[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7506506B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP7506506B2
JP7506506B2 JP2020060003A JP2020060003A JP7506506B2 JP 7506506 B2 JP7506506 B2 JP 7506506B2 JP 2020060003 A JP2020060003 A JP 2020060003A JP 2020060003 A JP2020060003 A JP 2020060003A JP 7506506 B2 JP7506506 B2 JP 7506506B2
Authority
JP
Japan
Prior art keywords
intermediate member
explosion
valve cap
valve
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020060003A
Other languages
Japanese (ja)
Other versions
JP2021158075A (en
Inventor
聡司 吉田
修一 山下
孝博 福岡
剛也 伊藤
弘光 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Energy Co Ltd
Original Assignee
Panasonic Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Energy Co Ltd filed Critical Panasonic Energy Co Ltd
Priority to JP2020060003A priority Critical patent/JP7506506B2/en
Publication of JP2021158075A publication Critical patent/JP2021158075A/en
Application granted granted Critical
Publication of JP7506506B2 publication Critical patent/JP7506506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

本開示は、非水電解質二次電池に関する。 This disclosure relates to a non-aqueous electrolyte secondary battery.

二次電池は、電極体及び電解質を収容した外装体の開口部を封口体で密封している。封口体に防爆等の機能を持たせるために、封口体が複数の部品から構成される場合がある。この場合、封口体内部において、絶縁部材を介して複数の部品をかしめ固定し、金属部品同士を接触させて導通を確保している場合がある。特許文献1には、スペーサーの表面に金属めっきを施し、さらに、スペーサーと金属箔との接触面を溶接することで内部抵抗を小さくした封口体が開示されている。 In a secondary battery, the opening of the exterior body that contains the electrode body and electrolyte is sealed with a sealing body. In order to give the sealing body functions such as explosion prevention, the sealing body may be composed of multiple parts. In this case, multiple parts may be crimped and fixed inside the sealing body via an insulating member, and electrical continuity may be ensured by contacting the metal parts with each other. Patent Document 1 discloses a sealing body in which the surface of the spacer is metal-plated and the contact surface between the spacer and the metal foil is welded to reduce internal resistance.

特開2007-27020号公報JP 2007-27020 A

近年、二次電池は、用途が拡大しており、使用環境についても、屋内に限らず屋外でも使用される場合もある。屋外では屋内に比べて温度や湿度の変化が大きく環境が過酷であり、絶縁部材が劣化して、かしめ固定された封口体の導通部の接触圧力が低下して、電池の内部抵抗が上昇することがある。特許文献1は、絶縁部材の劣化については考慮しておらず、導通部の接触圧力の低下について、未だ改善の余地がある。 In recent years, the applications of secondary batteries have expanded, and they are sometimes used not only indoors but also outdoors. Compared to indoors, the outdoor environment is harsher, with large changes in temperature and humidity, and the insulating material may deteriorate, causing a decrease in the contact pressure of the conductive part of the sealing body that is crimped and fixed, resulting in an increase in the internal resistance of the battery. Patent Document 1 does not take into account the deterioration of the insulating material, and there is still room for improvement regarding the decrease in contact pressure of the conductive part.

本開示の目的は、過酷な環境下でも内部抵抗の上昇を抑制することができる非水電解質二次電池を提供することである。 The objective of this disclosure is to provide a non-aqueous electrolyte secondary battery that can suppress an increase in internal resistance even in harsh environments.

本開示の一態様である非水電解質二次電池は、正極、負極、及びセパレータを含む電極体と、電極体を収容する有底円筒形状の外装体と、外装体の開口部を封止する封口体とを備える。封口体は、正極端子である第1弁キャップと、防爆弁と、第1弁キャップと防爆弁との間に挟持された中間部材と、防爆弁の底部と接しつつ、曲折した周縁部において絶縁部材を介して第1弁キャップ、中間部材、及び、防爆弁をかしめ固定した第2弁キャップとを含み、第1弁キャップと中間部材との間の接触圧力が、不均一であることを特徴とする。 The nonaqueous electrolyte secondary battery according to one aspect of the present disclosure includes an electrode assembly including a positive electrode, a negative electrode, and a separator, a cylindrical exterior body with a bottom that houses the electrode assembly, and a sealing body that seals the opening of the exterior body. The sealing body includes a first valve cap that is a positive electrode terminal, an explosion-proof valve, an intermediate member sandwiched between the first valve cap and the explosion-proof valve, and a second valve cap that is in contact with the bottom of the explosion-proof valve and that crimps and fixes the first valve cap, the intermediate member, and the explosion-proof valve via an insulating member at the bent peripheral portion, and is characterized in that the contact pressure between the first valve cap and the intermediate member is nonuniform.

本開示に係る非水電解質二次電池によれば、長期使用後にも、内部抵抗の上昇を抑制することができる。 The nonaqueous electrolyte secondary battery according to the present disclosure can suppress an increase in internal resistance even after long-term use.

実施形態の一例である円筒型の二次電池の軸方向断面図である。1 is an axial cross-sectional view of a cylindrical secondary battery according to an embodiment of the present invention; 図1に示した二次電池が備える封口体の断面図である。2 is a cross-sectional view of a sealing body provided in the secondary battery shown in FIG. 1 . (a)~(c)は、図2に示した封口体を構成する中間部材の正面図及び側面図であり、(d)は、従来の二次電池に用いられる中間部材の正面図及び側面図である。3A to 3C are front and side views of an intermediate member constituting the sealing body shown in FIG. 2, and FIG. 3D is a front and side view of an intermediate member used in a conventional secondary battery.

以下では、図面を参照しながら、本開示に係る円筒型の二次電池の実施形態の一例について詳細に説明する。以下の説明において、具体的な形状、材料、数値、方向等は、本発明の理解を容易にするための例示であって、円筒型の二次電池の仕様に合わせて適宜変更することができる。また、外装体は円筒型に限定されず、例えば角型等であってもよい。また、以下の説明において、複数の実施形態、変形例が含まれる場合、それらの特徴部分を適宜に組み合わせて用いることは当初から想定されている。 In the following, an example of an embodiment of a cylindrical secondary battery according to the present disclosure will be described in detail with reference to the drawings. In the following description, the specific shapes, materials, values, directions, etc. are examples for facilitating understanding of the present invention, and can be appropriately changed according to the specifications of the cylindrical secondary battery. In addition, the exterior body is not limited to a cylindrical shape, and may be, for example, a rectangular shape. In addition, in the following description, when multiple embodiments and modified examples are included, it is assumed from the beginning that the characteristic parts of these will be used in appropriate combination.

図1は、実施形態の一例である円筒型の二次電池10の軸方向断面図である。二次電池10は、電極体14と、電極体14を収容する外装体15と、外装体15の開口部を封止する封口体16とを備える。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。電極体14の最外周は、図1においてはセパレータ13であるが、負極12でもよい。また、電極体14は、巻回型に限定されず、積層型でもよい。以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。 Figure 1 is an axial cross-sectional view of a cylindrical secondary battery 10, which is an example of an embodiment. The secondary battery 10 includes an electrode body 14, an exterior body 15 that houses the electrode body 14, and a sealing body 16 that seals the opening of the exterior body 15. The electrode body 14 has a wound structure in which a positive electrode 11 and a negative electrode 12 are wound with a separator 13 interposed therebetween. The outermost periphery of the electrode body 14 is the separator 13 in Figure 1, but it may also be the negative electrode 12. In addition, the electrode body 14 is not limited to a wound type, and may be a laminated type. In the following, for convenience of explanation, the sealing body 16 side will be described as the "top" and the bottom side of the exterior body 15 as the "bottom".

正極11は、帯状の正極集電体と、正極集電体の両面に形成された正極合剤層とを有してもよい。正極集電体には、例えば、アルミニウムなどの金属の箔、当該金属を表層に配置したフィルム等が用いられる。正極合剤層は、少なくとも正極活物質を含み、導電剤、結着剤等を含んでもよい。正極活物質としては、Co等の遷移金属元素を含有するリチウム含有遷移金属酸化物が例示できる。正極11は、正極活物質等を溶剤に分散させた正極合剤スラリーを正極集電体の両面に塗布した後、正極合剤層を乾燥及び圧縮することにより作製できる。 The positive electrode 11 may have a strip-shaped positive electrode collector and a positive electrode mixture layer formed on both sides of the positive electrode collector. For example, a metal foil such as aluminum or a film with the metal disposed on the surface layer is used for the positive electrode collector. The positive electrode mixture layer contains at least a positive electrode active material, and may also contain a conductive agent, a binder, etc. An example of the positive electrode active material is a lithium-containing transition metal oxide containing a transition metal element such as Co. The positive electrode 11 can be produced by applying a positive electrode mixture slurry in which the positive electrode active material and the like are dispersed in a solvent to both sides of the positive electrode collector, and then drying and compressing the positive electrode mixture layer.

負極12は、帯状の負極集電体と、負極集電体の両面に形成された負極合剤層とを有してもよい。負極集電体には、例えば、銅などの金属の箔、当該金属を表層に配置したフィルム等が用いられる。負極合剤層は、少なくとも負極活物質を含み、結着剤等を含んでもよい。負極活物質としては、天然黒鉛、人造黒鉛等の炭素材料が例示できる。負極12は、負極活物質等を溶媒に分散させた負極合剤スラリーを負極集電体の両面に塗布した後、負極合剤層を乾燥及び圧縮することにより作製できる。 The negative electrode 12 may have a strip-shaped negative electrode collector and a negative electrode mixture layer formed on both sides of the negative electrode collector. For example, a metal foil such as copper or a film with the metal disposed on the surface layer is used for the negative electrode collector. The negative electrode mixture layer contains at least a negative electrode active material and may contain a binder, etc. Examples of the negative electrode active material include carbon materials such as natural graphite and artificial graphite. The negative electrode 12 can be produced by applying a negative electrode mixture slurry, in which the negative electrode active material, etc. is dispersed in a solvent, to both sides of the negative electrode collector, and then drying and compressing the negative electrode mixture layer.

外装体15には、電極体14以外に非水電解質(図示せず)が収容されている。非水電解質の非水溶媒(有機溶媒)としては、カーボネート類、ラクトン類、エーテル類、ケトン類、エステル類等を用いることができ、これらの溶媒は2種以上を混合して用いることができる。非水電解質の電解質塩としては、LiPF、LiBF、LiCFSO等及びこれらの混合物を用いることができる。非水溶媒に対する電解質塩の溶解量は、例えば0.5~2.0モル/Lとすることができる。 The exterior body 15 contains a non-aqueous electrolyte (not shown) in addition to the electrode body 14. As a non-aqueous solvent (organic solvent) for the non-aqueous electrolyte, carbonates, lactones, ethers, ketones, esters, etc. can be used, and two or more of these solvents can be mixed. As an electrolyte salt for the non-aqueous electrolyte, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , etc., and mixtures thereof can be used. The amount of electrolyte salt dissolved in the non-aqueous solvent can be, for example, 0.5 to 2.0 mol/L.

外装体15の開口部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極11の内周側端部に取り付けられた正極リード19は、絶縁板17の貫通孔を通って上方に延び、封口体16に溶接される。二次電池10では、封口体16が正極端子となる。他方、負極12の外周側端部に取り付けられた負極リード20は、絶縁板18の外側を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。 The opening of the exterior body 15 is closed with the sealing body 16, so that the inside of the secondary battery 10 is sealed. Insulating plates 17, 18 are provided above and below the electrode body 14. A positive electrode lead 19 attached to the inner peripheral end of the positive electrode 11 extends upward through a through hole in the insulating plate 17 and is welded to the sealing body 16. In the secondary battery 10, the sealing body 16 serves as the positive electrode terminal. On the other hand, a negative electrode lead 20 attached to the outer peripheral end of the negative electrode 12 passes outside the insulating plate 18, extends to the bottom side of the exterior body 15, and is welded to the inner surface of the bottom of the exterior body 15. In the secondary battery 10, the exterior body 15 serves as the negative electrode terminal.

外装体15は、有底の円筒型の金属製の外装缶である。外装体15と封口体16との間にはガスケット21が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部22を有する。溝入部22は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット21を介して封口体16を支持する。 The exterior body 15 is a cylindrical metal exterior can with a bottom. A gasket 21 is provided between the exterior body 15 and the sealing body 16 to ensure the internal sealing of the secondary battery 10. The exterior body 15 has a grooved portion 22 that supports the sealing body 16, formed, for example, by pressing the side portion from the outside. The grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior body 15, and its upper surface supports the sealing body 16 via the gasket 21.

次に、図2に示す封口体16の断面図を参照しながら、封口体16について詳説する。封口体16は、正極端子である第1弁キャップ30と、防爆弁32と、第1弁キャップ30と防爆弁32との間に挟持された中間部材34と、防爆弁32の底部と接しつつ、曲折した周縁部において絶縁部材36を介して第1弁キャップ30、中間部材34、及び、防爆弁32をかしめ固定した第2弁キャップ38とを含む。 Next, the sealing body 16 will be described in detail with reference to the cross-sectional view of the sealing body 16 shown in FIG. 2. The sealing body 16 includes a first valve cap 30, which is a positive terminal, an explosion-proof valve 32, an intermediate member 34 sandwiched between the first valve cap 30 and the explosion-proof valve 32, and a second valve cap 38 that is in contact with the bottom of the explosion-proof valve 32 and that crimps and fixes the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32 via an insulating member 36 at the bent peripheral portion.

封口体16を構成する各部材は、例えば、円板形状又はリング形状を有し、絶縁部材36を除く各部材は互いに電気的に接続されている。防爆弁32と第2弁キャップ38とは各々の中央部で互いに接続されており、例えば、相互に超音波溶接等で固定されている。防爆弁32と第1弁キャップ30とは、中間部材34を介して、各々の周縁部で互いに電気的に接続されている。 Each member constituting the sealing body 16 has, for example, a disk shape or a ring shape, and each member except for the insulating member 36 is electrically connected to each other. The explosion-proof valve 32 and the second valve cap 38 are connected to each other at their respective centers, and are fixed to each other, for example, by ultrasonic welding or the like. The explosion-proof valve 32 and the first valve cap 30 are electrically connected to each other at their respective peripheral edges via the intermediate member 34.

封口体16は、防爆機能を有する。異常発熱で二次電池10の内圧が上昇すると、防爆弁32が第1弁キャップ30側に膨れて第2弁キャップ38から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、防爆弁32が破断し、第1弁キャップ30の開口部30aからガスが排出される。 The sealing body 16 has an explosion-proof function. When the internal pressure of the secondary battery 10 rises due to abnormal heat generation, the explosion-proof valve 32 swells toward the first valve cap 30 and separates from the second valve cap 38, cutting off the electrical connection between them. If the internal pressure rises further, the explosion-proof valve 32 breaks and gas is discharged from the opening 30a of the first valve cap 30.

第1弁キャップ30の形状は、特に限定されないが、封口体16のうち第1弁キャップ30が正極端子となるため、図2に示すように上方に突出していてもよい。これにより、第1弁キャップ30と外部機器等との接続がしやすくなる。第1弁キャップ30の材質は、導通できれば特に限定されず、例えば、ニッケルめっきされた鉄、アルミニウム、又はアルミニウム合金であってもよい。 The shape of the first valve cap 30 is not particularly limited, but since the first valve cap 30 of the sealing body 16 serves as the positive terminal, it may protrude upward as shown in FIG. 2. This makes it easier to connect the first valve cap 30 to external devices, etc. The material of the first valve cap 30 is not particularly limited as long as it is conductive, and may be, for example, nickel-plated iron, aluminum, or an aluminum alloy.

防爆弁32は、例えば、薄板状の金属製の部材である。上記のように、二次電池10の内圧が上昇した際には、リング状の中間部材34の内周円を支点に上方に反転することで、第2弁キャップ38から離間する。防爆弁32は、図2に示すようにノッチ40を有していてもよい。ノッチ40は、二次電池10の内圧がさらに上昇した際に破断する起点となる。 The explosion-proof valve 32 is, for example, a thin plate-shaped metal member. As described above, when the internal pressure of the secondary battery 10 increases, the ring-shaped intermediate member 34 is inverted upward about the inner circumference of the ring-shaped intermediate member 34 as a fulcrum, and moves away from the second valve cap 38. The explosion-proof valve 32 may have a notch 40 as shown in FIG. 2. The notch 40 becomes the starting point for rupture when the internal pressure of the secondary battery 10 increases further.

第2弁キャップ38は、上記のように第1弁キャップ30、中間部材34、及び防爆弁32を外周から覆うので、これらの部材よりも大きい円板形状の部材であり、二次電池10の内圧を防爆弁32に伝えるため、貫通孔を有する。第2弁キャップ38の材質は、導通できれば特に限定されず、例えば、アルミニウム又はアルミニウム合金であってもよい。 The second valve cap 38 is a disk-shaped member larger than the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32, as described above, and has a through hole to transmit the internal pressure of the secondary battery 10 to the explosion-proof valve 32. The material of the second valve cap 38 is not particularly limited as long as it is conductive, and may be, for example, aluminum or an aluminum alloy.

絶縁部材36は、第2弁キャップ38と、第1弁キャップ30、中間部材34、及び防爆弁32とを、周縁部において電気的に隔離する。また、絶縁部材36は、弾性を有し、上下方向に圧縮されることで第1弁キャップ30、中間部材34、及び防爆弁32の間の密閉性が確保される。換言すれば、第1弁キャップ30、中間部材34、及び防爆弁32の周縁部を、絶縁部材36及び第2弁キャップ38で被覆し、上下方向に荷重をかけてかしめ固定することによって、圧縮された絶縁部材36からの反発力が第1弁キャップ30、中間部材34、及び防爆弁32に上下方向から加わり、一定以上の接触圧力を確保させることができる。絶縁部材36の材質は、上記の機能を果たせれば特に限定されず、例えば、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリエチレン(PE)、ポリブチレンテレフタレート(PBT)、パーフルオロアルコキシアルカン(PFA)、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)などを用いることができる。 The insulating member 36 electrically isolates the second valve cap 38 from the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32 at the periphery. The insulating member 36 is elastic, and is compressed in the vertical direction to ensure airtightness between the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32. In other words, by covering the periphery of the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32 with the insulating member 36 and the second valve cap 38 and applying a load in the vertical direction to crimp and fix them, the repulsive force from the compressed insulating member 36 is applied to the first valve cap 30, the intermediate member 34, and the explosion-proof valve 32 from the vertical direction, and a certain level of contact pressure can be ensured. The material of the insulating member 36 is not particularly limited as long as it fulfills the above-mentioned functions, and examples that can be used include polypropylene (PP), polyphenylene sulfide (PPS), polyethylene (PE), polybutylene terephthalate (PBT), perfluoroalkoxyalkane (PFA), polytetrafluoroethylene (PTFE), polyamide (PA), etc.

次に、図3を参照しながら、中間部材34について説明する。図3(a)~(c)は、本開示に係る封口体16を構成する中間部材34の正面図及び側面図であり、図3(d)は、従来の二次電池10に用いられる中間部材34の正面図及び側面図である。 Next, the intermediate member 34 will be described with reference to FIG. 3. FIGS. 3(a) to 3(c) are front and side views of the intermediate member 34 constituting the sealing body 16 according to the present disclosure, and FIG. 3(d) is a front and side view of the intermediate member 34 used in a conventional secondary battery 10.

図3(a)の中間部材34aは、リング形状であり、厚さが不均一である。左側半分の厚みがt1であり、右側半分の厚みがt1よりも厚いt2である。厚みの異なる部分を有する中間部材34aを用いて封口体16を構成することで、第1弁キャップ30と中間部材34aとの間の接触圧力が、不均一になり、所謂片当たりした状態となる。これにより、長期の使用で絶縁部材36の弾性力が低下したとしても、中間部材34aと第1弁キャップ30との間において、片当たりによって、少なくとも他の部分に比べて強い圧力で接触している部分では一定以上の接触圧力を保持することができるので、内部抵抗の上昇抑制が可能となる。同様に、防爆弁32と中間部材34aとの間の接触圧力が、不均一になっていることが好ましい。 3A is ring-shaped and has an uneven thickness. The thickness of the left half is t1, and the thickness of the right half is t2, which is thicker than t1. By forming the sealing body 16 using the intermediate member 34a having parts of different thicknesses, the contact pressure between the first valve cap 30 and the intermediate member 34a becomes uneven, resulting in a so-called one-sided contact state. As a result, even if the elastic force of the insulating member 36 decreases with long-term use, the contact pressure between the intermediate member 34a and the first valve cap 30 can be maintained at least in the part that is in contact with the intermediate member 34a at a stronger pressure than other parts due to the one-sided contact, so that an increase in internal resistance can be suppressed. Similarly, it is preferable that the contact pressure between the explosion-proof valve 32 and the intermediate member 34a is uneven.

図3(a)において、厚みt1は、例えば、0.05mm~1.0mmであり、好ましくは、0.1mm~0.5mmである。厚みt2は、例えば、0.1mm~1.5mmであり、好ましくは、0.2mm~0.6mmであり、厚みt2と厚みt1との差は、例えば、0.05mm~0.5mmであり、好ましくは、0.05mm~0.2mmである。なお、中間部材34aにおいて、厚みが大きい部分と厚みが小さい部分の面積比は、1:1には限られず、1:3~3:1であることが好ましい。 In FIG. 3(a), thickness t1 is, for example, 0.05 mm to 1.0 mm, and preferably 0.1 mm to 0.5 mm. Thickness t2 is, for example, 0.1 mm to 1.5 mm, and preferably 0.2 mm to 0.6 mm, and the difference between thickness t2 and thickness t1 is, for example, 0.05 mm to 0.5 mm, and preferably 0.05 mm to 0.2 mm. Note that in intermediate member 34a, the area ratio of the thicker portion to the thinner portion is not limited to 1:1, and is preferably 1:3 to 3:1.

図3(b)の中間部材34bは、らせん形状を有し、所謂スプリングワッシャの形状を有する。一端部の上面と他端部の上面との高さの差t3は、例えば、0.3mm~1.0mmであり、好ましくは、0.5mm~0.9mmである。また、中間部材34bの厚みは、例えば、0.05mm~1.0mmであり、好ましくは、0.1mm~0.5mmであり、一定であってもよい。らせん形状を有する中間部材34bを用いて封口体16を構成することで、中間部材34bに局所的に弾性力が働くため、第1弁キャップ30と中間部材34bとの間の接触圧力が、不均一になり、所謂片当たりした状態となる。これにより、長期の使用で絶縁部材36の弾性力が低下したとしても、中間部材34bと第1弁キャップ30との間において、片当たりによって、少なくとも他の部分に比べて強い圧力で接触している部分では一定以上の接触圧力を保持することができるので、内部抵抗の上昇抑制が可能となる。 The intermediate member 34b in FIG. 3(b) has a spiral shape, and has a so-called spring washer shape. The height difference t3 between the upper surface of one end and the upper surface of the other end is, for example, 0.3 mm to 1.0 mm, and preferably 0.5 mm to 0.9 mm. The thickness of the intermediate member 34b is, for example, 0.05 mm to 1.0 mm, and preferably 0.1 mm to 0.5 mm, and may be constant. By forming the sealing body 16 using the intermediate member 34b having a spiral shape, an elastic force acts locally on the intermediate member 34b, so that the contact pressure between the first valve cap 30 and the intermediate member 34b becomes uneven, resulting in a so-called one-sided contact state. As a result, even if the elastic force of the insulating member 36 decreases with long-term use, a certain level of contact pressure can be maintained at least in the part between the intermediate member 34b and the first valve cap 30 that is in contact with the intermediate member 34b at a stronger pressure than other parts due to the one-sided contact, so that an increase in internal resistance can be suppressed.

図3(c)の中間部材34cは、リング形状であり、外周縁から内周縁に向けて傾斜を有する。外周縁の上面と内周縁の上面との高さの差t4は、例えば、0.1mm~0.7mmであり、好ましくは、0.3mm~0.5mmである。また、中間部材34cの厚みは、例えば、0.05mm~1.0mmであり、好ましくは、0.1mm~0.5mmであり、一定であってもよい。外周縁から内周縁に向けて傾斜を有する中間部材34cを用いて封口体16を構成することで、中間部材34cに局所的に弾性力が働くため、第1弁キャップ30と中間部材34cとの間の接触圧力が、不均一になり、所謂片当たりした状態となる。これにより、長期の使用で絶縁部材36の弾性力が低下したとしても、中間部材34cと第1弁キャップ30との間において、片当たりによって、少なくとも他の部分に比べて強い圧力で接触している部分では一定以上の接触圧力を保持することができるので、内部抵抗の上昇抑制が可能となる。 The intermediate member 34c in FIG. 3(c) is ring-shaped and has a slope from the outer periphery to the inner periphery. The height difference t4 between the upper surface of the outer periphery and the upper surface of the inner periphery is, for example, 0.1 mm to 0.7 mm, preferably 0.3 mm to 0.5 mm. The thickness of the intermediate member 34c is, for example, 0.05 mm to 1.0 mm, preferably 0.1 mm to 0.5 mm, and may be constant. By forming the sealing body 16 using the intermediate member 34c having a slope from the outer periphery to the inner periphery, an elastic force acts locally on the intermediate member 34c, so that the contact pressure between the first valve cap 30 and the intermediate member 34c becomes uneven, resulting in a so-called one-sided contact state. As a result, even if the elastic force of the insulating member 36 decreases with long-term use, the contact pressure between the intermediate member 34c and the first valve cap 30 can be maintained at least in the part that is in contact with the intermediate member 34c at a higher pressure than other parts due to the one-sided contact, so that an increase in internal resistance can be suppressed.

図3(d)の中間部材34dは、リング形状を有し、通常のワッシャの形状を有する。中間部材34dの厚みは、0.3mm程度で一定である。中間部材34dを用いて封口体16を構成することで、中間部材34dが第1弁キャップ30と防爆弁32との間で平行に近い状態でかしめられるため、第1弁キャップ30と中間部材34dとの間の接触圧力が均一になる。長期の使用で絶縁部材36の弾性力が低下すると、中間部材34bと第1弁キャップ30との間の接触圧力は、接触面において一様に低下するので、二次電池10の内部抵抗が上昇する恐れがある。 The intermediate member 34d in FIG. 3(d) has a ring shape and has the shape of a normal washer. The thickness of the intermediate member 34d is constant at about 0.3 mm. By forming the sealing body 16 using the intermediate member 34d, the intermediate member 34d is crimped between the first valve cap 30 and the explosion-proof valve 32 in a nearly parallel state, so that the contact pressure between the first valve cap 30 and the intermediate member 34d becomes uniform. If the elastic force of the insulating member 36 decreases due to long-term use, the contact pressure between the intermediate member 34b and the first valve cap 30 decreases uniformly on the contact surface, which may increase the internal resistance of the secondary battery 10.

以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。 The present disclosure will be further explained below with reference to examples, but the present disclosure is not limited to these examples.

<実施例1>
[正極の作製]
正極活物質として、LiCoOで表されるコバルト酸リチウムを用いた。この正極活物質を100質量部と、導電剤としてのアセチレンブラック(AB)を1質量部と、結着剤としてのポリフッ化ビニリデン(PVDF)を1質量部とを混合し、さらに、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。次に、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、乾燥機で乾燥させた後、所定の電極サイズに切り取り、ローラを用いて圧延して帯状の正極を得た。また、正極の長さ方向の一端部に活物質が形成されていない無地部を形成し、その無地部にアルミニウムの正極リードを超音波溶接で固定した。
Example 1
[Preparation of positive electrode]
Lithium cobalt oxide represented by LiCoO2 was used as the positive electrode active material. 100 parts by mass of this positive electrode active material, 1 part by mass of acetylene black (AB) as a conductive agent, and 1 part by mass of polyvinylidene fluoride (PVDF) as a binder were mixed, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) was added to prepare a positive electrode mixture slurry. Next, this positive electrode mixture slurry was applied to both sides of a positive electrode collector made of aluminum foil, dried in a dryer, cut into a predetermined electrode size, and rolled using a roller to obtain a band-shaped positive electrode. In addition, a plain part where no active material was formed was formed at one end in the longitudinal direction of the positive electrode, and an aluminum positive electrode lead was fixed to the plain part by ultrasonic welding.

[負極の作製]
負極活物質として、天然黒鉛の粉末を用いた。この負極活物質100質量部と、結着剤としてのスチレン-ブタジエンゴム(SBR)1質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1質量部とを混合し、さらに、水を適量加えて、負極合剤スラリーを調製した。次に、この負極合剤スラリーを、銅箔からなる負極集電体の両面に塗布し、乾燥機で乾燥させた後、所定の電極サイズに切り取り、ローラを用いて圧延して帯状の正極を得た。また、負極の長さ方向の一端部に活物質が形成されていない無地部を形成し、その無地部にニッケルの負極リードを超音波溶接で固定した。
[Preparation of negative electrode]
As the negative electrode active material, powder of natural graphite was used. 100 parts by mass of this negative electrode active material, 1 part by mass of styrene-butadiene rubber (SBR) as a binder, and 1 part by mass of carboxymethyl cellulose (CMC) as a thickener were mixed, and an appropriate amount of water was added to prepare a negative electrode mixture slurry. Next, this negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of copper foil, dried in a dryer, cut into a predetermined electrode size, and rolled using a roller to obtain a band-shaped positive electrode. In addition, a plain part where no active material was formed was formed at one end in the length direction of the negative electrode, and a nickel negative electrode lead was fixed to the plain part by ultrasonic welding.

[電極体の作製]
作製された正極及び負極を、セパレータを介して渦巻状に巻回することにより、巻回型の電極体を作製した。その際、正極の正極リードが接続された一端部が内周側(巻き始め側)に位置し、負極の負極リードが接続された一端部が外周側(巻き終わり側)に位置するようにした。セパレータは、ポリエチレン製の微多孔膜の片面にポリアミドとアルミナのフィラーを分散させた耐熱層が形成されたものを用いた。
[Preparation of electrode body]
The prepared positive and negative electrodes were spirally wound with a separator between them to prepare a wound electrode body. At this time, one end of the positive electrode connected to the positive electrode lead was located on the inner periphery side (the start of winding side), and one end of the negative electrode connected to the negative electrode lead was located on the outer periphery side (the end of winding side). The separator used was a polyethylene microporous film with a heat-resistant layer formed on one side in which polyamide and alumina fillers were dispersed.

[非水電解液の調製]
エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジエチルカーボネート(DEC)とを、体積比でEC:EMC:DMC=3:3:4となるように混合した混合溶媒に、LiPFを1モル/Lとなるように添加し非水電解液を調製した。
[Preparation of non-aqueous electrolyte]
LiPF6 was added to a mixed solvent obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) in a volume ratio of EC:EMC:DMC=3:3:4 to give a concentration of 1 mol/L to prepare a nonaqueous electrolyte solution.

[中間部材の作製]
Ni-Fe-Niの3層クラッド板を、中心線を境界にして一方の厚みが0.3mmで、他方の厚み0.4mmになるようにプレス加工した。直径がクラッド板の中心線を通るようにリング状に打ち抜き加工を行い、中間部材を作製した。当該中間部材は、外形が図3(a)に示すものと同様であり、外径がφ15mm、内径がφ6.3mmであった。
[Preparation of intermediate member]
A three-layer clad plate of Ni-Fe-Ni was pressed so that the thickness of one side was 0.3 mm and the thickness of the other side was 0.4 mm, with the center line as the boundary. A ring shape was punched out so that the diameter passed through the center line of the clad plate, and an intermediate part was produced. The outer shape of the intermediate part was the same as that shown in Figure 3(a), with an outer diameter of φ15 mm and an inner diameter of φ6.3 mm.

[封口体の作製]
第2弁キャップの上に、絶縁部材と、防爆弁とを積層し、防爆弁の底部と第2弁キャップとを超音波で溶接した。さらに、防爆弁の上に、上記の中間部材と、第1弁キャップとを積層した後に、第2弁キャップの周縁部を曲折し、絶縁部材を介して第1弁キャップ、中間部材、及び、防爆弁をかしめ固定することで封口体を作製した。
[Preparation of sealing body]
The insulating member and the explosion-proof valve were laminated on the second valve cap, and the bottom of the explosion-proof valve and the second valve cap were ultrasonically welded. Furthermore, the intermediate member and the first valve cap were laminated on the explosion-proof valve, and then the peripheral portion of the second valve cap was bent, and the first valve cap, the intermediate member, and the explosion-proof valve were crimped and fixed via the insulating member to produce a sealing body.

[二次電池の作製]
直径φ18mm、高さ65mmの有底円筒形状の外装体を準備した。上記の電極体の上下に絶縁板をそれぞれ配置し、負極リードを外装体の底部に溶接して、正極リードを上記の封口体に溶接してから、電極体を外装体に収容した。その後、外装体の内部に非水電解液を注入した。さらに、外装体の開口部を、ガスケットを介して封口体で封口して、円筒型の非水電解質二次電池を作製した。作製した二次電池は、公称電圧が4.2Vで、定格容量が1500mAhであった。このようにして、二次電池を5個作製した。
[Preparation of secondary battery]
A cylindrical exterior body with a diameter of φ18 mm and a height of 65 mm was prepared. Insulating plates were placed on the top and bottom of the electrode body, respectively, the negative electrode lead was welded to the bottom of the exterior body, and the positive electrode lead was welded to the sealing body, and then the electrode body was housed in the exterior body. Then, a nonaqueous electrolyte was injected into the interior of the exterior body. Furthermore, the opening of the exterior body was sealed with a sealing body via a gasket to prepare a cylindrical nonaqueous electrolyte secondary battery. The secondary battery prepared had a nominal voltage of 4.2 V and a rated capacity of 1500 mAh. In this manner, five secondary batteries were prepared.

[耐久性の評価]
上記5個の二次電池の全てについて、下記のヒートショックサイクル試験を行なった。ヒートショックサイクル試験前後で、低抵抗計(測定周波数1kHzに設定した交流4端子法)を用いて、二次電池の内部抵抗を測定した。5個の二次電池の内部抵抗の平均値を算出して耐久性を評価した。
<ヒートショックサイクル試験>
二次電池を、-30℃で30分保持し、さらに70℃で30分保持するヒートショック試験を1サイクルとした。本サイクル試験を500回行った後、二次電池を室温に戻して、500サイクル後の内部抵抗を測定した。その後、さらに、本サイクルを500回行った後、二次電池を室温に戻して、1000サイクル後の内部抵抗を測定した。
[Evaluation of durability]
The following heat shock cycle test was performed on all of the five secondary batteries. The internal resistance of the secondary batteries was measured before and after the heat shock cycle test using a low resistance meter (AC four-terminal method set at a measurement frequency of 1 kHz). The average value of the internal resistance of the five secondary batteries was calculated to evaluate the durability.
<Heat shock cycle test>
The secondary battery was held at -30°C for 30 minutes and then held at 70°C for 30 minutes, which constituted one cycle of the heat shock test. After this cycle test was performed 500 times, the secondary battery was returned to room temperature, and the internal resistance after 500 cycles was measured. After that, this cycle was performed another 500 times, and the secondary battery was returned to room temperature, and the internal resistance after 1000 cycles was measured.

<実施例2>
中間部材の作製において、プレス加工した厚み0.3mmのNi-Fe-Niの3層クラッド板を用いて、外径がφ15mmで、内径がφ6.3mmのリング状試料を打ち抜き加工により作製し、さらに、このリング状試料に2mm幅の切り込みを1か所入れた後に一端部の上面と他端部の上面との高さの差が0.7mmになるように曲げ成形して中間部材を作製したこと以外は、実施例1と同様にして二次電池を作製し、評価を行った。なお、封口体作製時のかしめ荷重は、実施例1と同じであった。また、当該中間部材は、外形が図3(b)に示すものと同様であった。
Example 2
In the preparation of the intermediate member, a ring-shaped sample with an outer diameter of φ15 mm and an inner diameter of φ6.3 mm was prepared by punching using a pressed Ni-Fe-Ni three-layer clad plate with a thickness of 0.3 mm, and then this ring-shaped sample was cut in one place with a width of 2 mm, and then bent so that the difference in height between the upper surface of one end and the upper surface of the other end was 0.7 mm to prepare the intermediate member. Except for this, a secondary battery was prepared and evaluated in the same manner as in Example 1. The crimping load when preparing the sealing body was the same as in Example 1. The outer shape of the intermediate member was the same as that shown in FIG. 3(b).

<実施例3>
中間部材の作製において、プレス加工した厚み0.3mmのNi-Fe-Niの3層クラッド板を用いて、外径がφ15mmで、内径がφ6.3mmのリング状試料を打ち抜き加工により作製し、さらに、このリング状試料の中心部を先端直径φ10mmの球形パンチでプレスして外周縁の上面と内周縁の上面との高さの差が0.4mmのお椀形状になるようにして中間部材を作製したこと以外は、実施例1と同様にして二次電池を作製し、評価を行った。なお、封口体作製時のかしめ荷重は、実施例1と同じであった。また、当該中間部材は、外形が図3(c)に示すものと同様であった。
Example 3
In the preparation of the intermediate member, a ring-shaped sample with an outer diameter of φ15 mm and an inner diameter of φ6.3 mm was prepared by punching out a pressed Ni-Fe-Ni three-layer clad plate with a thickness of 0.3 mm, and the center of the ring-shaped sample was pressed with a spherical punch with a tip diameter of φ10 mm to prepare an intermediate member in a bowl shape with a height difference of 0.4 mm between the upper surface of the outer periphery and the upper surface of the inner periphery. Except for this, a secondary battery was prepared and evaluated in the same manner as in Example 1. The crimping load during the preparation of the sealing body was the same as in Example 1. The outer shape of the intermediate member was the same as that shown in FIG. 3(c).

<比較例>
中間部材の作製において、プレス加工した厚み0.3mmのNi-Fe-Niの3層クラッド板を用いて、外径がφ15mmで、内径がφ6.3mmのリング状に打ち抜き加工して中間部材を作製したこと以外は、実施例1と同様にして二次電池を作製し、評価を行った。なお、封口体作製時のかしめ荷重は、実施例1と同じであった。また、当該中間部材は、外形が図3(d)に示すものと同様であった。
Comparative Example
A secondary battery was produced and evaluated in the same manner as in Example 1, except that the intermediate member was produced by punching a pressed Ni-Fe-Ni three-layer clad plate having a thickness of 0.3 mm into a ring shape having an outer diameter of φ15 mm and an inner diameter of φ6.3 mm. The crimping load during the production of the sealing body was the same as in Example 1. The outer shape of the intermediate member was the same as that shown in FIG. 3(d).

実施例及び比較例における、ヒートショックサイクル試験後の電池の内部抵抗の測定結果を表1に示す。実施例及び比較例の電池の各々おいて、ヒートショックサイクル試験前の電池の内部抵抗の平均値を100として、500サイクル後及び1000サイクル後の内部抵抗の平均値を相対値で示した。なお、封口体作製時のかしめ荷重は、実施例1と同じであった。また、実施例1~3及び比較例の初期の電池の内部抵抗は同じ値であった。 Table 1 shows the measurement results of the internal resistance of the batteries after the heat shock cycle test in the examples and comparative examples. For each of the batteries in the examples and comparative examples, the average internal resistance of the battery before the heat shock cycle test was set to 100, and the average internal resistance after 500 cycles and 1000 cycles was shown as a relative value. The crimping load when making the sealing body was the same as in Example 1. The initial internal resistance of the batteries in Examples 1 to 3 and the comparative example was the same.

Figure 0007506506000001
Figure 0007506506000001

実施例1~3では、比較例に比べて電池の内部抵抗の上昇を大幅に抑制することができた。実施例及び比較例のいずれの電池においても、絶縁部材の弾性は同程度低下していると考えられるが、実施例の電池では、中間部材の形状の効果により、金属部品間で接触圧力が高い状態を維持できており、電池の内部抵抗の上昇を抑制することができたと推察される。 In Examples 1 to 3, the increase in the internal resistance of the battery was significantly suppressed compared to the Comparative Example. It is believed that the elasticity of the insulating member is reduced to the same extent in both the Example and Comparative Example batteries, but in the Example battery, the effect of the shape of the intermediate member allows the contact pressure between the metal parts to be maintained at a high level, which is presumably why the increase in the internal resistance of the battery was suppressed.

10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 ガスケット、22 溝入部、30 第1弁キャップ、32 防爆弁、34 中間部材、36 絶縁部材、38 第2弁キャップ 10 Secondary battery, 11 Positive electrode, 12 Negative electrode, 13 Separator, 14 Electrode body, 15 Exterior body, 16 Sealing body, 17, 18 Insulating plate, 19 Positive electrode lead, 20 Negative electrode lead, 21 Gasket, 22 Grooved portion, 30 First valve cap, 32 Explosion-proof valve, 34 Intermediate member, 36 Insulating member, 38 Second valve cap

Claims (4)

正極、負極、及びセパレータを含む電極体と、前記電極体を収容する有底円筒形状の外装体と、前記外装体の開口部を封止する封口体とを備える非水電解質二次電池であって、
前記封口体は、
正極端子である第1弁キャップと、
防爆弁と、
前記第1弁キャップと前記防爆弁との間に挟持された中間部材と、
前記防爆弁の底部と接しつつ、曲折した周縁部において絶縁部材を介して前記第1弁キャップ、前記中間部材、及び、前記防爆弁をかしめ固定した第2弁キャップとを含み、
前記中間部材は、リング形状を有し、厚さが不均一であり、
前記第1弁キャップと前記中間部材との間の接触圧力が、不均一である、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising: an electrode assembly including a positive electrode, a negative electrode, and a separator; a cylindrical exterior body having a bottom and configured to house the electrode assembly; and a sealing body that seals an opening of the exterior body,
The sealing body is
A first valve cap which is a positive terminal;
Explosion-proof valve;
an intermediate member sandwiched between the first valve cap and the explosion-proof valve;
a second valve cap that is in contact with the bottom of the explosion-proof valve and that is crimped and fixed to the first valve cap, the intermediate member, and the explosion-proof valve via an insulating member at a bent peripheral portion;
the intermediate member has a ring shape and a non-uniform thickness;
a contact pressure between the first valve cap and the intermediate member being non-uniform;
前記防爆弁と前記中間部材との間の接触圧力が、不均一である、請求項1に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 1, wherein the contact pressure between the explosion-proof valve and the intermediate member is non-uniform. 正極、負極、及びセパレータを含む電極体と、前記電極体を収容する有底円筒形状の外装体と、前記外装体の開口部を封止する封口体とを備える非水電解質二次電池であって、
前記封口体は、
正極端子である第1弁キャップと、
防爆弁と、
前記第1弁キャップと前記防爆弁との間に挟持された中間部材と、
前記防爆弁の底部と接しつつ、曲折した周縁部において絶縁部材を介して前記第1弁キャップ、前記中間部材、及び、前記防爆弁をかしめ固定した第2弁キャップとを含み、
前記中間部材は、らせん形状を有
前記第1弁キャップと前記中間部材との間の接触圧力が、不均一である、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising: an electrode assembly including a positive electrode, a negative electrode, and a separator; a cylindrical exterior body having a bottom and configured to house the electrode assembly; and a sealing body that seals an opening of the exterior body,
The sealing body is
A first valve cap which is a positive terminal;
Explosion-proof valve;
an intermediate member sandwiched between the first valve cap and the explosion-proof valve;
a second valve cap that is in contact with the bottom of the explosion-proof valve and that is crimped and fixed to the first valve cap, the intermediate member, and the explosion-proof valve via an insulating member at a bent peripheral portion;
the intermediate member has a helical shape;
a contact pressure between the first valve cap and the intermediate member being non-uniform;
正極、負極、及びセパレータを含む電極体と、前記電極体を収容する有底円筒形状の外装体と、前記外装体の開口部を封止する封口体とを備える非水電解質二次電池であって、
前記封口体は、
正極端子である第1弁キャップと、
防爆弁と、
前記第1弁キャップと前記防爆弁との間に挟持された中間部材と、
前記防爆弁の底部と接しつつ、曲折した周縁部において絶縁部材を介して前記第1弁キャップ、前記中間部材、及び、前記防爆弁をかしめ固定した第2弁キャップとを含み、
前記中間部材は、リング形状を有し、外周縁から内周縁に向けて傾斜を有
前記第1弁キャップと前記中間部材との間の接触圧力が、不均一である、非水電解質二次電池。
A nonaqueous electrolyte secondary battery comprising: an electrode assembly including a positive electrode, a negative electrode, and a separator; a cylindrical exterior body having a bottom and configured to house the electrode assembly; and a sealing body that seals an opening of the exterior body,
The sealing body is
A first valve cap which is a positive terminal;
Explosion-proof valve;
an intermediate member sandwiched between the first valve cap and the explosion-proof valve;
a second valve cap that is in contact with the bottom of the explosion-proof valve and that is crimped and fixed to the first valve cap, the intermediate member, and the explosion-proof valve via an insulating member at a bent peripheral portion;
the intermediate member has a ring shape and is inclined from an outer circumferential edge toward an inner circumferential edge,
a contact pressure between the first valve cap and the intermediate member being non-uniform;
JP2020060003A 2020-03-30 2020-03-30 Non-aqueous electrolyte secondary battery Active JP7506506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020060003A JP7506506B2 (en) 2020-03-30 2020-03-30 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020060003A JP7506506B2 (en) 2020-03-30 2020-03-30 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2021158075A JP2021158075A (en) 2021-10-07
JP7506506B2 true JP7506506B2 (en) 2024-06-26

Family

ID=77918711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020060003A Active JP7506506B2 (en) 2020-03-30 2020-03-30 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP7506506B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011980A (en) 1998-06-19 2000-01-14 Matsushita Electric Ind Co Ltd Sealed battery
WO2015125413A1 (en) 2014-02-20 2015-08-27 三洋電機株式会社 Battery case and battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011980A (en) 1998-06-19 2000-01-14 Matsushita Electric Ind Co Ltd Sealed battery
WO2015125413A1 (en) 2014-02-20 2015-08-27 三洋電機株式会社 Battery case and battery

Also Published As

Publication number Publication date
JP2021158075A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
US9564654B2 (en) Rechargeable lithium ion button cell battery
JP2003317805A (en) Cylindrical lithium ion secondary cell, and manufacturing method of the same
JP6983867B2 (en) Non-aqueous electrolyte secondary battery
JP6928918B2 (en) Rechargeable battery
JP7317823B2 (en) Non-aqueous electrolyte secondary battery
WO2019244818A1 (en) Nonaqueous electrolyte secondary battery
JP7191845B2 (en) cylindrical battery
EP3291329A1 (en) Rectangular secondary battery
JP2000243372A (en) Secondary battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP7506506B2 (en) Non-aqueous electrolyte secondary battery
JP2008192524A (en) Cylindrical nonaqueous electrolyte solution primary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JPWO2019235259A1 (en) Non-aqueous electrolyte secondary battery
EP4350798A1 (en) Non-aqueous electrolyte secondary battery
JP3414729B1 (en) Lithium ion secondary battery
JP2022153675A (en) Nonaqueous electrolyte secondary battery
WO2024225016A1 (en) Cylindrical secondary battery
CN115039254B (en) Nonaqueous electrolyte secondary battery
WO2018079292A1 (en) Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20240154221A1 (en) Cylindrical battery
WO2024181051A1 (en) Cylindrical battery
WO2024111410A1 (en) Cylindrical non-aqueous electrolyte secondary battery
US20230073596A1 (en) Non-aqueous electrolytic secondary battery
WO2021039481A1 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240614