[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7503929B2 - Biodegradable laminated paper and packaging materials - Google Patents

Biodegradable laminated paper and packaging materials Download PDF

Info

Publication number
JP7503929B2
JP7503929B2 JP2020062754A JP2020062754A JP7503929B2 JP 7503929 B2 JP7503929 B2 JP 7503929B2 JP 2020062754 A JP2020062754 A JP 2020062754A JP 2020062754 A JP2020062754 A JP 2020062754A JP 7503929 B2 JP7503929 B2 JP 7503929B2
Authority
JP
Japan
Prior art keywords
biodegradable
layer
resin
oxygen barrier
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020062754A
Other languages
Japanese (ja)
Other versions
JP2021160155A (en
Inventor
敦史 望月
慎 林
周平 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Achilles Corp
Original Assignee
Achilles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Achilles Corp filed Critical Achilles Corp
Priority to JP2020062754A priority Critical patent/JP7503929B2/en
Publication of JP2021160155A publication Critical patent/JP2021160155A/en
Application granted granted Critical
Publication of JP7503929B2 publication Critical patent/JP7503929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、紙と生分解性樹脂層とを積層してなる生分解性ラミネート紙に関する。 The present invention relates to biodegradable laminated paper that is made by laminating paper and a biodegradable resin layer.

近年、プラスチックごみによる海洋汚染などの問題に注目が集まっている。プラスチック材料の多くは高機能と長期安定性を目的に開発されたため、自然環境下では容易に分解されず、プラスチック材料の廃棄物の増大が大きな社会問題となっており、環境配慮型の商品開発が加速している。プラスチック廃棄問題の対策として、例えば、環境負荷の少ない材料に替えることでプラスチック材料の使用量を減らしプラスチック廃棄量を軽減する「脱プラ」の取り組みが行われている。環境負荷の少ない材料とは、紙などの天然素材を加工した材料、廃棄後にプラスチック材料自体が加水分解と微生物によって二酸化炭素と水といった無害な成分に分解される生分解性樹脂、石油を用いない生物由来のバイオマスプラスチックなどが知られている。その中でも、原材料が再生でき廃棄後に分解可能な点から紙製品が注目されている。 In recent years, attention has been focused on problems such as marine pollution caused by plastic waste. Since most plastic materials were developed with the aim of high functionality and long-term stability, they do not easily decompose in the natural environment. The increase in plastic waste has become a major social issue, and the development of environmentally friendly products is accelerating. As a measure to address the plastic waste problem, for example, "plastic-free" efforts are being made to reduce the amount of plastic materials used and the amount of plastic waste by switching to materials that have a lower environmental impact. Known examples of materials with a lower environmental impact include materials made from processed natural materials such as paper, biodegradable resins in which the plastic material itself is hydrolyzed and decomposed into harmless components such as carbon dioxide and water by microorganisms after disposal, and biomass plastics derived from living organisms that do not use petroleum. Among these, paper products have attracted attention because the raw materials can be recycled and can be decomposed after disposal.

紙製品の中で食品をはじめとした様々な製品を包装する容器などの包装材において、防湿性、耐油性、ヒートシール性(熱接着性ともいう)等といった用途に応じた性能を付与する狙いから、熱可塑性樹脂と紙とを貼り合せたラミネート紙が用いられている。このラミネート紙に使用される熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリエチレンテレフタレート(PET)などのポリエステル系樹脂等が知られている。包装材にはヒートシール性を必要とする用途が多く、例えば、特許文献1には、表面層としてヒートシール性を有する熱可塑性樹脂を用いた包装用の積層体が開示されている。 In packaging materials such as containers for packaging various products including food, among other paper products, laminated paper made by bonding thermoplastic resin and paper is used with the aim of imparting performance according to the application, such as moisture resistance, oil resistance, heat sealability (also called thermal adhesion), etc. Known thermoplastic resins used in this laminated paper include polyolefin resins such as polyethylene and polypropylene, and polyester resins such as polyethylene terephthalate (PET). There are many applications for packaging materials that require heat sealability, and for example, Patent Document 1 discloses a packaging laminate that uses a thermoplastic resin with heat sealability as a surface layer.

一方で、熱可塑性樹脂として生分解性樹脂を使用したラミネート紙が知られている。生分解性樹脂としては、例えば、ポリ乳酸(PLA)を中心に、脂肪族ポリエステル系樹脂、脂肪族芳香族ポリエステル系樹脂、ポリビニルアルコール等の合成化合物、キトサン、セルロース、澱粉、酢酸セルロース、澱粉などの天然物を変性したもの、バクテリアやカビ、藻類などの微生物が代謝の過程で体内に蓄積したポリエステルを利用したもの等が知られている。
しかしながら、ポリ乳酸等の生分解性樹脂を包装材に用いた場合、ヒートシール性を有するが、ポリエチレン等のポリオレフィン系やポリエステル系に比べ酸素の透過を抑制する性能、すなわち酸素バリア性が低く、酸素の存在下で劣化する製品への包装材には適さず、使用用途が制限されるものであった。そこで、生分解性でありながら、酸素バリア性とヒートシール性とを兼ね備えた包装材が求められていた。
On the other hand, laminated paper using biodegradable resin as thermoplastic resin is known. Examples of biodegradable resin include synthetic compounds such as polylactic acid (PLA), aliphatic polyester resin, aliphatic aromatic polyester resin, polyvinyl alcohol, etc., modified natural products such as chitosan, cellulose, starch, cellulose acetate, starch, etc., polyesters accumulated in the bodies of microorganisms such as bacteria, mold, and algae during the metabolic process, etc.
However, when biodegradable resins such as polylactic acid are used as packaging materials, they have heat sealability, but have poor oxygen barrier properties (i.e., poor oxygen permeability) compared to polyolefins such as polyethylene and polyesters, and are not suitable for packaging products that deteriorate in the presence of oxygen, limiting their applications. Thus, there has been a demand for a packaging material that is biodegradable and has both oxygen barrier properties and heat sealability.

酸素バリア性を付与したラミネート紙としては、例えば、特許文献2には、紙コア層上にポリビニルアルコールと微小な層状珪酸塩からなる酸素バリア層と熱可塑性樹脂層とを積層させた食品用積層包装材が提案されている。 As an example of a laminated paper with oxygen barrier properties, Patent Document 2 proposes a laminated food packaging material in which an oxygen barrier layer made of polyvinyl alcohol and fine layered silicate and a thermoplastic resin layer are laminated on a paper core layer.

特許文献2に開示された食品用積層包装材は、酸素バリア層を備えており、生分解性と酸素バリア性に優れた包装材である。しかしながら、酸素バリア層にはポリビニルアルコールを用いているが、ケン化度が高く溶融成形できないため紙コア層上に直接酸素バリア層を形成しており、そこへ熱可塑性樹脂を溶融押出して熱可塑性樹脂層と酸素バリア層とを接着剤を介さず貼り合わせている。熱可塑性樹脂がポリ乳酸の場合、ポリビニルアルコールとの密着性が悪いため使用時に熱可塑性樹脂層と酸素バリア層とが剥離してしまうなど包装材としては十分な特性が得られない。また、酸素バリア層を形成するポリビニルアルコールは比較的硬い樹脂であり、当該硬い酸素バリア層と紙とが接するようにラミネートされることも相まって、その硬さの影響から包装材への加工時や使用時の折り曲げ操作を行った際に酸素バリア層に亀裂が生じ、酸素バリア性が低下する虞があった。 The laminated food packaging material disclosed in Patent Document 2 has an oxygen barrier layer and is a packaging material with excellent biodegradability and oxygen barrier properties. However, polyvinyl alcohol is used for the oxygen barrier layer, but since it has a high degree of saponification and cannot be melt-molded, the oxygen barrier layer is formed directly on the paper core layer, and a thermoplastic resin is melt-extruded thereto to bond the thermoplastic resin layer and the oxygen barrier layer without using an adhesive. When the thermoplastic resin is polylactic acid, it has poor adhesion to polyvinyl alcohol, so the thermoplastic resin layer and the oxygen barrier layer peel off during use, and sufficient properties are not obtained as a packaging material. In addition, polyvinyl alcohol forming the oxygen barrier layer is a relatively hard resin, and combined with the fact that the hard oxygen barrier layer is laminated so as to be in contact with the paper, there is a risk that cracks will occur in the oxygen barrier layer during processing into a packaging material or when bending during use, resulting in a decrease in oxygen barrier properties.

これまで、包装材への加工時や使用時の折り曲げ操作における酸素バリア性の低下を抑えることの検討がなされておらず、生分解性でありながら、酸素バリア性とヒートシール性とを兼ね備え、包装材に適したラミネート紙とするにはまだ改良の余地があった。 Until now, no study has been done on preventing the deterioration of oxygen barrier properties during processing into packaging materials or folding operations during use, and there is still room for improvement to create a laminated paper that is biodegradable while also having oxygen barrier properties and heat sealability, making it suitable for packaging materials.

さらに、包装材としては、樹脂層が向かい合わせになるように2枚重ねて、上から指で押さえ水平方向において左右に動かした際に容易に動く、いわゆる表面のすべり性が必要である。そして、生分解性樹脂の種類によっては表面のすべり性に劣るものがあり、例えば、袋状に成形した際、袋の口がブロッキングを起こし開きにくくなり、包装材として用いることが困難であった。 Furthermore, as a packaging material, it is necessary for the surface to have slipperiness, so that when two sheets of the resin are stacked so that they face each other, pressed down with a finger from above and moved horizontally from side to side, they can move easily. Some types of biodegradable resins have poor surface slipperiness, and when molded into a bag, for example, the opening of the bag can become blocked, making it difficult to open, making it difficult to use as a packaging material.

特開平11-198289号公報Japanese Patent Application Laid-Open No. 11-198289 特開2008-105709号公報JP 2008-105709 A

本発明は、紙基材と生分解性樹脂層とを有する生分解性の積層体であって、酸素バリア性とヒートシール性とを兼ね備え、包装材への加工時や使用時の折り曲げ操作による酸素バリア性の低下が抑えられ、加えて、表面のすべり性をも有する包装材に適した生分解性ラミネート紙及び包装材を提供することを課題とする。 The present invention aims to provide a biodegradable laminated paper and packaging material that is suitable for use as packaging materials, which is a biodegradable laminate having a paper base material and a biodegradable resin layer, and which combines oxygen barrier properties and heat sealability, and in which the deterioration of oxygen barrier properties caused by folding operations during processing into packaging materials or during use is suppressed, and which also has a slippery surface.

本発明は上記課題を解決すべくなされたものであり、その手段としては、
紙基材と、紙基材の片面又は両面に積層された生分解性樹脂層とからなるラミネート紙であり、
前記生分解性樹脂層は、生分解性ヒートシール層と、生分解性接着層と、生分解性酸素バリア層とを有し、かつ前記生分解性酸素バリア層の両面に前記生分解性接着層を介して前記生分解性ヒートシール層が積層されており、
前記生分解性ヒートシール層は、ポリ乳酸と脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂とを含み、
前記生分解性酸素バリア層は、ブテンジオールビニルアルコール共重合体を含むことを特徴とする。
The present invention has been made to solve the above problems, and the means for achieving this include:
A laminated paper comprising a paper base material and a biodegradable resin layer laminated on one or both sides of the paper base material,
the biodegradable resin layer has a biodegradable heat seal layer, a biodegradable adhesive layer, and a biodegradable oxygen barrier layer, and the biodegradable heat seal layers are laminated on both sides of the biodegradable oxygen barrier layer via the biodegradable adhesive layers;
the biodegradable heat seal layer contains polylactic acid and an aliphatic polyester-based resin and/or an aliphatic-aromatic polyester-based resin,
The biodegradable oxygen barrier layer is characterized by containing a butenediol-vinyl alcohol copolymer.

本発明の生分解性ヒートシール層は、ポリ乳酸と脂肪族ポリエステル系樹脂とが、質量比で50/50~10/90の割合で含有してなることが好ましい。 The biodegradable heat seal layer of the present invention preferably contains polylactic acid and aliphatic polyester resin in a mass ratio of 50/50 to 10/90.

本発明の生分解性ヒートシール層は、ポリ乳酸と脂肪族芳香族ポリエステル系樹脂とが、質量比で80/20~10/90の割合で含有してなることが好ましい。 The biodegradable heat seal layer of the present invention preferably contains polylactic acid and aliphatic aromatic polyester resin in a mass ratio of 80/20 to 10/90.

本発明の生分解性ラミネート紙は、包装材として用いることが好適である。 The biodegradable laminated paper of the present invention is suitable for use as a packaging material.

本発明によって、紙基材と生分解性樹脂層とを有する生分解性の積層体であって、酸素バリア性とヒートシール性とを兼ね備え、包装材への加工時や使用時の折り曲げ操作による酸素バリア性の低下が抑えられ、加えて、表面のすべり性をも有する包装材に適した生分解性ラミネート紙が得られる。 The present invention provides a biodegradable laminated paper that is suitable for use as a packaging material, and has a slippery surface, and is a biodegradable laminate that combines oxygen barrier properties and heat sealability, and is less susceptible to deterioration in oxygen barrier properties due to folding operations during processing into packaging materials or use.

本発明の実施態様を説明する図である。FIG. 1 is a diagram illustrating an embodiment of the present invention. 本発明の他の実施態様を説明する図である。FIG. 13 is a diagram illustrating another embodiment of the present invention.

図面を用いて本発明の実施態様を説明する。なお、本発明は図面に示されるものだけに限定されない。 The embodiments of the present invention will be explained using the drawings. Note that the present invention is not limited to those shown in the drawings.

図1に示すように、本発明は、紙基材2と、紙基材2の片面又は両面に積層された生分解性樹脂層3とからなる生分解性ラミネート紙1である。 As shown in FIG. 1, the present invention is a biodegradable laminated paper 1 that is composed of a paper base material 2 and a biodegradable resin layer 3 laminated on one or both sides of the paper base material 2.

まず、本発明の生分解性樹脂層3について説明する。
本発明の生分解性樹脂層3は、生分解性ヒートシール層3aと、生分解性接着層3bと、生分解性酸素バリア層3cとを有し、これらすべての樹脂層が生分解性である。
生分解性樹脂層3の全体厚みは、用途によって適宜設定されればよい。例えば、包装材として用いる場合は、50μm以下が好ましく、特に30μm以下がより好ましい。また、厚みが薄すぎると強度や剛性などが低下してしまうことや製膜が困難となることから、15μm以上は必要である。
First, the biodegradable resin layer 3 of the present invention will be described.
The biodegradable resin layer 3 of the present invention comprises a biodegradable heat seal layer 3a, a biodegradable adhesive layer 3b, and a biodegradable oxygen barrier layer 3c, and all of these resin layers are biodegradable.
The total thickness of the biodegradable resin layer 3 may be appropriately set depending on the application. For example, when used as a packaging material, it is preferably 50 μm or less, and more preferably 30 μm or less. If the thickness is too thin, the strength and rigidity are reduced and film formation becomes difficult, so it needs to be 15 μm or more.

本発明の生分解性ヒートシール層3a(単にヒートシール層という場合もある)は、ポリ乳酸と脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂を含む。 The biodegradable heat seal layer 3a (sometimes simply referred to as the heat seal layer) of the present invention contains polylactic acid and an aliphatic polyester resin and/or an aliphatic aromatic polyester resin.

ポリ乳酸(PLA)としては、乳酸構造単位を主成分とし、L-乳酸、D-乳酸、またはその環状2量体であるL-ラクタイド、D-ラクタイド、DL-ラクタイドを原料とする重合体が使用できる。これら乳酸類の単独重合体であることが好ましいが、乳酸類以外の共重合成分を含有するものであってもよい。かかる共重合成分としては、脂肪族ヒドロキシカルボン酸や脂肪族ジカルボン酸、脂肪族ジオールなどを挙げることができる。なお、ここでいう主成分とは、乳酸構造単位が90モル%以上を含む場合とする。
また、通常、ポリ乳酸中にはL体とD体とが共存しているが、その含有比率を調整したポリ乳酸が市販されている。本発明では、ポリ乳酸100質量%に対して、D体の含有量が1質量%以上のものを使用することが好ましい。D体の含有量が多いほどポリ乳酸の融点は低くなるため、後述する通り本発明の生分解性樹脂層3を溶融押出しによって紙基材2上に形成して紙基材2と生分解性樹脂層3とを貼り合わせる際に、紙基材2とポリ乳酸を含むヒートシール層3aとの層間の密着性に優れるものとなる。また、包装材として使用する際に、ヒートシール温度を低く設定できるのでヒートシールが容易となる。
As polylactic acid (PLA), a polymer containing lactic acid structural units as the main component and made from L-lactic acid, D-lactic acid, or their cyclic dimers L-lactide, D-lactide, and DL-lactide as raw materials can be used. Although homopolymers of these lactic acids are preferable, they may also contain copolymerization components other than lactic acids. Examples of such copolymerization components include aliphatic hydroxycarboxylic acids, aliphatic dicarboxylic acids, and aliphatic diols. The term "main component" as used herein refers to a polymer containing 90 mol % or more of lactic acid structural units.
In addition, polylactic acid usually contains both L- and D-isomers, but polylactic acid with an adjusted content ratio is commercially available. In the present invention, it is preferable to use polylactic acid with a D-isomer content of 1% by mass or more relative to 100% by mass of polylactic acid. The higher the D-isomer content, the lower the melting point of polylactic acid. Therefore, when the biodegradable resin layer 3 of the present invention is formed on the paper base material 2 by melt extrusion and the paper base material 2 and the biodegradable resin layer 3 are bonded together as described below, the interlayer adhesion between the paper base material 2 and the heat seal layer 3a containing polylactic acid is excellent. In addition, when used as a packaging material, the heat seal temperature can be set low, making heat sealing easy.

本発明の脂肪族ポリエステル系樹脂としては、脂肪族ジカルボン酸と脂肪族ジオールとの重合縮合物を主成分とするものが使用できる。
脂肪族ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸などを挙げることができ、通常、炭素数が4~12のものが用いられ、特に炭素数が4~8であるものが生分解性の点で好ましく用いられる。これらは、単独で用いることもできるが、所望の特性を得るために複数のものを組み合わせて用いることも可能である。
また、脂肪族ジオールとしては、エチレングリコール、トリエチレングリコール、1,4-ブタンジオール、ペンタメチレングリコール、1,8-オクチレングリコール、ナノメチレングリコール、デカメチレングリコールなどを挙げることができ、通常、炭素数が2~10ものが用いられ、特に2~6であるものが生分解性の点で好ましく用いられる。脂肪族ジオールの場合も、脂肪族ジカルボン酸と同様、これら例示のものなどを単独で用いても、複数のものを組み合わせて用いてもよい。
また、脂肪族ジカルボン酸と脂肪族ジオールとともに乳酸などの他の構成単位を共重合したものも使用できる。なお、ここでいう主成分とは、脂肪族ポリエステル構造単位が90モル%以上を含む場合とする。
本発明の脂肪族ポリエステル系樹脂としては、紙との密着性に優れるという点でポリブチレンサクシネート(PBS)を用いることが好ましい。
The aliphatic polyester resin of the present invention may be one containing, as a main component, a polymerized condensation product of an aliphatic dicarboxylic acid and an aliphatic diol.
Examples of aliphatic dicarboxylic acids include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, etc., and those having 4 to 12 carbon atoms are usually used, and those having 4 to 8 carbon atoms are particularly preferred in terms of biodegradability. These can be used alone, but multiple compounds can also be used in combination to obtain desired properties.
Examples of the aliphatic diol include ethylene glycol, triethylene glycol, 1,4-butanediol, pentamethylene glycol, 1,8-octylene glycol, nanomethylene glycol, and decamethylene glycol, and generally, those having 2 to 10 carbon atoms are used, and in particular, those having 2 to 6 carbon atoms are preferably used in terms of biodegradability. In the case of the aliphatic diol, as in the case of the aliphatic dicarboxylic acid, these exemplified ones may be used alone or in combination.
Also usable are copolymers of aliphatic dicarboxylic acids and aliphatic diols with other structural units such as lactic acid. The term "main component" as used herein refers to a polymer containing 90 mol % or more of aliphatic polyester structural units.
As the aliphatic polyester resin of the present invention, it is preferable to use polybutylene succinate (PBS) because of its excellent adhesion to paper.

本発明の脂肪族芳香族ポリエステル系樹脂としては、脂肪族ジカルボン酸と芳香族ジカルボン酸と脂肪族ジオールとの重合縮合物を主成分とするものが使用できる。
脂肪族ジカルボン酸及び脂肪族ジオールは前述した脂肪族ポリエステル系樹脂で挙げたものが用いられる。
芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸等などが用いられる。
なお、脂肪族芳香族ポリエステル系樹脂としては、芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量100モル%に対し、10モル%以上80モル%以下であることが好ましい。
また、脂肪族ジカルボン酸と芳香族ジカルボン酸、脂肪族ジオールとともに乳酸などの他の構成単位を共重合したものも使用できる。なお、ここでいう主成分とは、脂肪族芳香族ポリエステル構造単位が90モル%以上を含む場合とする。
本発明の脂肪族芳香族ポリエステル系樹脂としては、柔軟性とヒートシール性に優れるという点でポリブチレンアジペートテレフタレート(PBAT)を用いることが好ましい。
The aliphatic aromatic polyester resin of the present invention may be one containing as a main component a polymerized condensation product of an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an aliphatic diol.
The aliphatic dicarboxylic acid and the aliphatic diol used may be the same as those exemplified above for the aliphatic polyester resin.
As the aromatic dicarboxylic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, etc. are used.
In addition, the content of the aromatic dicarboxylic acid unit in the aliphatic aromatic polyester resin is preferably 10 mol % or more and 80 mol % or less relative to 100 mol % in total of the aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit.
In addition, copolymers of aliphatic dicarboxylic acids and aromatic dicarboxylic acids, aliphatic diols and other structural units such as lactic acid can also be used. The term "main component" as used herein refers to a polymer containing 90 mol % or more of aliphatic aromatic polyester structural units.
As the aliphatic aromatic polyester resin of the present invention, it is preferable to use polybutylene adipate terephthalate (PBAT) in view of its excellent flexibility and heat sealability.

本発明では、脂肪族ポリエステル系樹脂と脂肪族芳香族ポリエステル系樹脂とを併用してもよい。 In the present invention, aliphatic polyester resins and aliphatic aromatic polyester resins may be used in combination.

本発明の生分解性ヒートシール層3aは、ポリ乳酸と脂肪族ポリエステル系樹脂を含む。
ポリ乳酸を含有せず脂肪族ポリエステル系樹脂単体の場合、ヒートシール温度を高くしないと後述する本発明のヒートシール性が得られ難い。
そこで、ポリ乳酸と脂肪族ポリエステル系樹脂とは、質量比で50/50~10/90の割合で含有してなることが好ましい。
また、ポリ乳酸と脂肪族ポリエステル系樹脂とが質量比で100/0~60/40の割合で含有していると、樹脂が硬いため、包装材への加工時や使用時の折り曲げ操作により生分解性酸素バリア層3cに亀裂が入り、酸素バリア性が低下してしまう虞がある。
The biodegradable heat seal layer 3a of the present invention contains polylactic acid and an aliphatic polyester resin.
In the case of using an aliphatic polyester resin alone without containing polylactic acid, it is difficult to obtain the heat sealability of the present invention described below unless the heat sealing temperature is increased.
Therefore, it is preferable that the polylactic acid and the aliphatic polyester resin are contained in a mass ratio of 50/50 to 10/90.
Furthermore, when the polylactic acid and aliphatic polyester resin are contained in a mass ratio of 100/0 to 60/40, the resin is hard, so that there is a risk that cracks will develop in the biodegradable oxygen barrier layer 3c due to processing into a packaging material or bending operations during use, resulting in a deterioration of the oxygen barrier properties.

本発明の生分解性ヒートシール層3aは、ポリ乳酸と脂肪族芳香族ポリエステル系樹脂を含む。
ポリ乳酸を含有せず脂肪族芳香族ポリエステル系樹脂単体の場合、表面のすべり性に劣る。
本発明において、表面のすべり性とは、得られたラミネート紙1を生分解性樹脂層3が向かい合わせになるように2枚重ねて、上から指で押さえ水平方向において左右に動かした際に容易に動くかどうかで評価される。容易に動かない、すなわち、表面のすべり性に劣ると、袋状に成形した際、袋の口がブロッキングを起こし開きにくくなり、いわゆる口開き性が得られず、包装材として用いることが難しい。そのため、本発明の生分解性ラミネート紙を包装材として用いるためには、表面のすべり性を有することが必要である。
そこで、ポリ乳酸と脂肪族芳香族ポリエステル系樹脂とが、質量比で80/20~10/90の割合で含有してなることが好ましい。
また、ポリ乳酸と脂肪族芳香族ポリエステル系樹脂とが質量比で100/0~90/10の割合で含有していると、樹脂が硬いため、包装材への加工時や使用時の折り曲げ操作により生分解性酸素バリア層3cに亀裂が入り、酸素バリア性が低下してしまう虞がある。
The biodegradable heat seal layer 3a of the present invention contains polylactic acid and an aliphatic aromatic polyester resin.
In the case of using only aliphatic aromatic polyester resin without polylactic acid, the surface has poor slip properties.
In the present invention, the surface slipperiness is evaluated by whether the obtained laminated paper 1 moves easily when two sheets are stacked with the biodegradable resin layers 3 facing each other, pressed from above with a finger, and moved horizontally from side to side. If it does not move easily, that is, if the surface slipperiness is poor, when it is formed into a bag, blocking occurs at the mouth of the bag, making it difficult to open, and so-called mouth opening properties are not obtained, making it difficult to use as a packaging material. Therefore, in order to use the biodegradable laminated paper of the present invention as a packaging material, it is necessary for the paper to have a surface slipperiness.
Therefore, it is preferable that the polylactic acid and the aliphatic aromatic polyester resin are contained in a mass ratio of 80/20 to 10/90.
Furthermore, when the polylactic acid and the aliphatic aromatic polyester resin are contained in a mass ratio of 100/0 to 90/10, the resin is hard, so that there is a risk that cracks will occur in the biodegradable oxygen barrier layer 3c when processed into a packaging material or when the layer is folded during use, resulting in a decrease in the oxygen barrier property.

本発明の生分解性ヒートシール層3aには、無機フィラーを添加してもよい。無機フィラーを添加することで、水蒸気バリア性や生分解性などを向上させることができる。
無機フィラーとしては、無水シリカ、雲母、タルク、マイカ、クレイ、酸化チタン、炭酸カルシウム、ケイ藻土、アロフェン、ベントナイト、チタン酸カリウム、ゼオライト、セピオライト、スメクタイト、カオリン、カオリナイト、ガラス、石灰石、カーボン、ワラステナイト、焼成パーライト、珪酸カルシウム、珪酸ナトリウム等の珪酸塩、酸化アルミニウム、炭酸マグネシウム、水酸化カルシウム等の水酸化物、炭酸第二鉄、酸化亜鉛、酸化鉄、リン酸アルミニウム、硫酸バリウム等の塩類等が挙げられ、好ましくはタルク、マイカ、或いはクレイ、炭酸カルシウム、ゼオライトである。また、無機フィラーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
An inorganic filler may be added to the biodegradable heat seal layer 3a of the present invention. By adding an inorganic filler, the water vapor barrier property, biodegradability, and the like can be improved.
Examples of inorganic fillers include anhydrous silica, mica, talc, mica, clay, titanium oxide, calcium carbonate, diatomaceous earth, allophane, bentonite, potassium titanate, zeolite, sepiolite, smectite, kaolin, kaolinite, glass, limestone, carbon, wollastonite, calcined perlite, silicates such as calcium silicate and sodium silicate, hydroxides such as aluminum oxide, magnesium carbonate and calcium hydroxide, salts such as ferric carbonate, zinc oxide, iron oxide, aluminum phosphate and barium sulfate, and the like, and preferably talc, mica, clay, calcium carbonate, and zeolite. Furthermore, the inorganic filler may be used alone or in combination of two or more.

無機フィラーの形状としては、繊維状、粉粒状、板状、針状のものが挙げられ、中でも板状フィラーが好ましい。板状フィラーとしては、タルク、カオリン、マイカ、クレイ、セリサイト、ガラスフレーク、合成ハイドロタルサイト、各種金属箔、黒鉛、二硫化モリブデン、二硫化タングステン、窒化ホウ素、板状酸化鉄、板状炭酸カルシウム、板状水酸化アルミニウム等が挙げられる。 The shape of the inorganic filler can be fibrous, granular, plate-like, or needle-like, with plate-like fillers being preferred. Examples of plate-like fillers include talc, kaolin, mica, clay, sericite, glass flakes, synthetic hydrotalcite, various metal foils, graphite, molybdenum disulfide, tungsten disulfide, boron nitride, plate-like iron oxide, plate-like calcium carbonate, and plate-like aluminum hydroxide.

本発明の生分解性ヒートシール層3aへの無機フィラーの含有量は特に限定されないが、紙基材2と生分解性ヒートシール層3aとの層間密着性及びヒートシール性を損ねない程度とする。生分解性ヒートシール層3aに含まれる無機フィラーの含有量は、15質量%以上50質量%以下であることが好ましい。 The content of the inorganic filler in the biodegradable heat seal layer 3a of the present invention is not particularly limited, but should be at a level that does not impair the interlayer adhesion and heat sealability between the paper base material 2 and the biodegradable heat seal layer 3a. The content of the inorganic filler in the biodegradable heat seal layer 3a is preferably 15% by mass or more and 50% by mass or less.

本発明の生分解性ヒートシール層3aには、ヒートシール性及び紙基材2との密着性を阻害しない限り、その他の添加剤を含有してもよい。
例えば、相溶化剤、帯電防止剤、結晶核剤、熱安定剤、酸化防止剤、紫外線吸収剤、難燃剤、可塑剤、滑剤、充填剤などが挙げられる。
The biodegradable heat seal layer 3 a of the present invention may contain other additives as long as they do not impair the heat sealability and adhesion to the paper base material 2 .
Examples of the additives include compatibilizers, antistatic agents, crystal nucleating agents, heat stabilizers, antioxidants, ultraviolet absorbers, flame retardants, plasticizers, lubricants, and fillers.

本発明の生分解性接着層3bは、本発明の生分解性ヒートシール層3aと後述する生分解性バリア層3cとを接着させるための層であり、変性ポリエステル系樹脂を含む。
変性ポリエステル系樹脂とは、上述した脂肪族ポリエステル系樹脂、又は脂肪族芳香族ポリエステル系樹脂を構成する脂肪族ジカルボン酸、芳香族ジカルボン酸及び脂肪族ジオールと、ヒドロキシカルボン酸とから選ばれる少なくともひとつの構造単位を含む重合縮合体であるポリエステル系樹脂を、α,β-不飽和カルボン酸及び/又はその無水物によりグラフト変性して得られるもので、生分解性を有する。
なお、生分解性接着層3bに含まれる変性ポリエステル系樹脂の含有量は50質量%以上であり、好ましくは70質量%以上であり、より好ましくは90質量%以上である。
The biodegradable adhesive layer 3b of the present invention is a layer for bonding the biodegradable heat seal layer 3a of the present invention to the biodegradable barrier layer 3c described below, and contains a modified polyester resin.
The modified polyester resin is a biodegradable resin obtained by graft-modifying a polyester resin, which is a polymerized condensation product containing at least one structural unit selected from an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an aliphatic diol constituting the above-mentioned aliphatic polyester resin or an aliphatic-aromatic polyester resin, and a hydroxycarboxylic acid, with an α,β-unsaturated carboxylic acid and/or an anhydride thereof.
The content of the modified polyester resin in the biodegradable adhesive layer 3b is 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.

ここで、ヒドロキシカルボン酸としては、ヒドロキシカルボン酸としては、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸等、又はこれらの低級アルキルエステル若しくは分子内エステル等の誘導体が挙げられる。これらの中で特に好ましいものは、乳酸又はグリコール酸或いはその誘導体である。これらヒドロキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。 Here, examples of hydroxycarboxylic acids include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, and the like, or derivatives thereof such as lower alkyl esters or intramolecular esters. Among these, lactic acid or glycolic acid or derivatives thereof are particularly preferred. These hydroxycarboxylic acids can be used alone or as a mixture of two or more kinds.

本発明において、α、β-不飽和カルボン酸またはその無水物としては、具体的にはアクリル酸、メタクリル酸などのα、β-不飽和モノカルボン酸;マレイン酸、フマル酸、イタコン酸、シトラス酸、テトラヒドロフタル酸、クロトン酸、イソクロトン酸等のα,β-や不飽和ジカルボン酸などが挙げられ、好ましくはα、β-不飽和ジカルボン酸が用いられる。
なお、これらのα、β-不飽和カルボン酸化合物は、1種を単独で用いる場合に限らず、2種以上を併用してもよい。
In the present invention, examples of the α,β-unsaturated carboxylic acid or anhydride thereof include α,β-unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; and α,β- or unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citrus acid, tetrahydrophthalic acid, crotonic acid, and isocrotonic acid. Of these, α,β-unsaturated dicarboxylic acids are preferred.
These α,β-unsaturated carboxylic acid compounds may be used not only as a single compound but also as a combination of two or more compounds.

その中でも、変性ポリエステル系樹脂としては、生分解性が高く、接着層として使用する場合の加工成形性や密着性の観点から、脂肪族ポリエステル系樹脂及び/又は脂肪族芳香族ポリエステル系樹脂のみを変性したもの(変性脂肪族ポリエステル系樹脂または変性脂肪族芳香族ポリエステル系樹脂という)から構成されることが好ましい。
さらに、変性ポリエステル系樹脂が、変性脂肪族ポリエステル系樹脂及び変性脂肪族芳香族ポリエステル系樹脂の両方を含む場合に、後述する溶融押出しによって本発明の生分解性樹脂層3を形成しやすくより好ましい。
この場合、変性脂肪族ポリエステル系樹脂と変性脂肪族芳香族ポリエステル系樹脂の存在割合は、変性脂肪族ポリエステル系樹脂と変性脂肪族芳香族ポリエステル系樹脂の合計100質量%中に変性脂肪族ポリエステル系樹脂を15~50質量%、変性脂肪族芳香族ポリエステル系樹脂を50~85質量%含むことが、生分解性と加工性の観点から好ましい。
Among these, the modified polyester-based resin is preferably composed of a modified aliphatic polyester-based resin and/or aliphatic-aromatic polyester-based resin alone (referred to as a modified aliphatic polyester-based resin or a modified aliphatic-aromatic polyester-based resin) from the viewpoints of high biodegradability and processability and adhesion when used as an adhesive layer.
Furthermore, when the modified polyester resin contains both a modified aliphatic polyester resin and a modified aliphatic aromatic polyester resin, the biodegradable resin layer 3 of the present invention can be easily formed by melt extrusion, which will be described later, and is therefore more preferable.
In this case, the ratio of the modified aliphatic polyester resin to the modified aliphatic aromatic polyester resin is preferably 15 to 50 mass% of the modified aliphatic polyester resin and 50 to 85 mass% of the modified aliphatic aromatic polyester resin, based on a total of 100 mass% of the modified aliphatic polyester resin and the modified aliphatic aromatic polyester resin, from the viewpoints of biodegradability and processability.

なお、本発明の生分解性接着層3bには、接着性を損なわない範囲で変性ポリエステル系樹脂以外の樹脂を含んでいてもよい。例えば、ポリヒドロキシアルカノエート、ポリカプロラクトン、ポリビニルアルコール、セルロースエステル、ポリ乳酸、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)などの脂肪族ポリエステル系樹脂、ポリブチレンアジペートテレフタレート(PBAT)などの脂肪族芳香族ポリエステル系樹脂などが挙げられる。 The biodegradable adhesive layer 3b of the present invention may contain resins other than modified polyester resins as long as the adhesiveness is not impaired. Examples include aliphatic polyester resins such as polyhydroxyalkanoate, polycaprolactone, polyvinyl alcohol, cellulose ester, polylactic acid, polybutylene succinate (PBS), and polybutylene succinate adipate (PBSA), and aliphatic aromatic polyester resins such as polybutylene adipate terephthalate (PBAT).

本発明の生分解性接着層3bの厚みは、目的とする密着性を得るためには3μm以上が好ましい。
なお、本発明の目的とする密着性とは、生分解性ヒートシール層3aと生分解性接着層3bとの層間において、引張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」)を用いて、引張速度300mm/分で180度剥離の条件下で測定した接着強度が5N/15mm以上である。
The thickness of the biodegradable adhesive layer 3b of the present invention is preferably 3 μm or more in order to obtain the desired adhesiveness.
The adhesion referred to in the present invention is an adhesive strength of 5 N/15 mm or more between the biodegradable heat seal layer 3a and the biodegradable adhesive layer 3b, measured using a tensile tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T") under conditions of a tensile speed of 300 mm/min and 180° peeling.

本発明の生分解性酸素バリア層3cは、酸素の透過を抑制するための層で、ブテンジオールビニルアルコール共重合体(BVOH)を含む。
このBVOHは、後述する溶融押出しによって本発明の生分解性樹脂層3を形成することができる。
The biodegradable oxygen barrier layer 3c of the present invention is a layer for suppressing oxygen permeation, and contains butenediol-vinyl alcohol copolymer (BVOH).
This BVOH can be formed into the biodegradable resin layer 3 of the present invention by melt extrusion, which will be described later.

本発明のブテンジオールビニルアルコール共重合体(BVOH)は、ビニルエステル系単量体を共重合して得られるポリビニルエステル系樹脂をケン化して得られる、ビニルアルコール構造単位を主体とするポリビニルアルコール(PVA)系樹脂に、後反応によって官能基が導入された変性PVA系樹脂であり、側鎖に1,2-ジオール構造を有する。
かかる変性PVA系樹脂中の後反応によって導入された官能基の含有量は、通常、1~20モル%であり、特に2~10モル%の範囲が好ましく用いられる。
BVOHとしては、例えば市販されている三菱ケミカル社製の商品名「G-Polymer BVE8049P」などが使用できる。
The butenediol-vinyl alcohol copolymer (BVOH) of the present invention is a modified polyvinyl alcohol (PVA) resin obtained by saponifying a polyvinyl ester resin obtained by copolymerizing a vinyl ester monomer, and by introducing a functional group into the PVA resin mainly composed of vinyl alcohol structural units through a post-reaction, and has a 1,2-diol structure in the side chain.
The content of the functional group introduced by the post-reaction in such a modified PVA resin is usually 1 to 20 mol %, and a range of 2 to 10 mol % is particularly preferably used.
As the BVOH, for example, commercially available product "G-Polymer BVE8049P" manufactured by Mitsubishi Chemical Corporation can be used.

ここで、ポリビニルアルコール(PVA)系樹脂は、一般的にケン化度が低すぎると、酸素バリア性が低下する傾向にある。一方で、包装材にはケン化度が高いもの、具体的にはJIS K6726に準拠して測定された値で80~100モル%のものが用いられている。このようなPVA系樹脂には延伸性がなく、包装材への加工時や使用時の折り曲げ操作を行った際に酸素バリア層に亀裂が生じやすくなる。加えて、PVA系樹脂はケン化度が高いと溶融成形ができないことから、コーティング等によって基材に直接形成されるものであり、溶融押出しによって積層体とする生分解性バリア層3cに用いることは困難である。
また、ビニルアルコール構造単位を有するものとしてよく知られている、ビニルアルコール構造単位とエチレン構造単位との共重合体であるエチレン―ビニルアルコール共重合体(EVOH)は、酸素バリア性を有するが生分解性が無く、本発明の生分解性バリア層3cには使用できない。
Here, polyvinyl alcohol (PVA) resins generally have a tendency to have poor oxygen barrier properties if their degree of saponification is too low. On the other hand, PVA resins with a high degree of saponification, specifically, those with a value of 80 to 100 mol% measured in accordance with JIS K6726, are used for packaging materials. Such PVA resins have no stretchability, and cracks are likely to occur in the oxygen barrier layer when processed into packaging materials or when folded during use. In addition, PVA resins with a high degree of saponification cannot be melt molded, so they are formed directly on the substrate by coating or the like, and it is difficult to use them for the biodegradable barrier layer 3c to be made into a laminate by melt extrusion.
Furthermore, ethylene-vinyl alcohol copolymer (EVOH), which is a copolymer of vinyl alcohol structural units and ethylene structural units and is well known as having vinyl alcohol structural units, has oxygen barrier properties but is not biodegradable and cannot be used for the biodegradable barrier layer 3c of the present invention.

生分解性酸素バリア層3cに含まれるBVOHの含有量は70質量%以上であり、好ましくは80質量%以上であり、より好ましくは90質量%以上である。かかる含有量が少なすぎると、酸素の透過を抑制する性能、すなわち酸素バリア性が不充分となる傾向がある。 The content of BVOH in the biodegradable oxygen barrier layer 3c is 70% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more. If the content is too low, the performance of suppressing oxygen permeation, i.e., the oxygen barrier properties, tend to be insufficient.

生分解性酸素バリア層3cには、バリア性を損なわない範囲でBVOH以外の樹脂を含有してもよい。例えば、ポリヒドロキシアルカノエート、ポリカプロラクトン、ポリビニルアルコール、セルロースエステル、ポリ乳酸、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)などの脂肪族ポリエステル系樹脂、ポリブチレンアジペートテレフタレート(PBAT)などの脂肪族芳香族ポリエステル系樹脂などが挙げられる。 The biodegradable oxygen barrier layer 3c may contain resins other than BVOH as long as the barrier properties are not impaired. Examples include aliphatic polyester resins such as polyhydroxyalkanoate, polycaprolactone, polyvinyl alcohol, cellulose ester, polylactic acid, polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA), and aliphatic aromatic polyester resins such as polybutylene adipate terephthalate (PBAT).

本発明の生分解性酸素バリア層3cの厚みは、5μm以上が好ましい。5μm以上あれば、酸素バリア性に優れる。
ここで、酸素バリア性の指標として酸素透過度が用いられる。酸素透過度は、JIS K7126に準拠し、23度×50%RHの条件下で、酸素透過率測定装置(MOCON社製、商品名「OX-TRAN2/22L」)を用いて測定される値である。本発明では生分解性樹脂層3としての酸素透過度が5cc/m・day・atm以下を酸素バリア性に優れるものとし、より好ましくは、1cc/m・day・atm以下である。
The thickness of the biodegradable oxygen barrier layer 3c of the present invention is preferably 5 μm or more. If it is 5 μm or more, the oxygen barrier property is excellent.
Here, oxygen permeability is used as an index of oxygen barrier property. The oxygen permeability is a value measured using an oxygen permeability measuring device (manufactured by MOCON, product name "OX-TRAN2/22L") under conditions of 23°C x 50% RH in accordance with JIS K7126. In the present invention, a biodegradable resin layer 3 having an oxygen permeability of 5 cc/ m2 day atm or less is considered to have excellent oxygen barrier property, and more preferably 1 cc/ m2 day atm or less.

本発明の生分解性樹脂層3は、生分解性酸素バリア層3cの両面に生分解性接着層3bを介して生分解性ヒートシール層3aが積層されている。つまり、生分解性ヒートシール層3a/生分解性接着層3b/生分解性酸素バリア層3c/生分解性接着層3b/生分解性ヒートシール層3aの順で積層されたものである。
このように、生分解性酸素バリア層3cが生分解性接着層3b及び生分解性ヒートシール層3aで挟まれた状態で存在しているため、包装材への加工時や使用時の折り曲げ操作により生分解性酸素バリア層3cに亀裂が発生することを抑えることができ、長期に渡って酸素バリア性を維持することができる。
また、本発明の生分解性ラミネート紙1を紙基材2側が外表面となるよう袋状として使用した場合に、当該紙基材2側で水などが触れてしまっても、紙基材2から生分解性酸素バリア層3cまでの間に生分解性ヒートシール層3aと生分解性接着層3bがあるために、紙基材2側から袋内部への水などの染みこみを防ぐことができ耐水性にも優れる。
The biodegradable resin layer 3 of the present invention has a biodegradable heat seal layer 3a laminated on both sides of a biodegradable oxygen barrier layer 3c via a biodegradable adhesive layer 3b, that is, laminated in the order of biodegradable heat seal layer 3a/biodegradable adhesive layer 3b/biodegradable oxygen barrier layer 3c/biodegradable adhesive layer 3b/biodegradable heat seal layer 3a.
In this way, since the biodegradable oxygen barrier layer 3c is sandwiched between the biodegradable adhesive layer 3b and the biodegradable heat seal layer 3a, it is possible to prevent cracks from occurring in the biodegradable oxygen barrier layer 3c due to folding operations during processing into packaging materials or during use, and it is possible to maintain the oxygen barrier properties for a long period of time.
Furthermore, when the biodegradable laminated paper 1 of the present invention is used in the form of a bag with the paper base material 2 side as the outer surface, even if the paper base material 2 comes into contact with water or other substances, the presence of the biodegradable heat seal layer 3a and the biodegradable adhesive layer 3b between the paper base material 2 and the biodegradable oxygen barrier layer 3c prevents water and other substances from seeping into the bag from the paper base material 2 side, and the bag has excellent water resistance.

本発明の生分解性樹脂層3において、各層の厚み及び層比についても用途によって適宜設定すればよいが、目的の酸素バリア性と層間密着性を得るためにはバリア層5μm以上、接着層3μm以上が望ましい。 In the biodegradable resin layer 3 of the present invention, the thickness and layer ratio of each layer may be appropriately set depending on the application, but in order to obtain the desired oxygen barrier properties and interlayer adhesion, it is desirable for the barrier layer to be 5 μm or more and the adhesive layer to be 3 μm or more.

次いで、本発明の紙基材2について説明する。
本発明の紙基材2としては、通常使用されているものであれば特に限定されないが、例えば、クラフト紙、上質紙、色上質紙、フォーム用紙、純白ロール紙、板紙、ダンボール、等を用いることができる。またアート紙、コート紙等の塗工紙やその他特殊紙に関しても使用可能であるが、合成高分子を主な素材とする合成紙等を使用すると、本発明の目的である積層体全体が生分解性を有することを阻害することとなるので選定が必要となる。
紙基紙2の厚みとしては特に制限するものではなく、使用用途に合わせて適宜設定すればよい。
Next, the paper base material 2 of the present invention will be described.
The paper substrate 2 of the present invention is not particularly limited as long as it is a commonly used one, and examples thereof include kraft paper, fine paper, colored fine paper, form paper, pure white roll paper, paperboard, cardboard, etc. Coated paper such as art paper and coated paper and other special papers can also be used, but the use of synthetic paper made mainly from synthetic polymers will hinder the biodegradability of the entire laminate, which is the object of the present invention, and therefore selection is required.
The thickness of the paper base 2 is not particularly limited and may be appropriately set according to the intended use.

図1では、紙基材2の片面に生分解性樹脂層3を積層した例を示したが、図2に示すように、両面に生分解性樹脂層3を積層してもよいし、片面に本発明の生分解性樹脂層3、他面に異なる生分解性樹脂層を積層したものでもよい。
異なる生分解性樹脂層としては、生分解性を有するものであればよく、例えば上述したポリ乳酸、脂肪族ポリエステル系樹脂、脂肪族芳香族ポリエステル系樹脂を1種又は2種以上含む樹脂層を用いることができ、一層でもよく複数積層してもよい。
FIG. 1 shows an example in which a biodegradable resin layer 3 is laminated on one side of a paper base material 2, but as shown in FIG. 2, the biodegradable resin layer 3 may be laminated on both sides, or the biodegradable resin layer 3 of the present invention may be laminated on one side and a different biodegradable resin layer may be laminated on the other side.
The different biodegradable resin layer may be any layer that is biodegradable, and may be, for example, a resin layer containing one or more of the above-mentioned polylactic acid, aliphatic polyester resin, and aliphatic aromatic polyester resin, and may be formed in a single layer or in a multi-layer structure.

本発明の生分解性ラミネート紙1の製造方法について説明する。
一般的に紙基材と樹脂との貼り合わせに用いられる方法であればよい。例えば、予め生分解性樹脂層3を溶融押出しで3種5層の積層体を形成し、その後紙基材2と貼り合わせる方法がある。その際、生分解性樹脂層3が完全に硬化せず溶融状態のときに紙基材2と貼り合わせても良く、生分解性樹脂層3が完全に固化後に熱ロールに挟んで圧着することもできる。
A method for producing the biodegradable laminated paper 1 of the present invention will be described.
Any method generally used for laminating a paper substrate and a resin may be used. For example, there is a method in which a three-type, five-layer laminate of the biodegradable resin layer 3 is formed in advance by melt extrusion, and then laminated to the paper substrate 2. In this case, the biodegradable resin layer 3 may be laminated to the paper substrate 2 when it is in a molten state without being completely cured, or the biodegradable resin layer 3 may be pressed between heated rolls after it has completely solidified.

本発明の生分解性ラミネート紙1は、紙基材2と生分解性樹脂層3とを有する生分解性の積層体であって、酸素バリア性とヒートシール性とを兼ね備え、包装材への加工時や使用時の折り曲げ操作による酸素バリア性の低下が抑えられ、加えて、表面のすべり性をも有する、包装材に適した生分解性ラミネート紙であり、生分解性ヒートシール層3aと生分解性接着層3bとの層間及び紙基材2と生分解性樹脂層3との層間の密着性に優れるものが好ましい。 The biodegradable laminated paper 1 of the present invention is a biodegradable laminate having a paper base material 2 and a biodegradable resin layer 3, and has both oxygen barrier properties and heat seal properties, and is a biodegradable laminated paper suitable for packaging materials that is prevented from decreasing in oxygen barrier properties due to folding operations during processing into packaging materials or during use, and also has a slippery surface. It is preferable that the biodegradable laminated paper has excellent adhesion between the biodegradable heat seal layer 3a and the biodegradable adhesive layer 3b, and between the paper base material 2 and the biodegradable resin layer 3.

生分解性ヒートシール層3aと生分解性接着層3bとの層間密着性は、接着強度によって評価される。接着強度は、本発明の3種5層の生分解性樹脂層3からなる試験片(幅15mm)を使用し、引張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」)を用いて測定され、生分解性ヒートシール層3aとそれ以外の4層(3b/3c/3b/3a)とをそれぞれクリップで掴み、引張速度300mm/分、180度で剥離したときの強さである。本発明では、接着強度が5N/15mm以上のものを密着性に優れるものとする。 The interlayer adhesion between the biodegradable heat seal layer 3a and the biodegradable adhesive layer 3b is evaluated by adhesive strength. The adhesive strength is measured using a test piece (width 15 mm) consisting of the three-kind, five-layer biodegradable resin layer 3 of the present invention, with a tensile tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T"), and is the strength when the biodegradable heat seal layer 3a and the other four layers (3b/3c/3b/3a) are each gripped with a clip and peeled at a tensile speed of 300 mm/min and 180 degrees. In the present invention, adhesive strength of 5 N/15 mm or more is considered to be excellent in adhesiveness.

また、紙基材2と生分解性樹脂層3との層間密着性については、本発明の生分解性ラミネート紙1からなる試験片(幅15mm)を使用し、張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」)を用いて、紙基材2と生分解性樹脂層3とをそれぞれクリップで掴み、引張速度100mm/分、180度で剥離したときの状態によって評価される。本発明では、紙基材2が全面的に生分解性樹脂層3へ転写した状態のものを密着性に優れるものとする。 The interlayer adhesion between the paper base material 2 and the biodegradable resin layer 3 is evaluated using a test piece (width 15 mm) made of the biodegradable laminated paper 1 of the present invention, a tension tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T"), in which the paper base material 2 and the biodegradable resin layer 3 are each gripped with a clip and peeled at a tensile speed of 100 mm/min and 180 degrees. In the present invention, the paper base material 2 in a state in which it is entirely transferred to the biodegradable resin layer 3 is considered to have excellent adhesion.

酸素バリア性については、上述した通り、酸素透過度で評価される。酸素透過度は、JIS K7126に準拠し、23度×50%RHの条件下で、酸素透過率測定装置(MOCON社製、商品名「OX-TRAN2/22L」)を用いて測定できる。本発明では生分解性樹脂層3としての酸素透過度が5cc/m・day・atm以下のとき酸素バリア性を有するものとし、1cc/m・day・atm以下のときは優れるものである。 The oxygen barrier property is evaluated by oxygen permeability as described above. The oxygen permeability can be measured in accordance with JIS K7126 under conditions of 23°C x 50% RH using an oxygen permeability measuring device (manufactured by MOCON, product name "OX-TRAN2/22L"). In the present invention, when the oxygen permeability of the biodegradable resin layer 3 is 5 cc/ m2 day atm or less, it is considered to have oxygen barrier property, and when it is 1 cc/ m2 day atm or less, it is considered to be excellent.

また、包装材への加工時や使用時の折り曲げ操作による酸素バリア性については、試験片を直角四つ折りにした後の酸素透過率を上述と同様にして評価すればよい。 In addition, to evaluate the oxygen barrier properties caused by folding operations during processing into packaging materials or during use, the oxygen permeability after folding the test piece in four at right angles can be evaluated in the same manner as described above.

本発明のヒートシール性については、ヒートシール後の接着強度によって評価される。具体的には、10cm幅に切り出した本発明の生分解性ラミネート紙1を2枚準備し、生分解性樹脂層3が向かい合わせになるように重ねてヒートシールテスター(テスター産業社製、商品名「TP-701-B」)にセットし、一定温度、圧力0.1MPa、加熱時間3秒の条件下で熱接着加工(ヒートシール)する。ヒートシール後、生分解性ラミネート紙同士の層間における接着強度をJISZ0238に準拠して測定する。このとき、幅15mmの試験片を使用し、引張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」)を用いて、生分解性ラミネート紙1それぞれをクリップで掴み、引張速度300mm/分、180度で剥離したときの強さ(極大点荷重)を測定する。本発明では、接着強度が6N/15mm以上のときヒートシール性を有するものとし、15N/15mm以上のときは優れるものである。
本発明では、ヒートシール温度が90℃以下と低温でも接着強度6N/15mm以上が得られるものをヒートシール性に優れるものとする。
The heat sealability of the present invention is evaluated by the adhesive strength after heat sealing. Specifically, two sheets of the biodegradable laminated paper 1 of the present invention cut to a width of 10 cm are prepared, stacked so that the biodegradable resin layers 3 face each other, and set in a heat seal tester (manufactured by Tester Sangyo Co., Ltd., product name "TP-701-B"), and thermally bonded (heat sealed) under conditions of a constant temperature, a pressure of 0.1 MPa, and a heating time of 3 seconds. After heat sealing, the adhesive strength between the layers of the biodegradable laminated paper is measured in accordance with JIS Z0238. At this time, a test piece with a width of 15 mm is used, and a tensile tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T") is used to grip each biodegradable laminated paper 1 with a clip, and the strength (maximum point load) is measured when peeled off at a tensile speed of 300 mm/min and 180 degrees. In the present invention, a bonding strength of 6 N/15 mm or more is deemed to have heat sealability, and a bonding strength of 15 N/15 mm or more is deemed to be excellent.
In the present invention, a material that can provide an adhesive strength of 6 N/15 mm or more even at a heat sealing temperature as low as 90° C. or less is considered to have excellent heat sealability.

本発明の生分解性ラミネート紙は、様々な用途に用いることができ、中でも包装材に好適である。その理由として、ヒートシール性や酸素バリア性を兼ね備えたものであり、包装材への加工時や使用時の折り曲げ操作による酸素バリア性の低下が抑えられ、加えて、表面のすべり性をも有することが挙げられる。そのため、折り曲げ加工が必要なスタンディングパウチへの利用も可能となる。 The biodegradable laminated paper of the present invention can be used for a variety of purposes, and is particularly suitable for use as a packaging material. This is because it combines heat sealability and oxygen barrier properties, and the deterioration of the oxygen barrier properties caused by folding operations during processing into packaging materials and use is suppressed, and it also has a slippery surface. Therefore, it can also be used for standing pouches that require folding processing.

本発明の生分解性ラミネート紙1は、生分解性の素材で構成されているため、廃棄後は加水分解と微生物によって二酸化炭素と水といった無害な成分に分解される。廃棄処理として、例えばコンポストや埋め立てが可能である。 The biodegradable laminated paper 1 of the present invention is made of biodegradable materials, so after disposal it is decomposed by hydrolysis and microorganisms into harmless components such as carbon dioxide and water. Disposal methods that can be used include composting and landfilling.

〔実施例1~3、5~7、参考例4,8
表1に示すように、220℃設定のTダイ押出機を用いてヒートシール層/接着層/バリア層/接着層/ヒートシール層の3種5層を構成する厚さ50μmの樹脂積層体を溶融押出しによって形成した。次いで、得られた樹脂積層体が溶融状態のうちに坪量50g/m2の紙基材と貼り合わせ20℃の金属ロールとゴムロール間で圧着させることで、ラミネート紙を得た。このとき、ヒートシール層は厚さ19μm、接着層は厚さ3μm、バリア層は厚さ6μmであった。
なお、表中の層構造に示す数値は、質量部を示す。
[Examples 1 to 3, 5 to 7, Reference Examples 4 and 8 ]
As shown in Table 1, a 50 μm-thick resin laminate consisting of three types of five layers, heat seal layer/adhesive layer/barrier layer/adhesive layer/heat seal layer, was formed by melt extrusion using a T-die extruder set at 220° C. Next, the obtained resin laminate was laminated to a paper substrate with a basis weight of 50 g/m2 while in a molten state and pressed between a metal roll and a rubber roll at 20° C. to obtain a laminated paper. At this time, the heat seal layer was 19 μm thick, the adhesive layer was 3 μm thick, and the barrier layer was 6 μm thick.
The numerical values shown for the layer structures in the table indicate parts by mass.

参考例9〕
バリア層の厚さを3μm、ヒートシール層を20.5μmとしたこと以外は実施例1~3、5~7、参考例4,8と同様にしてラミネート紙を得た。
[ Reference Example 9]
Laminated papers were obtained in the same manner as in Examples 1 to 3, 5 to 7 and Reference Examples 4 and 8 , except that the thickness of the barrier layer was 3 μm and the thickness of the heat seal layer was 20.5 μm.

〔実施例10〕
紙基材の両面に、同じ層構造の樹脂積層体を貼り合わせたこと以外は、実施例1~3、5~7、参考例4,8と同様にしてラミネート紙を得た。
Example 10
Laminated papers were obtained in the same manner as in Examples 1 to 3, 5 to 7 and Reference Examples 4 and 8 , except that resin laminates having the same layer structure were laminated to both sides of the paper base material.

〔比較例1~5〕
表2に示すように、220℃設定のTダイ押出機を用いてヒートシール層/接着層/バリア層/接着層/ヒートシール層の3種5層を構成する厚さ50μm樹脂積層体を溶融押出しによって形成した。次いで、得られた樹脂積層体が溶融状態のうちに紙基材と貼り合わせ20℃の金属ロールとゴムロール間で圧着させることで、ラミネート紙を得た。このとき、ヒートシール層は厚さ19μm、接着層は厚さ3μm、バリア層は厚さ6μmであった。
なお、比較例4だけは、接着層、バリア層を含まず厚さ50μmのヒートシール層のみを紙基材と貼り合わせたものとした。
Comparative Examples 1 to 5
As shown in Table 2, a 50 μm thick resin laminate consisting of three types of five layers, heat seal layer/adhesive layer/barrier layer/adhesive layer/heat seal layer, was formed by melt extrusion using a T-die extruder set at 220° C. Next, the obtained resin laminate was attached to a paper substrate while in a molten state and pressed between a metal roll and a rubber roll at 20° C. to obtain a laminated paper. At this time, the heat seal layer was 19 μm thick, the adhesive layer was 3 μm thick, and the barrier layer was 6 μm thick.
In addition, only in Comparative Example 4, no adhesive layer or barrier layer was included, and only the heat seal layer having a thickness of 50 μm was bonded to the paper substrate.

〔比較例6〕
表2に示すように、220℃設定のTダイ押出機を用いてヒートシール層/接着層/バリア層の3種3層を構成する樹脂積層体を溶融押出しによって形成した。次いで、得られた樹脂積層体が溶融状態のうちにバリア層と紙基材とが接するようにして紙基材と貼り合わせ20℃の金属ロールとゴムロール間で圧着させることで、ラミネート紙を得た。このとき、ヒートシール層は厚さ19μm、接着層は厚さ3μm、バリア層は厚さ6μmであった。
Comparative Example 6
As shown in Table 2, a resin laminate consisting of three types of three layers, a heat seal layer, an adhesive layer, and a barrier layer, was formed by melt extrusion using a T-die extruder set at 220° C. Next, the obtained resin laminate was attached to a paper substrate while in a molten state so that the barrier layer and the paper substrate were in contact with each other, and the laminated paper was obtained by pressure bonding between a metal roll and a rubber roll at 20° C. At this time, the heat seal layer was 19 μm thick, the adhesive layer was 3 μm thick, and the barrier layer was 6 μm thick.

以下、使用した材料を示す。
〔ヒートシール層〕
ポリ乳酸A:
浙江海正生物材料社製、商品名「REVODE190」、D体0.5質量%
ポリ乳酸B:
浙江海正生物材料社製、商品名「REVODE110」、D体2.5質量%
PBS(ポリブチレンサクシネート):
三菱ケミカル社製、商品名「BiOPBSFZ91PB」
PBAT(ポリブチレンアジペートテレフタレート):
BASFジャパン社製、商品名「Ecoflex C1200」
〔接着層〕
変性ポリエステル系樹脂A:
アジピン酸/1,4-ブタンジオール縮重合物(BASF社製「Ecoflex C1200」)100質量部、無水マレイン酸0.1部、ラジカル開始剤として2, 5-ジメチル-2,5-ビス(t-ブチルオキシ)ヘキサン(日本油脂社製「パーヘ キサ25B」)0.01質量部をドライブレンドした後、これを二軸押出機にて下記 条件で溶融混練し、ストランド状に押出し、水冷後、ペレタイザーでカットし、円柱 形ペレット形状の極性基を有するポリエステル系樹脂
変性ポリエステル系樹脂B:
三井化学社製、商品名「アドマーSF600」
〔酸素バリア層〕
BVOH(ブテンジオールビニルアルコール共重合体):
三菱ケミカル社製、商品名「G-Polymer BVE8049P」
EVOH(エチレン-ビニルアルコール共重合体):
クラレ社製、商品名「エバールF101B」
〔紙基材〕
クラフト紙:坪量50g/m
The materials used are shown below.
[Heat seal layer]
Polylactic acid A:
Zhejiang Haizheng Biomaterials Co., Ltd., product name "REVODE190", D-isomer 0.5% by mass
Polylactic acid B:
Zhejiang Haizheng Biomaterials Co., Ltd., product name "REVODE110", D-isomer 2.5% by mass
PBS (Polybutylene succinate):
Manufactured by Mitsubishi Chemical Corporation, product name "BiOPBSFZ91PB"
PBAT (Polybutylene adipate terephthalate):
BASF Japan, product name "Ecoflex C1200"
[Adhesive Layer]
Modified polyester resin A:
100 parts by mass of adipic acid/1,4-butanediol condensation polymer ("Ecoflex C1200" manufactured by BASF), 0.1 parts by mass of maleic anhydride, and 0.01 parts by mass of 2,5-dimethyl-2,5-bis(t-butyloxy)hexane ("Perhexa 25B" manufactured by NOF Corporation) as a radical initiator were dry-blended, and the mixture was melt-kneaded under the following conditions in a twin-screw extruder, extruded into a strand shape, cooled with water, and cut with a pelletizer to obtain a cylindrical pellet-shaped polyester resin having a polar group. Modified polyester resin B:
Mitsui Chemicals, Inc., product name "Admer SF600"
[Oxygen Barrier Layer]
BVOH (butenediol vinyl alcohol copolymer):
Mitsubishi Chemical Corporation, product name "G-Polymer BVE8049P"
EVOH (ethylene-vinyl alcohol copolymer):
Manufactured by Kuraray Co., Ltd., product name "Eval F101B"
[Paper base material]
Kraft paper: basis weight 50 g/ m2

得られた樹脂積層体又はラミネート紙について、以下に示す通り、層間密着性、紙基材との密着性、ヒートシール性、酸素透過度、表面のすべり性及び生分解性の評価を行った。結果を表1及び表2に示す。
なお、比較例4は、接着層及びバリア層を有さず、折り曲げ前の酸素透過率が×評価であったため、層間密着性及び折り曲げ後の酸素透過率の評価は行っていない。また、比較例6は、紙と樹脂積層体との接着性が得られなかったため、ヒートシール性、酸素透過率、表面のすべり性及び生分解性の評価を行うことができず、測定不能とした。
The obtained resin laminates or laminated papers were evaluated for interlayer adhesion, adhesion to the paper substrate, heat sealability, oxygen permeability, surface slipperiness, and biodegradability as described below. The results are shown in Tables 1 and 2.
In Comparative Example 4, no adhesive layer or barrier layer was included, and the oxygen permeability before folding was rated as x, so that the interlayer adhesion and the oxygen permeability after folding were not evaluated. In Comparative Example 6, the adhesion between the paper and the resin laminate was not obtained, so that the heat sealability, oxygen permeability, surface slipperiness, and biodegradability could not be evaluated, and therefore the results were deemed unmeasurable.

〔層間密着性〕
得られた樹脂積層体から15mm幅の短冊状の試験片を切り出し、ヒートシール層とそれ以外の4層(接着層/バリア層/接着層/ヒートシール層)との層間密着性評価した。測定には、引張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」)を使用し、ヒートシール層とそれ以外の4層(接着層/バリア層/接着層/ヒートシール層)とをそれぞれクリップで掴み、引張速度300mm/分、180度で剥離したときの強さを測定し、以下の基準で評価した。また、比較例6は、ヒートシール層とそれ以外の2層(接着層/バリア層)との層間密着性を評価した。

○ 5N/15mm以上
× 5N/15mm未満
[Interlayer adhesion]
A 15 mm wide rectangular test piece was cut out from the obtained resin laminate, and the interlayer adhesion between the heat seal layer and the other four layers (adhesive layer/barrier layer/adhesive layer/heat seal layer) was evaluated. For the measurement, a tensile tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T") was used, and the heat seal layer and the other four layers (adhesive layer/barrier layer/adhesive layer/heat seal layer) were each held with a clip, and the strength when peeled at a tensile speed of 300 mm/min and 180 degrees was measured, and the evaluation was based on the following criteria. In Comparative Example 6, the interlayer adhesion between the heat seal layer and the other two layers (adhesive layer/barrier layer) was evaluated.

○ 5N/15mm or more × Less than 5N/15mm

〔紙との密着性〕
得られたラミネート紙から15mm幅の短冊状の試験片を切り出し、張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」))を用いて、紙基材と樹脂積層体とをそれぞれクリップで掴み、引張速度100mm/分、180度で剥離したときの状態を以下の基準で評価した。

○ 紙基材が全面的に樹脂積層体へ転写
× 樹脂積層体への紙基材の転写なし
[Adhesion to paper]
A 15 mm wide rectangular test piece was cut out from the obtained laminated paper, and using a tension tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T"), the paper base material and the resin laminate were each held with a clip, and the condition when peeled off at 180 degrees at a tensile speed of 100 mm/min was evaluated according to the following criteria.

○ The paper base material is completely transferred to the resin laminate. × The paper base material is not transferred to the resin laminate.

〔ヒートシール性〕
得られたラミネート紙から幅10cmの試験片を2枚切り出し、樹脂積層体が向かい合わせになるように重ねてヒートシールテスター(テスター産業社製、商品名「TP-701-B」)にセットし、80℃~120℃の範囲で一定温度、圧力0.1MPa、加熱時間3秒の条件下で熱接着加工(ヒートシール)した。ヒートシール後、ラミネート紙同士の層間における接着強度をJISZ0238に準拠して測定した。このとき、幅15mmの試験片を使用し、引張試験機(オリエンテック社製、商品名「テンシロンRTA-1T」))を用いて、ラミネート紙それぞれをクリップで掴み、引張速度300mm/分、180度で剥離したときの強さ(極大点荷重)を測定し、以下の基準で評価した。表1及び2には、接着強度6N/15mm、15N/15mmが得られた各ヒートシール温度を示す。

○ 接着強度6N/15mm以上が得られる加工温度が90℃以下
△ 接着強度6N/15mm以上が得られる加工温度が90℃超過100℃以下
× 接着強度6N/15mm以上が得られる加工温度が100℃超過
[Heat sealability]
Two test pieces with a width of 10 cm were cut out from the obtained laminated paper, and the resin laminates were stacked so that they faced each other and set in a heat seal tester (manufactured by Tester Sangyo Co., Ltd., product name "TP-701-B"), and thermal adhesion processing (heat sealing) was performed under conditions of a constant temperature in the range of 80 ° C. to 120 ° C., a pressure of 0.1 MPa, and a heating time of 3 seconds. After heat sealing, the adhesive strength between the layers of the laminated paper was measured in accordance with JIS Z0238. At this time, a test piece with a width of 15 mm was used, and a tensile tester (manufactured by Orientec Co., Ltd., product name "Tensilon RTA-1T") was used to grip each of the laminated papers with a clip, and the strength (maximum point load) when peeled at a tensile speed of 300 mm / min and 180 degrees was measured, and evaluated according to the following criteria. Tables 1 and 2 show the heat sealing temperatures at which adhesive strengths of 6 N / 15 mm and 15 N / 15 mm were obtained.

○ The processing temperature at which an adhesive strength of 6N/15mm or more can be obtained is 90°C or less. △ The processing temperature at which an adhesive strength of 6N/15mm or more can be obtained is between 90°C and 100°C or less. × The processing temperature at which an adhesive strength of 6N/15mm or more can be obtained is over 100°C.

〔酸素透過率〕
得られた樹脂積層体から幅10.8cm、長さ10.8cmの試験片を切り出し、JIS K7126に準拠し、23度×50%RHの条件下で、酸素透過率測定装置(MOCON社製、商品名「OX-TRAN2/22L」)を用いて酸素透過度を測定し、以下の基準で評価した。このとき、試験片を直角四つ折りにした前後の酸素透過率をそれぞれ測定した。

○ 1cc/m・day・atm以下
△ 1cc/m・day・atm超過、5cc/m2・day・atm以下
× 5cc/m・day・atm超過
[Oxygen permeability]
A test piece having a width of 10.8 cm and a length of 10.8 cm was cut out from the obtained resin laminate, and the oxygen permeability was measured using an oxygen permeability measuring device (manufactured by MOCON, product name "OX-TRAN2/22L") under the conditions of 23 degrees and 50% RH in accordance with JIS K7126, and evaluated according to the following criteria. At this time, the oxygen permeability was measured before and after folding the test piece in four at right angles.

○ 1cc/ m2 -day-atm or less △ Over 1cc/ m2 -day-atm, 5cc/m2-day-atm or less × Over 5cc/ m2 -day-atm

〔表面のすべり性〕
得られたラミネート紙を樹脂積層体が向かい合わせになるように2枚重ねて、上から指で押さえ水平方向において左右に動かした際の状態を以下の基準で評価した。

○ 容易に動く
× 2枚が同時に動いてしまう
[Surface slipperiness]
Two sheets of the obtained laminate paper were stacked so that the resin laminates faced each other, pressed down with a finger from above and moved horizontally from side to side. The state was evaluated according to the following criteria.

○ Easy to move × Two pieces move at the same time

〔生分解性〕
得られた樹脂積層体を粉砕した試験材料30gと植種源のコンポストとを容器内で混合したものと、対照材料のセルロースとコンポストとを容器内で混合したものとを、温度58±2℃、湿度50%に保たれた状態で45日間静置し、その後の生分解度をJISK6953-1に準拠して求め、以下の基準で評価した。

○ 生分解度70%以上
× 生分解度70%未満
[Biodegradability]
The obtained resin laminate was pulverized, and 30 g of the test material was mixed with compost as an inoculant source in a container, and a control material, cellulose and compost, was mixed in a container. The mixture was left at rest for 45 days under conditions maintained at a temperature of 58±2°C and a humidity of 50%, and the degree of biodegradation thereafter was determined in accordance with JIS K6953-1 and evaluated according to the following criteria.

○ Biodegradability 70% or more × Biodegradability less than 70%

Figure 0007503929000001

Figure 0007503929000001

Figure 0007503929000002
Figure 0007503929000002

表1に示すように、実施例1~3、5~7では、酸素バリア性とヒートシール性とを兼ね備え、さらに、折り曲げ後でも酸素バリア性を維持でき、表面のすべり性をも有するラミネート紙が得られた。 As shown in Table 1, in Examples 1 to 3 and 5 to 7 , laminated papers were obtained that had both oxygen barrier properties and heat sealability, and further, were able to maintain their oxygen barrier properties even after bending, and also had a smooth surface.

一方、表2に示すように、比較例1は、生分解性樹脂層としてポリ乳酸単独、比較例2は脂肪族ポリエステル単独で用いものであり、折り曲げ後の酸素バリア性やヒートシール性に劣るものであった。
比較例3は、生分解性樹脂層として脂肪族芳香族ポリエステルを単独で用いたものであるが、表面のすべり性が悪く、包装材としては適さないものであった。
生分解性樹脂層として接着層およびバリア層を有さない比較例4では、ヒートシール性を有するものの、酸素バリア性に劣るものであった。
比較例5は、バリア層としてEVOHを用いたものであるが、生分解性が得られなかった。
比較例6は、バリア層と紙基材とを直接貼り合せたものであり、バリア層と紙基材との接着性が得られず、包装材として適さないものであった。
On the other hand, as shown in Table 2, Comparative Example 1 used only polylactic acid as the biodegradable resin layer, and Comparative Example 2 used only aliphatic polyester, and both had poor oxygen barrier properties and heat sealability after bending.
In Comparative Example 3, an aliphatic aromatic polyester was used alone as the biodegradable resin layer, but the surface had poor slipperiness and was not suitable for use as a packaging material.
In Comparative Example 4, which did not have an adhesive layer or a barrier layer as a biodegradable resin layer, the heat sealability was good, but the oxygen barrier property was poor.
In Comparative Example 5, EVOH was used as the barrier layer, but biodegradability was not obtained.
In Comparative Example 6, the barrier layer and the paper base material were directly bonded to each other, and no adhesion between the barrier layer and the paper base material was obtained, making the product unsuitable for use as a packaging material.

このように、本発明は、紙基材と生分解性樹脂層とを有する生分解性の積層体であって、各層間の密着性に優れるとともに、酸素バリア性とヒートシール性とを兼ね備え、さらに、包装材への加工時や使用時の折り曲げ操作による酸素バリア性の低下が抑えられた、包装材に適した生分解性ラミネート紙が得られる。 In this way, the present invention provides a biodegradable laminated paper suitable for use as a packaging material, which is a biodegradable laminate having a paper base material and a biodegradable resin layer, and which has excellent adhesion between the layers, as well as oxygen barrier properties and heat sealability, and in which the deterioration of oxygen barrier properties due to folding operations during processing into packaging materials or use is suppressed.

1 生分解性ラミネート紙
2 紙基材
3 生分解性樹脂層
3a 生分解性ヒートシール層
3b 生分解性接着層
3c 生分解性酸素バリア層
Reference Signs List 1 Biodegradable laminated paper 2 Paper substrate 3 Biodegradable resin layer 3a Biodegradable heat seal layer 3b Biodegradable adhesive layer 3c Biodegradable oxygen barrier layer

Claims (3)

紙基材と、紙基材の片面又は両面に積層された生分解性樹脂層とからなり、
前記生分解性樹脂層は、生分解性ヒートシール層と、生分解性接着層と、生分解性酸素バリア層とを有し、かつ前記生分解性酸素バリア層の両面に前記生分解性接着層を介して前記生分解性ヒートシール層が積層されており、
前記生分解性ヒートシール層は、ポリ乳酸と脂肪族芳香族ポリエステル系樹脂とが、質量比で80/20~10/90の割合で含有してなり、
前記生分解性酸素バリア層は、厚みが5μm以上であり、ブテンジオールビニルアルコール共重合体を含むことを特徴とする生分解性ラミネート紙。
The present invention comprises a paper base material and a biodegradable resin layer laminated on one or both sides of the paper base material,
the biodegradable resin layer has a biodegradable heat seal layer, a biodegradable adhesive layer, and a biodegradable oxygen barrier layer, and the biodegradable heat seal layers are laminated on both sides of the biodegradable oxygen barrier layer via the biodegradable adhesive layers;
the biodegradable heat seal layer contains polylactic acid and an aliphatic aromatic polyester resin in a mass ratio of 80/20 to 10/90;
The biodegradable oxygen barrier layer has a thickness of 5 μm or more and contains a butenediol-vinyl alcohol copolymer.
紙基材と、紙基材の片面又は両面に積層された生分解性樹脂層とからなり、
前記生分解性樹脂層は、生分解性ヒートシール層と、生分解性接着層と、生分解性酸素バリア層とを有し、かつ前記生分解性酸素バリア層の両面に前記生分解性接着層を介して前記生分解性ヒートシール層が積層されており、
前記生分解性ヒートシール層は、ポリ乳酸と脂肪族ポリエステル系樹脂とが、質量比で50/50~10/90の割合で含有してなり、
前記生分解性酸素バリア層は、厚みが5μm以上であり、ブテンジオールビニルアルコール共重合体を含むことを特徴とする生分解性ラミネート紙。
The present invention comprises a paper base material and a biodegradable resin layer laminated on one or both sides of the paper base material,
the biodegradable resin layer has a biodegradable heat seal layer, a biodegradable adhesive layer, and a biodegradable oxygen barrier layer, and the biodegradable heat seal layers are laminated on both sides of the biodegradable oxygen barrier layer via the biodegradable adhesive layers;
the biodegradable heat seal layer contains polylactic acid and an aliphatic polyester resin in a mass ratio of 50/50 to 10/90;
The biodegradable oxygen barrier layer has a thickness of 5 μm or more and contains a butenediol-vinyl alcohol copolymer.
請求項1又は2のいずれか1項に記載の生分解性ラミネート紙を用いてなることを特徴とする包装材。
A packaging material comprising the biodegradable laminated paper according to claim 1 or 2 .
JP2020062754A 2020-03-31 2020-03-31 Biodegradable laminated paper and packaging materials Active JP7503929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020062754A JP7503929B2 (en) 2020-03-31 2020-03-31 Biodegradable laminated paper and packaging materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020062754A JP7503929B2 (en) 2020-03-31 2020-03-31 Biodegradable laminated paper and packaging materials

Publications (2)

Publication Number Publication Date
JP2021160155A JP2021160155A (en) 2021-10-11
JP7503929B2 true JP7503929B2 (en) 2024-06-21

Family

ID=78004401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062754A Active JP7503929B2 (en) 2020-03-31 2020-03-31 Biodegradable laminated paper and packaging materials

Country Status (1)

Country Link
JP (1) JP7503929B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080238A1 (en) * 2020-10-16 2022-04-21 デンカ株式会社 Multilayer resin sheet and molding container
KR102460102B1 (en) * 2021-10-13 2022-11-01 하호 Eco-friendly packaging material and manufacturing method thereof
WO2023080498A1 (en) * 2021-11-02 2023-05-11 에스케이마이크로웍스 주식회사 Multi-layer barrier film, method for producing same, and packaging material including same
EP4434739A1 (en) 2021-11-18 2024-09-25 All4labels Gráfica do Brasil Ltda. Biodegradable packaging and method for manufacturing same
JPWO2023145687A1 (en) * 2022-01-28 2023-08-03
JP7285387B1 (en) * 2023-03-07 2023-06-01 日本製紙株式会社 heat seal paper
KR20240154935A (en) * 2023-04-19 2024-10-28 에스케이마이크로웍스 주식회사 Multi-layer film, display divices, and packaging materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221811A (en) 2007-03-16 2008-09-25 Dainippon Printing Co Ltd Heat-sealable film having barrier functionality
JP2010069766A (en) 2008-09-19 2010-04-02 Dainippon Printing Co Ltd Paper container
JP2011184599A (en) 2010-03-09 2011-09-22 Fujimori Kogyo Co Ltd Resin film having biodegradability and resin film laminate having biodegradability
JP2019181943A (en) 2018-03-30 2019-10-24 三菱ケミカル株式会社 Biodegradable laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008221811A (en) 2007-03-16 2008-09-25 Dainippon Printing Co Ltd Heat-sealable film having barrier functionality
JP2010069766A (en) 2008-09-19 2010-04-02 Dainippon Printing Co Ltd Paper container
JP2011184599A (en) 2010-03-09 2011-09-22 Fujimori Kogyo Co Ltd Resin film having biodegradability and resin film laminate having biodegradability
JP2019181943A (en) 2018-03-30 2019-10-24 三菱ケミカル株式会社 Biodegradable laminate

Also Published As

Publication number Publication date
JP2021160155A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP7503929B2 (en) Biodegradable laminated paper and packaging materials
JP4417216B2 (en) Biodegradable laminated sheet
JP4652332B2 (en) Method for producing polyglycolic acid resin multilayer sheet
KR101674627B1 (en) Heat-sealable biodegradable packaging material, a method for its manufacture, and a product package made from the material
JP5710106B2 (en) Improving the performance of current renewable films using functional polymer coatings
WO2019189745A1 (en) Biodegradable laminate
US11584110B2 (en) Multi-layered packaging films
JP4987412B2 (en) Film for deep drawing, bottom material for deep drawing packaging, and deep drawing packaging
JP2005068232A (en) Biodegradable blend resin and laminated film composed of the biodegradable blend resin
JP4522868B2 (en) Biodegradable multilayer film with sealing function
JP4794187B2 (en) Film cutter and storage box with film cutter
EP1598399B1 (en) Aliphatic polyester composition films and multilayer films produced therefrom
JP2013103438A (en) Sheet and container using the same
JP5214271B2 (en) Polylactic acid resin composition and laminate using the same
JP2006130847A (en) Biaxially stretched polyester multilayered film and its manufacturing method
JP7271964B2 (en) Resin composition and laminate using the resin composition
JP5620190B2 (en) Biodegradable resin laminate
TWI855755B (en) Environmentally friendly laminate and packaging material comprising the same
WO2022075233A1 (en) Multilayer film and packaging material
JP5890689B2 (en) Biodegradable laminated paper
KR20230063812A (en) Multi-layer biodegradable barrier film, preperation method thereof, and environment-friendly packing material comprising the same
KR20230063811A (en) Multi-layer biodegradable barrier film, preperation method thereof, and environment-friendly packing material comprising the same
KR20230065587A (en) Multi-layer barrier film, preperation method thereof, and packing material comprising the same
JP2006341616A (en) Method for producing biodegradable laminate
TW202406751A (en) Environmentally friendly laminate and packaging material comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240611

R150 Certificate of patent or registration of utility model

Ref document number: 7503929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150