composition or molded product.

(ポリエチレン系ワックス)
本実施形態の樹脂組成物は、ポリエチレン系ワックスをさらに含んでいてもよい。ポリエチレン系ワックスは、ポリエチレンを主成分とするワックスであればよく、ポリエチレンを50質量%超含むワックスであればよいが、ポリエチレンを80質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。
(Polyethylene wax)
The resin composition of the present embodiment may further contain a polyethylene-based wax. The polyethylene-based wax may be a wax containing polyethylene as a main component, and may be a wax containing more than 50% by mass of polyethylene, but preferably contains 80% by mass or more of polyethylene, and more preferably contains 90% by mass or more of polyethylene.

当該ポリエチレン系ワックスの融点は特に制限されないが、その融点は70℃以上150℃以下であることが好ましく、80℃以上130℃以下であることがより好ましい。ポリエチレン系ワックスの融点が当該範囲であると樹脂組成物の成形加工性が高まったり、成形品の溶着性が高まったりする。上記融点は、JIS K7121に準拠して測定される値である。 The melting point of the polyethylene wax is not particularly limited, but is preferably 70°C or higher and 150°C or lower, and more preferably 80°C or higher and 130°C or lower. If the melting point of the polyethylene wax is within this range, the moldability of the resin composition is improved, and the weldability of the molded product is improved. The above melting point is a value measured in accordance with JIS K7121.

また、当該ポリエチレン系ワックスの重量平均分子量は特に制限されず、例えば1,000以上10,000以下が好ましく、1,500以上9,000以下がより好ましい。ポリエチレン系ワックスの重量平均分子量が当該範囲であると、樹脂組成物や成形品からポリエチレン系ワックスがブリードアウトし難くなる。 The weight average molecular weight of the polyethylene wax is not particularly limited, and is preferably from 1,000 to 10,000, and more preferably from 1,500 to 9,000. When the weight average molecular weight of the polyethylene wax is within this range, the polyethylene wax is less likely to bleed out from the resin composition or molded product.

当該ポリエチレン系ワックスは、市販品であってもよく、その例には、NuCera Solutions社製のPOLYWAXシリーズや、三井化学社製のHiwaxシリーズ、三井化学社製のエクセレックスシリーズ、三洋科学社製のサンワックスシリーズ等が含まれる。 The polyethylene wax may be a commercially available product, examples of which include the POLYWAX series manufactured by NuCera Solutions, the Hiwax series manufactured by Mitsui Chemicals, the Excelex series manufactured by Mitsui Chemicals, and the Sunwax series manufactured by Sanyo Scientific.

樹脂組成物の総量に対するポリエチレン系ワックスの量は、0.1質量%以上0.9質量%以下であればよく、0.2質量%以上0.8質量%以下が好ましい。ポリエチレン系ワックスの量が0.1質量%以上であると、ポリエチレン系ワックスによって、樹脂組成物の成形加工性が高まりすい。一方、ポリエチレン系ワックスの量が0.9質量%以下であると、樹脂組成物や成形品からのポリエチレン系ワックスがブリードアウトし難くなる。 The amount of polyethylene wax relative to the total amount of the resin composition may be 0.1% by mass or more and 0.9% by mass or less, and preferably 0.2% by mass or more and 0.8% by mass or less. If the amount of polyethylene wax is 0.1% by mass or more, the polyethylene wax is likely to improve the moldability of the resin composition. On the other hand, if the amount of polyethylene wax is 0.9% by mass or less, the polyethylene wax is less likely to bleed out from the resin composition or molded product.

(その他の成分)
樹脂組成物は、本実施形態の目的および効果を損なわない範囲で、上記以外の成分をさらに含んでいてもよい。上記以外の成分の例には、可塑剤、色材、酸化防止剤、難燃剤、発泡剤、流動調整剤等が含まれる。
(Other ingredients)
The resin composition may further contain components other than those described above, provided that the objects and effects of the present embodiment are not impaired. Examples of the components other than those described above include plasticizers, colorants, antioxidants, flame retardants, foaming agents, flow control agents, etc.

可塑剤の例には、例えば、クエン酸トリエチル、クエン酸アセチル・トリエチル、フタル酸ジブチル、フタル酸ジアリール、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジオクチル、フタル酸ジ(2-エチルヘキシル)、フタル酸ジ-2-メトキシエチル、酒石酸ジブチル、o-ベンゾイル安息香酸エステル、ジアセチン、エポキシ化大豆油等が含まれる。樹脂組成物は、これらを一種単独で、または二種以上含んでいてもよい。 Examples of plasticizers include, for example, triethyl citrate, acetyl triethyl citrate, dibutyl phthalate, diaryl phthalate, dimethyl phthalate, diethyl phthalate, dioctyl phthalate, di(2-ethylhexyl) phthalate, di-2-methoxyethyl phthalate, dibutyl tartrate, o-benzoyl benzoic acid ester, diacetin, epoxidized soybean oil, etc. The resin composition may contain these alone or in combination.

色材は、公知の有機顔料又は無機顔料あるいは染料の何れであってもよい。色材の具体例には、アゾ系、アンスラキノン系、フタロシアニン系、キナクリドン系、イソインドリノン系、ジオオサジン系、ペリノン系、キノフタロン系、ペリレン系顔料などの有機顔料や群青、酸化チタン、チタンイエロー、酸化鉄(弁柄)、酸化クロム、亜鉛華、カーボンブラックなどの無機顔料が含まれる。樹脂組成物は、これらを一種単独で、または二種以上含んでいてもよい。 The coloring material may be any of the known organic or inorganic pigments or dyes. Specific examples of coloring materials include organic pigments such as azo, anthraquinone, phthalocyanine, quinacridone, isoindolinone, diosadin, perinone, quinophthalone, and perylene pigments, and inorganic pigments such as ultramarine, titanium oxide, titanium yellow, iron oxide (red oxide), chromium oxide, zinc oxide, and carbon black. The resin composition may contain one of these alone or two or more of them.

酸化防止剤の例には、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤が含まれる。樹脂組成物は、これらを一種単独で、または二種以上含んでいてもよい。リン系、より具体的には亜リン酸エステル、リン酸エステル等のリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルの例には、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、等の亜リン酸のトリエステル、ジエステル、モノエステル等が含まれる。 Examples of antioxidants include phosphorus-based antioxidants, phenol-based antioxidants, and pentaerythritol-based antioxidants. The resin composition may contain these antioxidants alone or in combination. Phosphorus-based, more specifically phosphorus-based antioxidant stabilizers such as phosphite esters and phosphate esters, are preferably used. Examples of phosphite esters include triesters, diesters, and monoesters of phosphorous acid, such as triphenyl phosphite, trisnonylphenyl phosphite, and tris(2,4-di-t-butylphenyl) phosphite.

リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等が挙げられる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris(nonylphenyl)phosphate, and 2-ethylphenyldiphenyl phosphate.

フェノール系の酸化防止剤の例には、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-t-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、及びテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が含まれる。 Examples of phenolic antioxidants include α-tocopherol, butyl hydroxytoluene, sinapyl alcohol, vitamin E, n-octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2-t-butyl-6-(3'-t-butyl-5'-methyl-2'-hydroxybenzyl)-4-methylphenylacrylate, 2,6-di-t-butyl-4-(N,N-dimethylaminomethyl)phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxymethyl]methane.

難燃剤としては、特に限定されないが、例えば、ハロゲン系難燃剤や、あるいはリン系難燃剤や金属水和物などの非リン系ハロゲン系難燃剤を用いることができる。樹脂組成物は、これらを一種単独で、または二種以上含んでいてもよい。 The flame retardant is not particularly limited, but may be, for example, a halogen-based flame retardant or a non-phosphorus-based halogen-based flame retardant such as a phosphorus-based flame retardant or a metal hydrate. The resin composition may contain one of these alone or two or more of them.

ハロゲン系難燃剤の例には、ハロゲン化ビスフェニルアルカン、ハロゲン化ビスフェニルエーテル、ハロゲン化ビスフェニルチオエーテル、ハロゲン化ビスフェニルスルフォンなどのハロゲン化ビスフェノール系化合物、臭素化ビスフェノールA、臭素化ビスフェノールS、塩素化ビスフェノールA、塩素化ビスフェノールSなどのビスフェノール-ビス(アルキルエーテル)系化合物等が含まれる。リン系難燃剤の例には、トリス(ジエチルホスフィン酸)アルミニウム、ビスフェノールAビス(ジフェニルホスフェート)、リン酸トリアリールイソプロピル化物、クレジルジ2,6-キシレニルホスフェート、芳香族縮合リン酸エステル等が含まれる。金属水和物の例には、アルミニウム三水和物、二水酸化マグネシウムまたはこれらの組み合わせが含まれる。 Examples of halogen-based flame retardants include halogenated bisphenol compounds such as halogenated bisphenylalkanes, halogenated bisphenylethers, halogenated bisphenylthioethers, and halogenated bisphenylsulfones, and bisphenol-bis(alkyl ether) compounds such as brominated bisphenol A, brominated bisphenol S, chlorinated bisphenol A, and chlorinated bisphenol S. Examples of phosphorus-based flame retardants include aluminum tris(diethylphosphinate), bisphenol A bis(diphenyl phosphate), triarylisopropyl phosphate, cresyl di-2,6-xylenyl phosphate, and aromatic condensed phosphate esters. Examples of metal hydrates include aluminum trihydrate, magnesium dihydroxide, or a combination thereof.

また、上記難燃剤と難燃助剤とを組み合わせてもよい。難燃助剤の例には、三酸化アンチモン、五酸化アンチモン等の酸化アンチモン、酸化亜鉛、酸化鉄、酸化アルミニウム、酸化モリブデン、酸化チタン、酸化カルシウム、酸化マグネシウム等が含まれる。 The flame retardant may be combined with a flame retardant assistant. Examples of flame retardant assistants include antimony oxides such as antimony trioxide and antimony pentoxide, zinc oxide, iron oxide, aluminum oxide, molybdenum oxide, titanium oxide, calcium oxide, magnesium oxide, etc.

発泡剤は、溶融混練機内で溶融状態にされている樹脂組成物に混合、または圧入することで、気泡を発生させることが可能な化合物であれば特に制限されない。発泡剤の例には、固体から気体に相変化して気泡を発生させるもの、液体から気体に相変化して気泡を発生させるもの、または気体そのもの等が含まれる。 There are no particular limitations on the foaming agent, so long as it is a compound capable of generating bubbles when mixed or pressed into a resin composition in a molten state in a melt kneader. Examples of foaming agents include those that change phase from solid to gas to generate bubbles, those that change phase from liquid to gas to generate bubbles, and gas itself.

発泡剤の例には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素類;シクロブタン、シクロペンタン、シクロヘキサンなどの脂環式炭化水素類;クロロジフルオロメタン、ジフロオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロメタン、ジクロロフルオロメタン、ジクロロジフルオロメタン、クロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロペンタフルオロエタン、テトラフルオロエタン、ジフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタン、テトラクロロジフルオロエタン、パーフルオロシクロブタンなどのハロゲン化炭化水素類;二酸化炭素、チッ素、空気などの無機ガス;水などが含まれる。 Examples of blowing agents include aliphatic hydrocarbons such as propane, butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane; halogenated hydrocarbons such as chlorodifluoromethane, difluoromethane, trifluoromethane, trichlorofluoromethane, dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichlorotetrafluoroethane, trichlorotrifluoroethane, tetrachlorodifluoroethane, and perfluorocyclobutane; inorganic gases such as carbon dioxide, nitrogen, and air; and water.

発泡剤は、キャリアレジンと共に発泡剤の有効成分を含むものであってもよい。キャリアレジンとしては、結晶性プロピレン等の結晶性オレフィン樹脂等が挙げられる。また、有効成分としては、炭酸水素塩等が挙げられる。これらのうち、炭酸水素塩が好ましい。結晶性ポリプロピレン樹脂をキャリアレジンとし、炭酸水素塩を熱分解型発泡剤として含む発泡剤コンセントレートであることが好ましい。 The foaming agent may contain the active ingredient of the foaming agent together with the carrier resin. Examples of the carrier resin include crystalline olefin resins such as crystalline propylene. Examples of the active ingredient include bicarbonates. Of these, bicarbonates are preferred. A foaming agent concentrate containing crystalline polypropylene resin as the carrier resin and bicarbonates as the thermal decomposition type foaming agent is preferred.

流動性調整剤としても、公知のものを使用することができる。流動性調整剤の例には、ジアルキルパーオキサイド等の過酸化物、例えば1,4-ビス[(t-ブチルパーオキシ)イソプロピル]ベンゼン等が含まれる。使用する熱可塑性樹脂の種類によっては、これら過酸化物は架橋剤としても作用させることができる。特に上記プロピレン-α-オレフィン共重合体がジエン由来の構成単位を有する場合には、当該過酸化物によって、上記ジエンを架橋させてもよい。 As the flow control agent, known agents can be used. Examples of flow control agents include peroxides such as dialkyl peroxides, for example, 1,4-bis[(t-butylperoxy)isopropyl]benzene. Depending on the type of thermoplastic resin used, these peroxides can also act as crosslinking agents. In particular, when the propylene-α-olefin copolymer has structural units derived from a diene, the diene may be crosslinked by the peroxide.

帯電防止剤の例には、ラウリルジエタノールアミド、ステアリルジエタノールアミド等の脂肪酸ジエタノールアミド;アルコールアミン系化合物を始めとする水酸基含有化合物等が含まれる。特に、アルコールアミン類、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン等が好ましい。2種以上の帯電防止剤を併用することもできる。これら帯電防止剤は、ケイ酸カルシウムや炭酸カルシウム等に担持されていてもよい。なお、脂肪酸ジエタノールアミドのアシル基の炭素数の範囲としては8以上22以下が、十分な帯電防止効果を発揮するという観点で好ましい。 Examples of antistatic agents include fatty acid diethanolamides such as lauryl diethanolamide and stearyl diethanolamide; and hydroxyl group-containing compounds such as alcohol amine compounds. In particular, alcohol amines, such as monoethanolamine, diethanolamine, and triethanolamine, are preferred. Two or more types of antistatic agents can be used in combination. These antistatic agents may be supported on calcium silicate, calcium carbonate, or the like. The carbon number of the acyl group of the fatty acid diethanolamide is preferably in the range of 8 to 22 in terms of exerting a sufficient antistatic effect.

(樹脂組成物の形状)
本発明の樹脂組成物の形状は特に制限されず、粒子状やペレット状、塊状等、任意の形状とすることができる。樹脂組成物がペレット状である場合、ペレットの形状は特に限定されず、円柱状、球形、楕円球状等のいずれの形状であってもよい。また、そのサイズも特に制限されず、形状に応じて適宜選択される。例えば、球形のペレットの場合、直径1~10mmとしてもよい。楕円球状のペレットの場合、長径を1~10mm程度とし、アスペクト比を0.1~1.0程度とすることができる。円柱状のペレットの場合は、直径を1~10mm程度とし、高さを1~10mm程度とすることができる。
(Shape of resin composition)
The shape of the resin composition of the present invention is not particularly limited, and may be any shape such as a particulate shape, a pellet shape, or a lump shape. When the resin composition is in the form of a pellet, the shape of the pellet is not particularly limited, and may be any shape such as a cylindrical shape, a spherical shape, or an elliptical sphere. The size is also not particularly limited, and is appropriately selected according to the shape. For example, in the case of a spherical pellet, the diameter may be 1 to 10 mm. In the case of an elliptical sphere pellet, the major axis may be about 1 to 10 mm, and the aspect ratio may be about 0.1 to 1.0. In the case of a cylindrical pellet, the diameter may be about 1 to 10 mm, and the height may be about 1 to 10 mm.

(樹脂組成物の製造方法)
上記樹脂組成物の製造方法は特に制限されない。上述の熱可塑性樹脂、無機粉末、脂肪酸亜鉛、脂肪酸、パラフィンオイル、および必要に応じてポリエチレン系ワックスやその他の成分を十分に混合可能であればよく、例えば溶融混錬によって調製可能である。このとき、全ての成分を混合してから溶融混錬してもよく、一部の成分のみを先に溶融混錬し、残りの成分を後から混錬してもよい。溶融混錬を行うための装置は特に制限されず、一般的な押出機、ニーダー、バンバリーミキサー等を用いることができる、特に均一な組成の樹脂組成物を得るという観点では、二軸混練機で混練することが好ましい。
(Method for producing resin composition)
The method for producing the resin composition is not particularly limited. The above-mentioned thermoplastic resin, inorganic powder, fatty acid zinc, fatty acid, paraffin oil, and, if necessary, polyethylene wax and other components may be sufficiently mixed, and may be prepared, for example, by melt kneading. At this time, all components may be mixed and then melt kneaded, or only a portion of the components may be melt kneaded first, and the remaining components may be kneaded later. The device for melt kneading is not particularly limited, and a general extruder, kneader, Banbury mixer, etc. may be used. In particular, from the viewpoint of obtaining a resin composition with a uniform composition, it is preferable to knead with a twin-screw kneader.

2.溶着用成形品および樹脂成形品
本実施形態は、上述の樹脂組成物の成形品であって、溶着法により他の部品と溶着するための溶着用領域を有する溶着用成形品を提供する。
2. Molded article for welding and resin molded article This embodiment provides a molded article for welding, which is a molded article of the above-mentioned resin composition and has a weldable region for welding to another part by a welding method.

溶着用成形品は、上述の樹脂組成物を公知の方法により成形して得られる。樹脂組成物を成形する方法は特に制限されず、その例には、射出成形法、押出し成形法、ブロー成形法等が含まれる。また、溶着用領域の形状は特に制限されず、所望の溶着法に応じて適宜選択される。溶着用領域の形状は平面状や曲面状であってもよく、任意の凹凸を有していてもよい。 The molded article for welding is obtained by molding the above-mentioned resin composition by a known method. The method for molding the resin composition is not particularly limited, and examples include injection molding, extrusion molding, blow molding, etc. The shape of the welding region is not particularly limited, and is appropriately selected according to the desired welding method. The shape of the welding region may be flat or curved, and may have any irregularities.

ここで、溶着用成形品の溶着用領域を他の部品と溶着する方法の例には、超音波溶着法、振動溶着法、射出溶着法、マイクロ波溶着(高周波誘導加熱溶着)法、スピン溶着法、熱板溶着法、熱風溶着法等が含まれる。これらの中でも、超音波溶着法、振動溶着法、射出溶着法(ダイスライド成形、ダイ回転成形も含む)、およびマイクロ波溶着法が好ましく、簡便で接合強度が高い樹脂成形品が得られるという観点で、超音波溶着法が特に好ましい。 Here, examples of methods for welding the welding area of a molded product to another part include ultrasonic welding, vibration welding, injection welding, microwave welding (high-frequency induction heating welding), spin welding, hot plate welding, hot air welding, etc. Among these, ultrasonic welding, vibration welding, injection welding (including die slide molding and die rotation molding), and microwave welding are preferred, and ultrasonic welding is particularly preferred from the viewpoint of obtaining a resin molded product that is simple and has high bonding strength.

超音波溶着法では、上記溶着用成形品の溶着用領域と、他の樹脂部品の溶着用領域とを圧接し、これらの界面(圧接面)に、当該界面に垂直方向の超音波振動を与える。これにより、圧接面で摩擦熱が生じる。そして、溶着用成形品(溶着用領域)中の熱可塑性樹脂、および樹脂部品中の樹脂が溶融し、溶着用成形品および樹脂部品が一体に接合される。当該超音波溶着法で溶着する樹脂部品は特に制限されず、上述の樹脂組成物の成形品であってもよく、異なる熱可塑性樹脂組成物の成形品であってもよい。ただし、一体性の高い樹脂成形品を得るという観点で、当該樹脂部品が、上述の樹脂組成物の成形品であることが好ましい。 In the ultrasonic welding method, the welding area of the above-mentioned molded product for welding and the welding area of another resin part are pressed together, and ultrasonic vibrations are applied to the interface (pressure-welding surface) between them in a direction perpendicular to the interface. This generates frictional heat at the pressure-welding surface. Then, the thermoplastic resin in the molded product for welding (welding area) and the resin in the resin part melt, and the molded product for welding and the resin part are integrally joined. There are no particular restrictions on the resin parts to be welded by the ultrasonic welding method, and they may be molded products of the above-mentioned resin composition or molded products of a different thermoplastic resin composition. However, from the viewpoint of obtaining a resin molded product with high integrity, it is preferable that the resin part is a molded product of the above-mentioned resin composition.

振動溶着法では、上記溶着用成形品の溶着用領域と、他の樹脂部品の溶着用領域とを圧接し、これらの界面(圧接面)に、当該界面に平行方向の振動を与える。これにより、圧接面で摩擦熱が生じる。そして、溶着用成形品中の熱可塑性樹脂および樹脂部品中の樹脂が溶融し、溶着用成形品および樹脂部品が一体に接合される。当該振動溶着法で溶着する樹脂部品は特に制限されず、上述の樹脂組成物の成形品であってもよく、異なる熱可塑性樹脂組成物の成形品であってもよい。ただし、一体性の高い樹脂成形品を得るという観点で、当該樹脂部品が、上述の樹脂組成物の成形品であることが好ましい。 In the vibration welding method, the welding area of the above-mentioned molded product for welding is pressed against the welding area of another resin part, and vibration is applied to the interface (pressure-welding surface) between them in a direction parallel to the interface. This generates frictional heat at the pressure-welding surface. The thermoplastic resin in the molded product for welding and the resin in the resin part melt, and the molded product for welding and the resin part are integrally joined. There are no particular limitations on the resin parts to be welded by the vibration welding method, and they may be molded products of the above-mentioned resin composition, or may be molded products of a different thermoplastic resin composition. However, from the viewpoint of obtaining a resin molded product with high integrity, it is preferable that the resin part is a molded product of the above-mentioned resin composition.

射出溶着法では、溶着用成形品を金型内に配置する。そして、溶着用成形品の溶着用領域に連続するように、部品を射出成形により形成する。当該方法では、溶着用成形品(溶着用領域)中の熱可塑性樹脂が溶融し、後から形成される部品と一体化する。なお、当該射出溶着法の射出成形に用いる材料は、上述の樹脂組成物と同一であってもよく、異なっていてもよい。ただし、一体性の高い樹脂成形品を得るという観点では、上述の樹脂組成物を射出成形に用いることが好ましい。 In the injection welding method, a molded product for welding is placed in a mold. Then, a part is formed by injection molding so that it is continuous with the welding area of the molded product for welding. In this method, the thermoplastic resin in the molded product for welding (welding area) melts and becomes integrated with the part that will be formed later. The material used for injection molding in this injection welding method may be the same as the above-mentioned resin composition, or it may be different. However, from the viewpoint of obtaining a resin molded product with high integrity, it is preferable to use the above-mentioned resin composition for injection molding.

マイクロ波溶着法では、上記溶着用成形品の溶着用領域と、他の樹脂部品の溶着用領域とを圧接し、これらの界面(圧接面)に、高周波電界による分子相互間の摩擦による損失(誘電損失)を生じさせる。これにより、上記界面で発熱が生じ、溶着用成形品中の熱可塑性樹脂および樹脂部品中の樹脂が溶融し、溶着用成形品および樹脂部品が一体に接合される。当該マイクロ波溶着法で溶着する樹脂部品は特に制限されず、上述の樹脂組成物の成形品であってもよく、異なる熱可塑性樹脂組成物の成形品であってもよい。ただし、一体性の高い樹脂成形品を得るという観点で、樹脂部品は、上述の樹脂組成物の成形品であることが好ましい。 In the microwave welding method, the welding area of the above-mentioned molded product for welding is pressed against the welding area of another resin part, and a loss (dielectric loss) due to friction between molecules caused by a high-frequency electric field is generated at the interface (pressure-welded surface) between them. This generates heat at the interface, melting the thermoplastic resin in the molded product for welding and the resin in the resin part, and the molded product for welding and the resin part are integrally joined. There are no particular restrictions on the resin parts to be welded by the microwave welding method, and they may be molded products of the above-mentioned resin composition or molded products of a different thermoplastic resin composition. However, from the viewpoint of obtaining a resin molded product with high integrity, it is preferable that the resin part is a molded product of the above-mentioned resin composition.

ここで、上記溶着用成形品と、当該溶着用成形品の溶着用領域に他の部品を接合した樹脂成形品の用途は特に制限されない。樹脂成形品の用途の例には、自動車用部品;テレビ・掃除機等の電気電子機器の各種部品;住宅設備機器部品;工業分野の各種部品;建材部品;玩具等、従来ポリプロピレン系の樹脂組成物が使用されてきた用途にいずれも適用可能である。 Here, there are no particular limitations on the uses of the above-mentioned welding molded product and the resin molded product in which other parts are joined to the welding region of the welding molded product. Examples of uses of the resin molded product include automobile parts; various parts for electric and electronic devices such as televisions and vacuum cleaners; housing equipment parts; various parts in the industrial field; building material parts; toys, and the like, and it can be applied to any use in which polypropylene-based resin compositions have traditionally been used.

本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

[材料]
各実施例および比較例には、以下の成分を使用した。
・プロピレン系共重合体(プロピレン系ターポリマー、ロッテケミカル社製、SFC-851、プロピレン含量85~95質量%、ブチレンおよびエチレン含量5~15質量%)
・重炭酸カルシウム粉末(竹原化学社製、サンライトSL-1500、平均粒子径2.0μm)
・ステアリン酸亜鉛(日油社製、ジンクステアレートG)
・ステアリン酸(花王社製、ルナックS-70V)
・パラフィンオイル(H&R社製、PIONIER1535)
・ポリエチレン系ワックス(三井化学社製、HIWAX210P)
・フェノール系酸化防止剤(ADEKA社製、アデカスタブAO-60)
・リン系酸化防止剤(ADEKA社製、アデカスタブ2112)
・ステアリン酸マグネシウム
[material]
The following components were used in each of the examples and comparative examples.
Propylene-based copolymer (propylene-based terpolymer, manufactured by Lotte Chemical Co., Ltd., SFC-851, propylene content 85 to 95% by mass, butylene and ethylene content 5 to 15% by mass)
Calcium bicarbonate powder (Takehara Chemical Industry Co., Ltd., Sunlight SL-1500, average particle size 2.0 μm)
Zinc stearate (NOF Corporation, Zinc Stearate G)
- Stearic acid (Kao Corporation, Lunac S-70V)
・Paraffin oil (H&R, PIONIER 1535)
- Polyethylene wax (HIWAX210P, manufactured by Mitsui Chemicals)
- Phenol-based antioxidant (ADEKA Corporation, Adekastab AO-60)
Phosphorus-based antioxidant (ADEKA Corporation, Adeka STAB 2112)
·Magnesium stearate

[実施例1]
プロピレン・α-オレフィン系ランダム共重合体、重炭酸カルシウム粉末、ステアリン酸亜鉛、ステアリン酸、パラフィンオイル、ポリエチレン系ワックス、およびフェノール酸系酸化防止剤、およびリン酸系酸化防止剤を後述の表1に示す組成比で、それぞれ二軸混練押出機(東洋精機製作所社製、Tダイ押出成形装置(φ20mm、L/D=25))に投入し、200℃で溶融混練し、樹脂組成物のペレットを得た。得られたペレットを用いて、押出成形法によって板状のサンプル(幅20mm、長さ100mm、厚さ2mm)を作製した。
[Example 1]
A propylene-α-olefin random copolymer, calcium bicarbonate powder, zinc stearate, stearic acid, paraffin oil, polyethylene wax, a phenolic acid antioxidant, and a phosphoric acid antioxidant were each charged into a twin-screw kneading extruder (T-die extrusion molding device (φ20 mm, L/D=25) manufactured by Toyo Seiki Seisakusho, Ltd.) in the composition ratios shown in Table 1 below, and melt-kneaded at 200° C. to obtain pellets of a resin composition. The obtained pellets were used to prepare a plate-shaped sample (width 20 mm, length 100 mm, thickness 2 mm) by extrusion molding.

[実施例2~7、比較例1~4、および参考例]
表1に示す組成に変更した以外は、実施例1と同様に板状のサンプルを作製した。
[Examples 2 to 7, Comparative Examples 1 to 4, and Reference Example]
A plate-shaped sample was prepared in the same manner as in Example 1, except that the composition was changed as shown in Table 1.

[評価]
2枚のサンプルを超音波溶着したときの接合強度、および各サンプルの破断伸びを以下の方法により測定した。
[evaluation]
The bonding strength when the two samples were ultrasonically welded together and the breaking elongation of each sample were measured by the following methods.

・接合強度の測定
各実施例、比較例、または参考例で作製した板状のサンプルを2枚ずつ準備し、これらを十字に重ねあわせて配置した。重なり部分の10mm×10mmの領域に、超音波溶着装置(株式会社カイジョー社製PLUS-20S)にて、下記の条件にて圧力をかけながら超音波を1m秒照射し、2枚のサンプルの溶着を行った。同様に、溶着時間を200m秒、または600m秒に変更して、2枚のサンプルの溶着を行った。
(溶着条件)
周波数:20kHz
圧力:150N
溶着時間:1~600m秒
保持時間:500m秒
Measurement of bonding strength Two plate-shaped samples were prepared from each of the Examples, Comparative Examples, and Reference Examples, and were arranged crosswise. An ultrasonic welding device (Kaijo Co., Ltd. PLUS-20S) was used to irradiate ultrasonic waves for 1 ms to the 10 mm x 10 mm area of the overlapping portion while applying pressure under the following conditions, to weld the two samples together. Similarly, the welding time was changed to 200 ms or 600 ms, and the two samples were welded together.
(Welding conditions)
Frequency: 20kHz
Pressure: 150N
Welding time: 1 to 600 ms Holding time: 500 ms

溶着後の2枚のサンプルを引張試験機により、互いに引き離す方向に力を加えた。このとき、2枚のサンプルの引き離しに要した荷重(接合強度)を測定した。結果を表1に示す。 After welding, a force was applied to the two samples in a direction to pull them apart using a tensile tester. The load (bonding strength) required to pull the two samples apart was measured. The results are shown in Table 1.

・破断伸びの測定
各サンプルの破断伸びを、ISO 527に準拠して測定した。結果を表1に示す。

Figure 0007506818000001
Measurement of Breaking Elongation The breaking elongation of each sample was measured in accordance with ISO 527. The results are shown in Table 1.
Figure 0007506818000001

[考察]
上記表1に示すように、ステアリン酸亜鉛の含有量が、0.1質量%以上0.9質量%以下であり、ステアリン酸の含有量が、0.2質量%以上1.8質量%以下であり、ステアリン酸亜鉛およびステアリン酸の含有質量比が10:30~10:15であり、かつパラフィンオイルの量が0.5質量%以上3.5質量%以下である場合(実施例1~7)には、いずれも超音波溶着後の接合強度が高かった。また特に、これらの実施例では、単にポリプロピレンどうしを溶着させる場合(参考例)より、短い時間でサンプルどうしの接合強度を高めることができた。さらに、当該樹脂組成物から得られるサンプル(成形品)は、破断伸びが優れることから、上述の樹脂組成物によれば、強度が高い成形品が得られるといえる。
[Discussion]
As shown in Table 1, when the content of zinc stearate was 0.1% by mass or more and 0.9% by mass or less, the content of stearic acid was 0.2% by mass or more and 1.8% by mass or less, the content mass ratio of zinc stearate and stearic acid was 10:30 to 10:15, and the amount of paraffin oil was 0.5% by mass or more and 3.5% by mass or less (Examples 1 to 7), the bonding strength after ultrasonic welding was high in all cases. In particular, in these Examples, the bonding strength between the samples could be increased in a shorter time than in the case of simply welding polypropylene together (Reference Example). Furthermore, since the sample (molded article) obtained from the resin composition had excellent elongation at break, it can be said that the above-mentioned resin composition can produce a molded article with high strength.

一方、ステアリン酸亜鉛およびステアリン酸を含んでいたとしても、上記ステアリン酸亜鉛とステアリン酸との含有質量比が、上記範囲から外れる場合には、格段に接合強度が低下した(比較例1および2)。さらに、パラフィンオイルの量が過度に少ない場合には、破断伸びの結果が悪くなり、さらには接合強度も低下した(比較例3)。また、ステアリン酸亜鉛およびステアリン酸の代わりに、ステアリン酸マグネシウムを用いた場合には、接合強度が低かった(比較例4)。 On the other hand, even if zinc stearate and stearic acid were included, when the mass ratio of the zinc stearate to stearic acid was outside the above range, the bonding strength was significantly reduced (Comparative Examples 1 and 2). Furthermore, when the amount of paraffin oil was excessively small, the results of the breaking elongation were poor and the bonding strength was also reduced (Comparative Example 3). Furthermore, when magnesium stearate was used instead of zinc stearate and stearic acid, the bonding strength was low (Comparative Example 4).

[実施例8~10、および比較例5]
実施例1~3、および比較例4と同様に、樹脂組成物のペレットを得た。得られたペレットを用いて、押出成形法によって図1Aに示す平面視形状(厚さ10mm)の第1サンプル11を作製した。
[Examples 8 to 10 and Comparative Example 5]
Pellets of a resin composition were obtained in the same manner as in Examples 1 to 3 and Comparative Example 4. Using the obtained pellets, a first sample 11 having a planar shape (thickness 10 mm) shown in FIG. 1A was produced by extrusion molding.

[評価]
以下の方法により、上記第1サンプルに射出溶着によって第2サンプル(樹脂部品)12を接合したときの接合強度を測定した。
[evaluation]
The bonding strength was measured when a second sample (resin part) 12 was bonded to the first sample by injection welding using the following method.

・接合強度の測定
上記第1サンプル11を、疲労試験片作製用金型内に配置した。そして、第1サンプル11の作製に用いたペレットとそれぞれ同一のペレットを用い、第1サンプル11と同様の形状の第2サンプル12を射出成型により形成した。これにより、図1Bに示すように、第1サンプル11および第2サンプル12が、溶着用領域13で接合した測定用サンプルが得られた。
当該測定用サンプルを、引張り速度5mm/秒、スパン間隔50mmで第1サンプル11および第2サンプル12を引き離す方向に引っ張り、溶着用領域13で測定用サンプルが破断する強度(接合強度)を求めた。結果を表2に示す。

Figure 0007506818000002
Measurement of bonding strength The first sample 11 was placed in a die for preparing a fatigue test piece. Then, the same pellets as those used for preparing the first sample 11 were used to form a second sample 12 having a similar shape to the first sample 11 by injection molding. As a result, a measurement sample was obtained in which the first sample 11 and the second sample 12 were joined at the welding region 13, as shown in FIG. 1B.
The measurement sample was pulled in a direction separating the first sample 11 and the second sample 12 at a tensile speed of 5 mm/sec and a span interval of 50 mm, and the strength (bonding strength) at which the measurement sample broke at the welding region 13 was determined. The results are shown in Table 2.
Figure 0007506818000002

[考察]
上記表2に示すように、ステアリン酸亜鉛の含有量が、0.1質量%以上0.9質量%以下であり、ステアリン酸の含有量が、0.2質量%以上1.8質量%以下であり、ステアリン酸亜鉛およびステアリン酸の含有質量比が10:30~10:15であり、かつパラフィンオイルの量が0.5質量%以上3.5質量%以下である場合(実施例8~10)には、射出溶着後の接合強度が高かった。一方、ステアリン酸亜鉛およびステアリン酸の代わりに、ステアリン酸マグネシウムを用いた場合には、接合強度が低かった(比較例5)。
[Discussion]
As shown in Table 2 above, when the zinc stearate content was 0.1% by mass or more and 0.9% by mass or less, the stearic acid content was 0.2% by mass or more and 1.8% by mass or less, the content mass ratio of zinc stearate to stearic acid was 10:30 to 10:15, and the amount of paraffin oil was 0.5% by mass or more and 3.5% by mass or less (Examples 8 to 10), the bonding strength after injection welding was high. On the other hand, when magnesium stearate was used instead of zinc stearate and stearic acid, the bonding strength was low (Comparative Example 5).

本発明の無機粉末充填樹脂組成物によれば、溶着によって容易に他の部品と接合可能な溶着用成形品や、溶着用成形品を他の部品と接合した樹脂成形品が得られる。したがって、自動車用部品等をはじめとする各種工業分野の部品や製品、玩具等の製造において非常に有用である。 The inorganic powder-filled resin composition of the present invention can produce a welded molded product that can be easily joined to other parts by welding, and a resin molded product in which a welded molded product is joined to other parts. Therefore, it is very useful in the manufacture of automobile parts and other industrial parts and products, toys, etc.

11 第1サンプル
12 第2サンプル
13 溶着用領域
11 First sample 12 Second sample 13 Welding area

Claims (8)

プロピレン・α-オレフィン系ランダム共重合体を含む熱可塑性樹脂と、
無機粉末と、
炭素数が15以上20以下の脂肪酸亜鉛と、
炭素数が15以上20以下の脂肪酸と、
パラフィンオイルと、
を含み、
前記熱可塑性樹脂および前記無機粉末の含有質量比が50:50~10:90であり、
前記脂肪酸亜鉛の含有量が、0.1質量%以上0.9質量%以下であり、
前記脂肪酸の含有量が、0.2質量%以上1.8質量%以下であり、
前記脂肪酸亜鉛および前記脂肪酸の含有質量比が10:30~10:15であり、かつ
前記パラフィンオイルの含有量が0.5質量%以上3.5質量%以下であ
前記無機粉末が、表面改質されていない炭酸カルシウム粉末である、
無機粉末充填樹脂組成物。
A thermoplastic resin containing a propylene/α-olefin random copolymer;
Inorganic powder;
A zinc fatty acid having 15 to 20 carbon atoms,
A fatty acid having 15 to 20 carbon atoms;
Paraffin oil and
Including,
The content mass ratio of the thermoplastic resin and the inorganic powder is 50:50 to 10:90,
The content of the fatty acid zinc is 0.1% by mass or more and 0.9% by mass or less,
The content of the fatty acid is 0.2% by mass or more and 1.8% by mass or less,
The content mass ratio of the fatty acid zinc and the fatty acid is 10:30 to 10:15, and the content of the paraffin oil is 0.5 mass% or more and 3.5 mass% or less ,
The inorganic powder is a calcium carbonate powder that has not been surface-modified.
Inorganic powder filled resin composition.
ポリエチレン系ワックスを0.1質量%以上0.9質量%以下さらに含む、
請求項1に記載の無機粉末充填樹脂組成物。
Further containing 0.1% by mass or more and 0.9% by mass or less of a polyethylene wax;
2. The inorganic powder filled resin composition of claim 1.
前記脂肪酸亜鉛がステアリン酸亜鉛であり、
前記脂肪酸がステアリン酸である、
請求項1に記載の無機粉末充填樹脂組成物。
The fatty acid zinc is zinc stearate,
The fatty acid is stearic acid.
2. The inorganic powder filled resin composition of claim 1.
前記炭酸カルシウム粉末が、重質炭酸カルシウム粉末である、
請求項に記載の無機粉末充填樹脂組成物。
The calcium carbonate powder is ground calcium carbonate powder.
2. The inorganic powder filled resin composition of claim 1 .
前記重質炭酸カルシウム粉末の平均粒子径が、0.7μm以上6.0μm以下である、
請求項に記載の無機粉末充填樹脂組成物。
The average particle size of the ground calcium carbonate powder is 0.7 μm or more and 6.0 μm or less.
The inorganic powder filled resin composition according to claim 4 .
請求項1~のいずれか一項に記載の無機粉末充填樹脂組成物の成形品であり、
溶着法により他の部品と溶着するための溶着用領域を有する、
溶着用成形品。
A molded article of the inorganic powder-filled resin composition according to any one of claims 1 to 5 ,
A welding area for welding to another component by a welding method;
Molded products for welding.
前記溶着用領域が、超音波溶着法、振動溶着法、スピン溶着法、射出溶着法、マイクロ波溶着法、熱板溶着法、および熱風溶着法からなる群から選ばれるいずれかの溶着法により他の部品と溶着するための領域である、
請求項に記載の溶着用成形品。
The welding region is a region for welding to another component by any welding method selected from the group consisting of ultrasonic welding, vibration welding, spin welding, injection welding, microwave welding, hot plate welding, and hot air welding.
The molded article for welding according to claim 6 .
請求項に記載の溶着用成形品と、
前記溶着用成形品の前記溶着用領域に接合された他の部品と、
を含む、樹脂成形品。
The molded article for welding according to claim 6 ,
Another part joined to the welding region of the welding molded product;
A resin molded product comprising:
JP2023209481A 2023-12-12 2023-12-12 Inorganic powder-filled resin composition, molded article for welding, and resin molded article Active JP7506818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023209481A JP7506818B1 (en) 2023-12-12 2023-12-12 Inorganic powder-filled resin composition, molded article for welding, and resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023209481A JP7506818B1 (en) 2023-12-12 2023-12-12 Inorganic powder-filled resin composition, molded article for welding, and resin molded article

Publications (1)

Publication Number Publication Date
JP7506818B1 true JP7506818B1 (en) 2024-06-26

Family

ID=91586621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023209481A Active JP7506818B1 (en) 2023-12-12 2023-12-12 Inorganic powder-filled resin composition, molded article for welding, and resin molded article

Country Status (1)

Country Link
JP (1) JP7506818B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520006A (en) 2008-06-02 2011-07-14 ボーリアリス アーゲー High-density polymer composition, production method thereof, and pressure-resistant pipe produced therefrom
JP2013543914A (en) 2010-11-24 2013-12-09 エクソンモービル アジア パシフィック リサーチ アンド デベロップメント カンパニー リミテッド Highly filled polymer composition for filler
JP2014196421A (en) 2013-03-29 2014-10-16 日本ポリプロ株式会社 Propylene-based resin master batch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011520006A (en) 2008-06-02 2011-07-14 ボーリアリス アーゲー High-density polymer composition, production method thereof, and pressure-resistant pipe produced therefrom
JP2013543914A (en) 2010-11-24 2013-12-09 エクソンモービル アジア パシフィック リサーチ アンド デベロップメント カンパニー リミテッド Highly filled polymer composition for filler
JP2014196421A (en) 2013-03-29 2014-10-16 日本ポリプロ株式会社 Propylene-based resin master batch

Similar Documents

Publication Publication Date Title
KR102216041B1 (en) Thermoplastic resin composition and molded article using the same
JP6647660B1 (en) Thermoplastic resin composition blended with inorganic substance powder, molded article of thermoplastic resin composition blended with inorganic substance powder and method for producing the same
JP7506818B1 (en) Inorganic powder-filled resin composition, molded article for welding, and resin molded article
JP6933408B1 (en) Inorganic powder-filled resin composition and molded products
EP4265681A1 (en) Inorganic powder-filled resin composition and molded product
JP6954705B1 (en) Resin composition and molded product
JP2018030939A (en) Flame-retardant resin composition and molding
JP7079536B1 (en) Inorganic substance powder-filled resin composition and molded product
EP4265680A1 (en) Inorganic substance powder-filled resin composition and molded product
JP7113571B1 (en) flexible flat cable
JP7079543B1 (en) Laminated sheets and food packaging containers
JP6962631B1 (en) Resin composition and molded product
JP7206416B2 (en) Resin composition and molding
JP6892185B1 (en) Inorganic substance powder-filled resin composition and molded product
JPH01294751A (en) Propylene polymer composition
JP7070958B1 (en) Inorganic substance powder-filled resin composition and molded product
JP7499398B1 (en) Resin composition and molded article containing same
JP7282404B2 (en) high frequency dielectric
JP7202744B1 (en) Manufacturing method of high frequency dielectric for RF tag
JP6635483B1 (en) Oil-resistant resin composition and molded article using the same
JPH06179782A (en) Talc-containing propylene polymer composition
JPH09316284A (en) Thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240614