[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7503475B2 - Method for manufacturing an optical reflecting element for use in an optical imaging device - Google Patents

Method for manufacturing an optical reflecting element for use in an optical imaging device Download PDF

Info

Publication number
JP7503475B2
JP7503475B2 JP2020181638A JP2020181638A JP7503475B2 JP 7503475 B2 JP7503475 B2 JP 7503475B2 JP 2020181638 A JP2020181638 A JP 2020181638A JP 2020181638 A JP2020181638 A JP 2020181638A JP 7503475 B2 JP7503475 B2 JP 7503475B2
Authority
JP
Japan
Prior art keywords
light reflecting
reflecting element
support members
adhesive
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020181638A
Other languages
Japanese (ja)
Other versions
JP2022072280A (en
Inventor
誠 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asukanet Co Ltd
Original Assignee
Asukanet Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asukanet Co Ltd filed Critical Asukanet Co Ltd
Priority to JP2020181638A priority Critical patent/JP7503475B2/en
Publication of JP2022072280A publication Critical patent/JP2022072280A/en
Application granted granted Critical
Publication of JP7503475B2 publication Critical patent/JP7503475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、一側の面に垂直に所定間隔で平行配置された多数の光反射層を有する対となる光反射素子をそれぞれの光反射層が直交するようにして配置した光学結像装置に用いる光反射素子の製造方法に関する。 The present invention relates to a method for manufacturing a light reflecting element for use in an optical imaging device in which a pair of light reflecting elements each having a number of light reflecting layers arranged in parallel at a predetermined interval perpendicular to one side of the device are arranged so that the light reflecting layers are perpendicular to each other.

出願人は、特許文献1に示すように、透明平板の内部に、透明平板の一方側の面に垂直に多数かつ帯状の平面光反射層を一定のピッチで並べて形成した第1及び第2の光制御パネルを用い、第1及び第2の光制御パネルのそれぞれの一面側を、平面光反射層を直交させて向かい合わせて形成した光学結像装置を提案した。そして、特許文献2には、対象物を反対側の面対称となる位置に実像として結像させるための光学結像装置の製造方法が開示されている。また大型の光学結像装置については特許文献3、4に開示されている。 As shown in Patent Document 1, the applicant proposed an optical imaging device that uses first and second light control panels formed by arranging multiple band-shaped planar light reflecting layers at a constant pitch perpendicular to one side of a transparent flat plate inside the transparent flat plate, and forms one side of each of the first and second light control panels facing each other with the planar light reflecting layers perpendicular to each other. Patent Document 2 discloses a manufacturing method for an optical imaging device that forms a real image of an object at a plane-symmetrical position on the opposite side. Patent Documents 3 and 4 disclose large-scale optical imaging devices.

国際公開第2009/131128号International Publication No. 2009/131128 特許第5085767号公報Patent No. 5085767 国際公開第2013/179405号International Publication No. 2013/179405 特開2013-101230号公報JP 2013-101230 A

しかしながら、特許文献1、2に記載の光学結像装置の製造方法においては、光学結像装置に使用する光反射素子(光制御パネル)の精度が多少相違しても、一枚の光学結像装置では隅の部分は使用しないので問題は生じなかったが、特許文献3、4に記載のように複数の光学結像装置を貼り合わせて(タイリングして)大型の光学結像装置を製造すると、個々の光学結像装置の端面を正確に一致させる必要があった。
更に、光学結像装置が一応完成した後に縦横の寸法を合わせるために研磨すると、光反射素子が欠けたり、光学結像装置を構成する光反射素子がずれたりするなどの問題が生じていた。
However, in the manufacturing methods for optical imaging devices described in Patent Documents 1 and 2, even if the accuracy of the light reflecting elements (light control panels) used in the optical imaging devices differed slightly, no problems arose because the corners of a single optical imaging device were not used.However, when manufacturing a large optical imaging device by bonding (tiling) multiple optical imaging devices together as described in Patent Documents 3 and 4, it was necessary to accurately align the end faces of each optical imaging device.
Furthermore, when the optical imaging device is polished to adjust the length and width after it has been completed, problems occur such as chipping of the light reflecting elements or misalignment of the light reflecting elements that constitute the optical imaging device.

本発明はかかる事情に鑑みてなされたもので、光反射素子の端面の寸法精度を向上し、複数の光反射素子又は光学結像装置を並べても、隣合う光反射素子又は光学結像装置の光反射層が正しく並んで鮮明な実像を提供できる光学結像装置に用いる光反射素子の製造方法を提供することを目的とする。 The present invention was made in consideration of these circumstances, and aims to provide a method for manufacturing a light reflecting element for use in an optical imaging device that improves the dimensional accuracy of the end face of the light reflecting element, and that can provide a clear real image by correctly aligning the light reflecting layers of adjacent light reflecting elements or optical imaging devices even when multiple light reflecting elements or optical imaging devices are arranged side by side.

前記目的に沿う本発明に係る光反射素子の製造方法は、一側空間に配置された対象物の像を他側空間に実像として形成する光学結像装置に用いる光反射素子の製造方法であって、
少なくとも一方の面に光反射層が形成された複数(通常は200~1000枚程度)の矩形(正方形が好ましい)透明板を、前記光反射層に対して直交する方向に難剥離性の第1の接着剤を介して積層固着して原積層体を形成し、該原積層体の厚み方向上下の面Aと面B、及びこれに直交して対向する面Cと面Dにそれぞれ第1~第4の支持部材を剥離可能な第2の接着剤を介して押圧固着した第1の積層ブロックを形成する第1工程と、
前記第1の積層ブロックを前記光反射層と直交する方向に前記第1~第4の支持部材と共に等間隔で切断して光反射素子原材を製造する第2工程と、
切断した前記光反射素子原材の切断面を前記第1~第4の支持部材の切断片が固着された状態で研磨する(これにより製造された光反射素子原材の厚みをtとする)第3工程と、
前記第3工程で研磨され、前記第1~第4の支持部材の切断片を除去した光反射素子材を複数枚重ねて剥離可能な第3の接着剤で固着して第2の積層ブロックを形成する第4工程と、
前記第2の積層ブロックの対向する面C′、面D′を研磨して、前記光反射素子材の幅を規定値に合わせる第5工程と、
前記第3の接着剤を解いて前記光反射素子を形成する第6工程とを有する。
The present invention provides a method for manufacturing an optical reflecting element for use in an optical imaging device that forms an image of an object disposed in one space as a real image in the other space, the method comprising the steps of:
a first step of forming a first laminated block by stacking and fixing a plurality of (usually about 200 to 1000) rectangular (preferably square) transparent plates, each having a light reflecting layer formed on at least one surface, via a first adhesive that is difficult to peel, in a direction perpendicular to the light reflecting layer, and pressing and fixing first to fourth support members, via a second adhesive that is peelable, to surfaces A and B at the top and bottom in the thickness direction of the original laminate, and surfaces C and D opposing the surfaces C and D perpendicularly thereto;
a second step of cutting the first laminated block together with the first to fourth support members at equal intervals in a direction perpendicular to the light reflecting layer to manufacture a light reflecting element raw material;
a third step of polishing the cut surfaces of the cut raw light reflecting element with the cut pieces of the first to fourth support members fixed thereto (the thickness of the raw light reflecting element thus produced is denoted by t);
a fourth step of stacking a plurality of light reflecting element materials, which have been polished in the third step and from which the cut pieces of the first to fourth support members have been removed, and bonding the stacked light reflecting element materials with a third adhesive that is removable, to form a second laminated block;
a fifth step of polishing the opposing surfaces C' and D' of the second laminate block to adjust the width of the light reflecting element material to a specified value;
and a sixth step of removing the third adhesive to form the light reflecting element.

この後、2枚の光反射素子をそれぞれの光反射層が平面視して直交するようにして透明な第5の接着剤で接合して光学結像装置とすることも可能であり、光反射素子の端部を合わせてより大型の光反射素子を作り、この後2枚の大型の光反射素子をその反射面(光反射層)を直交させて接合し大型の光学結像装置を形成することもできる。また、複数枚の光学結像装置を端部を当接させながら並べて大型の光学結像装置とすることもできる。
本発明に係る光反射素子の製造方法において、前記第4工程の後、前記第5工程の前に、前記第2の積層ブロックの研磨する前記面C′及び前記面D′に直交して囲む面E~面Hの少なくとも端部を剥離可能な第4の接着剤で補強してもよい(研磨面周囲の補強工程4A)。
Thereafter, two light reflecting elements can be bonded with a transparent fifth adhesive so that the light reflecting layers of each element are perpendicular to each other in a plan view to form an optical imaging device, or the ends of the light reflecting elements can be joined to form a larger light reflecting element, and then two large light reflecting elements can be bonded with their reflecting surfaces (light reflecting layers) perpendicular to each other to form a large optical imaging device. Also, a large optical imaging device can be formed by arranging a plurality of optical imaging devices with their ends abutting each other.
In the manufacturing method of the light reflecting element of the present invention, after the fourth step and before the fifth step, at least the ends of faces E to H of the second laminate block which are perpendicular to and surround the polished faces C' and D' may be reinforced with a peelable fourth adhesive (reinforcing step 4A around the polished faces).

本発明に係る光反射素子の製造方法において、前記第5工程の前に前記面C′及び前記面D′に直交して囲む面E~面Hに剥離可能な第4の接着剤で第5~第8の補強用の支持部材を接合し、前記第2の積層ブロックの疵の発生を防止するのが好ましい。この場合は
研磨面周囲の補強工程4Aは行わない。
In the manufacturing method of the light reflecting element according to the present invention, it is preferable to bond fifth to eighth reinforcing support members to faces E to H that are orthogonal to and surround face C' and face D' with a fourth peelable adhesive before the fifth step, thereby preventing the occurrence of scratches in the second laminated block. In this case, the reinforcing step 4A around the polished face is not performed.

本発明に係る光反射素子の製造方法において、前記第2の積層ブロックを囲む又は挟持する前記対向する第6、第8の補強用の支持部材が前記対向する第5、第7の補強用の支持部材を挟んだ状態で配置されているのが好ましい。 In the method for manufacturing a light reflecting element according to the present invention, it is preferable that the opposing sixth and eighth reinforcing support members surrounding or sandwiching the second laminated block are arranged in a state where they sandwich the opposing fifth and seventh reinforcing support members.

本発明に係る光反射素子の製造方法において、前記原積層体の厚みをhとすると、研磨された前記第2の積層ブロックから得られた前記光反射素子の幅wは、h±0.5mmの範囲にあって、前記光反射素子の平面視した形状は正方形であるのが好ましい。これによって光学結像装置に使用する対となる光反射素子を同時に製造できる。 In the method for manufacturing a light reflecting element according to the present invention, if the thickness of the original laminate is h, it is preferable that the width w of the light reflecting element obtained from the polished second laminate block is in the range of h±0.5 mm, and the shape of the light reflecting element in a plan view is square. This allows paired light reflecting elements to be used in an optical imaging device to be manufactured simultaneously.

また、本発明に係る光反射素子の製造方法において、前記第1、第2の支持部材の切断片の除去は、前記第5工程の後に行われる場合もある。
なお、本発明において、第1の接着剤(第5の接着剤)は例えば自硬性又は熱硬化性を有する熱硬化性樹脂系、エポキシ系、エラストマー系などの接着剤が利用できるが、矩形透明板を強固に接合できるものであれば他の接着剤であってもよい。また、第2~第4の接着剤は加熱(例えば、80℃に加熱)すると溶ける熱可塑性の接着剤、水溶性の接着剤を使用するのがよいが、本発明はこれら接着剤の種類に限定されない。
In the method for manufacturing a light reflecting element according to the present invention, the cut pieces of the first and second support members may be removed after the fifth step.
In the present invention, the first adhesive (fifth adhesive) may be, for example, a thermosetting resin-based adhesive having self-hardening or thermosetting properties, an epoxy-based adhesive, an elastomer-based adhesive, or other adhesive that can firmly bond the rectangular transparent plate may be used. In addition, the second to fourth adhesives are preferably a thermoplastic adhesive that melts when heated (for example, heated to 80° C.) or a water-soluble adhesive, but the present invention is not limited to these types of adhesives.

本発明に係る光反射素子の製造方法においては、光反射素子材の端部を研磨する場合、矩形透明板の欠けやずれなどが発生し難く、寸法精度の高い光反射素子を製造できる。これによって大型の光学結像装置を容易に製造できる。即ち、同じ寸法の光反射素子を製造できるので、複数の光反射素子を並べて大型の光反射素子を製造でき、この光反射素子を各光反射層が直交するように貼り合わせて大型の光学結像装置を構成することができる。
また、各光反射素子の精度が高いので、例えば、4枚、9枚、16枚の光反射素子を平面上に並べてより大型の光反射素子を形成できる。更に、光反射素子を組み合わせた光学結像装置をタイリングして大型の光学結像装置を製造することも容易となる。
In the manufacturing method of the light reflecting element according to the present invention, when the end of the light reflecting element material is polished, chipping or misalignment of the rectangular transparent plate is unlikely to occur, and a light reflecting element with high dimensional accuracy can be manufactured. This makes it easy to manufacture a large optical imaging device. In other words, since light reflecting elements of the same size can be manufactured, a large light reflecting element can be manufactured by arranging multiple light reflecting elements, and this light reflecting element can be bonded so that each light reflecting layer is perpendicular to each other to form a large optical imaging device.
In addition, because the precision of each light reflecting element is high, for example, 4, 9, or 16 light reflecting elements can be arranged on a plane to form a larger light reflecting element. Furthermore, it is also easy to manufacture a large optical imaging device by tiling optical imaging devices that combine light reflecting elements.

(A)はガラス板材の説明図、(B)は本発明の一実施の形態に係る光反射素子の製造方法の第1工程の説明図である。FIG. 2A is an explanatory diagram of a glass plate, and FIG. 2B is an explanatory diagram of a first step of a manufacturing method for a light reflecting element according to one embodiment of the present invention. 同光反射素子の製造方法の第2工程の説明図である。4 is an explanatory diagram of a second step of the manufacturing method of the light reflecting element. FIG. (A)、(B)はそれぞれ同第2工程で製造された光反射素子原材の斜視図、側面図である。13A and 13B are a perspective view and a side view, respectively, of the light reflecting element raw material manufactured in the second step. (A)は同光反射素子原材から第1~第4の支持部材の切断片を除去した光反射素子材の斜視図、(B)は同光反射素子材を複数枚重ねて形成した第2の積層ブロックの斜視図である。(A) is an oblique view of the light reflecting element material from which the cut pieces of the first to fourth support members have been removed, and (B) is an oblique view of a second laminated block formed by stacking multiple sheets of the same light reflecting element material. (A)は第2の積層ブロックに第5~第8の補強用の支持部材を接合する説明図、(B)は第5~第8の補強用の支持部材が接合された第2の積層ブロックの斜視図である。FIG. 1A is an explanatory diagram of joining the fifth to eighth reinforcing support members to a second laminated block, and FIG. 1B is an oblique view of the second laminated block with the fifth to eighth reinforcing support members joined thereto. (A)は対となる光反射素子の斜視図、(B)は光反射層が直交する状態で光反射素子を接合した光学結像装置の斜視図を示す。1A is a perspective view of a pair of light reflecting elements, and FIG. 1B is a perspective view of an optical imaging device in which light reflecting elements are bonded together with their light reflecting layers perpendicular to each other. 複数の光反射素子を並べて接合しようとする平面図である。FIG. 11 is a plan view showing a plurality of light reflecting elements arranged and bonded together.

続いて、図1~図7を参照しながら、本発明の第1の実施の形態に係る光学結像装置に用いる光反射素子の製造方法について説明する。図1(A)、(B)に示すように、最終的に光反射素子10(図6(A)、(B)参照)を製造するために、矩形の透明板の一例である透明なガラス板11と、ガラス板11の一面に設けられた光反射層12とを有するガラス板材12aが用いられる。ガラス板11は、例えば一辺が約80~500mmの略正方形を成しているが、長方形であってもよい。ガラス板11の厚さは例えば0.1~4.0mmである。なお、矩形透明板は、例えばアクリル樹脂等の透明な合成樹脂材料(プラスチック)によって形成してもよい。 Next, with reference to Figures 1 to 7, a method for manufacturing a light reflecting element used in an optical imaging device according to a first embodiment of the present invention will be described. As shown in Figures 1(A) and (B), in order to finally manufacture a light reflecting element 10 (see Figures 6(A) and (B)), a glass plate material 12a is used, which has a transparent glass plate 11, which is an example of a rectangular transparent plate, and a light reflecting layer 12 provided on one surface of the glass plate 11. The glass plate 11 is, for example, approximately square with sides of approximately 80 to 500 mm, but may also be rectangular. The thickness of the glass plate 11 is, for example, 0.1 to 4.0 mm. The rectangular transparent plate may be formed from a transparent synthetic resin material (plastic), such as acrylic resin.

ガラス板11は両面が平面であって可能な範囲で厚みが均一なものを使用する。 ガラス板11にはアルミニウムや銀等の金属蒸着によって光反射層12が形成される。金属蒸着の代わりに、スパッタ、スプレー、メッキ等の手法によって光反射層12が形成されてもよい。なお、光反射層12の厚みは例えば50~400nm程度であるのがよいが、この数字には限定されない。なお、光反射層12はガラス板11の両面に形成してもよい。 The glass plate 11 used is flat on both sides and has a uniform thickness to the extent possible. A light reflecting layer 12 is formed on the glass plate 11 by metal deposition of aluminum, silver, etc. Instead of metal deposition, the light reflecting layer 12 may be formed by a method such as sputtering, spraying, or plating. The thickness of the light reflecting layer 12 is preferably about 50 to 400 nm, for example, but is not limited to this value. The light reflecting layer 12 may be formed on both sides of the glass plate 11.

光反射層12が形成されたガラス板11(即ち、ガラス板材12a)を所定枚数(例えば500~1000枚用意して透明な第1の接着剤を介して光反射層12に対して直交する方向に積層して原積層体13とするが、各ガラス板材12aは第1の接着剤が固まる前にプレス等の平面体で面Aと面B、及び面Cと面Dを十分な押圧力で押圧されて第1の接着剤を均一に伸ばし、厚みh(面Aと面Bの距離)と、面Cと面Dのできる限りの平面性及び平行性を保っているのが好ましい(図示せず)。第1の接着剤としては、時間の経過と共に硬化する自硬型又は加熱硬化型の接着剤を使用するのが好ましい(難剥離型の接着剤)。これによって原積層体13の寸法である高さhと幅wが決定される(w>h)。なお、高さhは変更しないが、wは研磨によって小さくなる。 A predetermined number of glass plates 11 (i.e., glass plate materials 12a) on which a light-reflecting layer 12 is formed (for example, 500 to 1000 sheets) are prepared and laminated in a direction perpendicular to the light-reflecting layer 12 via a transparent first adhesive to form the original laminate 13. Before the first adhesive hardens, each glass plate material 12a is pressed with a flat body such as a press with sufficient pressure on faces A and B, and faces C and D to uniformly stretch the first adhesive, and it is preferable to maintain the thickness h (the distance between faces A and B) and the flatness and parallelism of faces C and D as much as possible (not shown). As the first adhesive, it is preferable to use a self-hardening or heat-hardening adhesive that hardens over time (difficult-to-peel adhesive). This determines the height h and width w, which are the dimensions of the original laminate 13 (w>h). Note that the height h does not change, but w becomes smaller by polishing.

ここで、原積層体13の厚み方向上下の面A、面Bには第1、第2の支持部材15、16が第2の接着剤を介して押し当てられ、面A、面Bとは直交する原積層体13の対向する面C、面Dには第3、第4の支持部材17、18が第2の接着剤を介して押し当てられる。ここで、第1、第2の支持部材15、16の幅を原積層体13の面C、面D間の幅より小さくして、第3、第4の支持部材17、18の間に隙間を有して入るようにしておくのがよい。ここで、第2の接着剤としては加熱(例えば、80℃に加熱)すれば溶解(液化)し常温では強固に固化する接着剤(通常、ワックスと称されている)、又は水溶性の接着剤(以上、剥離可能型の接着剤)を使用するのが好ましい。
なお、原積層体13の厚みhはガラス板材12aの枚数を調整して、面C及び面Dの幅(面間距離)wより小さくしておく。これにより、最終製品である光反射素子10の形状をh=w(±0.1mm以内まで許容とするのが好ましいが必須の要件ではない)として正方形に調整できる。この理由は面C及び面D間の幅wは研磨過程で減少する方向に調整できるからである。これによって、図2に示す第1の積層ブロック19となる(以上、第1工程)。
Here, the first and second support members 15, 16 are pressed against the upper and lower surfaces A and B of the original laminate 13 in the thickness direction via the second adhesive, and the third and fourth support members 17, 18 are pressed against the opposing surfaces C and D of the original laminate 13 perpendicular to the surfaces A and B via the second adhesive. Here, it is preferable to make the width of the first and second support members 15, 16 smaller than the width between the surfaces C and D of the original laminate 13 so that they are inserted between the third and fourth support members 17, 18 with a gap. Here, it is preferable to use, as the second adhesive, an adhesive that melts (liquefies) when heated (for example, heated to 80° C.) and solidifies firmly at room temperature (usually called wax), or a water-soluble adhesive (the above are peelable adhesives).
The thickness h of the original laminate 13 is adjusted to be smaller than the width (interface distance) w of the faces C and D by adjusting the number of glass plates 12a. This allows the shape of the light reflecting element 10, which is the final product, to be adjusted to a square with h = w (preferably within ±0.1 mm, but this is not an essential requirement). The reason for this is that the width w between the faces C and D can be adjusted in a decreasing direction during the polishing process. This results in the first laminate block 19 shown in Figure 2 (the first step).

次に、ガラス板材12aが積層固着された原積層体13に対する第1~第4の支持部材15~18の接合(押圧固着)が完了した第1の積層ブロック19を第1の支持部材15を上にして載置台(図示せず)に固定し、図2に示すように、第1の支持部材15の上方から各ガラス板材12aの光反射層12に直交する方向に、第1の積層ブロック19を第1~第4の支持部材15~18と共に、所定厚み(等間隔)にマルチワイヤーソー20で同時に切断(スライス)して、図3(A)、(B)に示すように周囲に第1~第4の支持部材15~18の切断片21~24が固着した複数枚の光反射素子原材25を形成する(以上、第2工程)。 Next, the first laminated block 19, in which the first to fourth support members 15 to 18 have been joined (pressed and fixed) to the original laminate 13 to which the glass plate material 12a has been laminated and fixed, is fixed to a mounting table (not shown) with the first support member 15 facing up, and as shown in FIG. 2, the first laminated block 19 is simultaneously cut (sliced) to a predetermined thickness (equally spaced) together with the first to fourth support members 15 to 18 from above the first support member 15 in a direction perpendicular to the light reflecting layer 12 of each glass plate material 12a using a multi-wire saw 20, to form a plurality of light reflecting element original materials 25 with cut pieces 21 to 24 of the first to fourth support members 15 to 18 fixed to the periphery as shown in FIG. 3(A) and (B) (the second step).

この後、光反射素子原材25を水平にして、周囲の切断片21~24が固着した状態で光反射素子原材25の両面を光学研磨(鏡面研磨)し、好ましくは表面の算術平均粗さRaを1~0.1μm程度又はそれ以下とする(以下の研磨においても同じ)。この場合、光反射素子原材25の周囲には支持部材15~18の切断片21~24が固着されているので、切断及び研磨時にガラス板材12aが欠けたり、捲れたりすることがないという利点がある。各光反射素子原材25の厚みtは、切断時の厚みと研磨時の研磨代を考慮して一定に調整する(以上、第3工程)。図において、4連の▽マークは超精密な光学研磨であることを示す。 Then, the light reflecting element raw material 25 is horizontally aligned, and both sides of the light reflecting element raw material 25 are optically polished (mirror polished) with the surrounding cut pieces 21-24 attached, preferably to a surface arithmetic mean roughness Ra of about 1-0.1 μm or less (the same applies to the following polishing). In this case, since the cut pieces 21-24 of the support members 15-18 are attached to the periphery of the light reflecting element raw material 25, there is an advantage that the glass plate material 12a is not chipped or rolled up during cutting and polishing. The thickness t of each light reflecting element raw material 25 is adjusted to a constant value, taking into account the thickness at the time of cutting and the polishing allowance at the time of polishing (the third step). In the figure, the four consecutive ▽ marks indicate ultra-precise optical polishing.

次に、図4(A)に示すように光反射素子原材25の周囲に設けられている切断片21~24を加熱して又は液体(溶剤)を用いて外し、光反射素子材25aを、図4(B)に示すように剥離可能な第3の接着剤(第2の接着剤と同じ)を介して積層して第2の積層ブロック27を形成する(以上、第4工程)。なお、光反射素子材25aを単に重ねただけでは、第2の積層ブロック27の対向する面C′、面D′の平面度が悪いので第3の接着剤が固まる前に、図示しない平板で面C′、面D′を押圧するのが好ましい。面C′、面D′がある程度揃った状態で、図4(B)に示すように、この第2の積層ブロック27の対向する面C′、面D′の光学研磨を行う。このとき光学研磨された面C″、面D″の間隔w(光反射素子10の幅)を原積層体13の厚みhに±0.5mmの範囲、好ましくは、±0.1mmの範囲で一致させる(以上、第5工程)のがよい。 Next, as shown in FIG. 4(A), the cut pieces 21-24 around the light reflecting element raw material 25 are removed by heating or using a liquid (solvent), and the light reflecting element material 25a is laminated via a peelable third adhesive (same as the second adhesive) as shown in FIG. 4(B) to form a second laminated block 27 (the fourth step). Note that if the light reflecting element material 25a is simply laminated, the flatness of the opposing surfaces C' and D' of the second laminated block 27 is poor, so it is preferable to press the surfaces C' and D' with a flat plate (not shown) before the third adhesive hardens. With the surfaces C' and D' aligned to a certain extent, the opposing surfaces C' and D' of the second laminated block 27 are optically polished as shown in FIG. 4(B). At this time, it is advisable to match the distance w between the optically polished surfaces C'' and D'' (the width of the light reflecting element 10) to the thickness h of the original laminate 13 within a range of ±0.5 mm, preferably within a range of ±0.1 mm (this is the fifth step).

この後、第3の接着剤の接合を解いて第2の積層ブロック27を複数の光反射素子10に分解する。この光反射素子10は厚みがtで、平面視した(切断面を正面視した)形状が一辺がh(=w)の正方形となる(以上、第6工程)。そこで、図6(A)に示すように2枚の光反射素子10を用意し、それぞれの光反射層12が平面視して直交するように配置して透明な第5の接着剤(第1の接着剤と同じ)で接合し厚みが2tの光学結像装置30が完成する。この光学結像装置30により一側空間に配置された対象物の像を他側空間に実像として形成することができる。 After this, the third adhesive is released to disassemble the second laminated block 27 into a number of light reflecting elements 10. Each light reflecting element 10 has a thickness of t and a square shape with sides of h (=w) in plan view (when the cut surface is viewed from the front) (the sixth step). Therefore, as shown in FIG. 6(A), two light reflecting elements 10 are prepared, and the light reflecting layers 12 are arranged so as to be perpendicular in plan view, and are joined with a transparent fifth adhesive (the same as the first adhesive), completing an optical imaging device 30 with a thickness of 2t. This optical imaging device 30 can form an image of an object placed in one space as a real image in the other space.

上記実施の形態では、第2の積層ブロック27の周囲に支持部材(保護部材)を設けずに面C′、面D′の研磨を行ったが、第2の積層ブロック27の周囲に補強用の支持部材を設けて研磨すると研磨時の欠けが無くなるので、これを防止した実施の形態について図5(A)、(B)を参照しながら説明する。即ち、第4工程で又は第4工程と第5工程の間に、複数枚の光反射素子材25aを第5の補強用の支持部材35の上に剥離容易な第3の接着剤を介して積層し第2の積層ブロック27を形成する。第2の積層ブロック27の面C′、面D′に直交する側面で第2の積層ブロック27を囲む第5~第8の面(面E~面H)31~34に第5~第8の補強用の支持部材35~38を剥離可能な第4の接着剤を介して貼り付ける(なお、第5の補強用の支持部材35は底板となる)。ここで、第5、第7の補強用の支持部材35、37それぞれの幅はh(又は僅少の範囲でhより短く)とし、第6、第8の補強用の支持部材36、38で挟持状態とするのが好ましい。これによって、研磨時に第2の積層ブロック27の疵や捲れの発生を防止することになる。 In the above embodiment, the surfaces C' and D' were polished without providing a support member (protective member) around the second laminated block 27, but if a reinforcing support member is provided around the second laminated block 27 and polished, chipping during polishing will not occur, so an embodiment that prevents this will be described with reference to Figures 5 (A) and (B). That is, in the fourth step or between the fourth and fifth steps, multiple sheets of light reflection element material 25a are laminated on the fifth reinforcing support member 35 via a third adhesive that is easily peeled off to form the second laminated block 27. The fifth to eighth reinforcing support members 35 to 38 are attached via a fourth adhesive that can be peeled off to the fifth to eighth surfaces (surfaces E to H) 31 to 34 that surround the second laminated block 27 on the side surfaces perpendicular to the surfaces C' and D' of the second laminated block 27 (note that the fifth reinforcing support member 35 becomes the bottom plate). Here, it is preferable that the width of the fifth and seventh reinforcing support members 35, 37 is h (or shorter than h to a small extent) and that they are sandwiched between the sixth and eighth reinforcing support members 36, 38. This prevents scratches and curling of the second laminated block 27 during polishing.

なお、第3工程で切断片21~24を除去したが、切断片23、24のみを除去することもできる。
前記実施の形態においては、矩形透明板をガラス板を用いて説明したが、透明樹脂等も使用できる。また、前記実施の形態においては、光反射素子は平面視して正方形であったが、矩形であってもよい。
また、前記実施の形態においては、各ガラス板に光反射層を設けたが、端部のガラス板に対して光反射層を形成しないこともできる。
更に、第4工程の後、第5工程の前に、第2の積層ブロックの面C′及び面D′に直交して第2の積層ブロックを囲む面E~面Hの端部を剥離可能な第4の接着剤(例えば、ワックス)で補強して、第5工程で、面C′及び面D′を研磨してもよい。これによって、第2の積層ブロックの側面が更に補強され研磨時の欠けが無くなる。
Although the cut pieces 21 to 24 are removed in the third step, it is also possible to remove only the cut pieces 23 and 24.
In the above embodiment, the rectangular transparent plate is a glass plate, but a transparent resin plate can also be used. Also, in the above embodiment, the light reflecting element is square in plan view, but it may be rectangular.
In the above embodiment, a light reflecting layer is provided on each glass plate, but it is also possible not to form a light reflecting layer on the glass plates at the ends.
Furthermore, after the fourth step and before the fifth step, the ends of faces E to H which are perpendicular to faces C' and D' of the second laminate block and surround the second laminate block may be reinforced with a fourth removable adhesive (e.g., wax), and faces C' and D' may be polished in the fifth step. This further reinforces the side faces of the second laminate block, preventing chipping during polishing.

図7には、以上の工程で製造された光反射素子10を複数枚(この実施の形態では4枚、更に9枚、16枚、その他の枚数でもよい)、光反射層12の向きを揃えて、水平に横並びして接合した大型の光反射素子40を示すが、透明な平面基台41の上に載置され、直角配置された2つの位置決め部材43、44、押圧部材45、46によって所定位置に保持されている。この場合、各光反射素子10の形状が同じであるので、隣合う光反射素子10の光反射層12の位置を合わせることができ、より大型の光学結像装置を製造できる。 Figure 7 shows a large light reflecting element 40 in which multiple light reflecting elements 10 (four in this embodiment, but nine, sixteen, or other numbers are also acceptable) manufactured by the above process are aligned with the light reflecting layers 12 oriented in the same direction and bonded horizontally side-by-side, and the element is placed on a transparent flat base 41 and held in a predetermined position by two positioning members 43, 44 arranged at right angles and pressure members 45, 46. In this case, since the shape of each light reflecting element 10 is the same, the positions of the light reflecting layers 12 of adjacent light reflecting elements 10 can be aligned, allowing a larger optical imaging device to be manufactured.

10:光反射素子、11:ガラス板、12:光反射層、12a:ガラス板材、13:原積層体、15:第1の支持部材、16:第2の支持部材、17:第3の支持部材、18:第4の支持部材、19:第1の積層ブロック、20:ワイヤーソー、21~24:切断片、25:光反射素子原材、25a:光反射素子材、27:第2の積層ブロック、30:光学結像装置、31~34:第5~第8の面、35~38:第5~第8の補強用の支持部材、40:大型の光反射素子、41:平面基台、43、44:位置決め部材、45、46:押圧部材 10: Light reflecting element, 11: Glass plate, 12: Light reflecting layer, 12a: Glass plate material, 13: Original laminate, 15: First support member, 16: Second support member, 17: Third support member, 18: Fourth support member, 19: First laminate block, 20: Wire saw, 21-24: Cut pieces, 25: Light reflecting element original material, 25a: Light reflecting element material, 27: Second laminate block, 30: Optical imaging device, 31-34: Fifth to eighth surfaces, 35-38: Fifth to eighth reinforcing support members, 40: Large light reflecting element, 41: Planar base, 43, 44: Positioning member, 45, 46: Pressing member

Claims (4)

一側空間に配置された対象物の像を他側空間に実像として形成する光学結像装置に用いる光反射素子の製造方法であって、
少なくとも一方の面に光反射層が形成された複数の矩形透明板を、前記光反射層に対して直交する方向に第1の接着剤を介して積層固着して原積層体を形成し、該原積層体の厚み方向上下の面Aと面B、及びこれに直交して対向する面Cと面Dにそれぞれ第1~第4の支持部材を剥離可能な第2の接着剤を介して押圧固着した第1の積層ブロックを形成する第1工程と、
前記第1の積層ブロックを前記光反射層と直交する方向に前記第1~第4の支持部材と共に等間隔で切断して光反射素子原材を製造する第2工程と、
切断した前記光反射素子原材の切断面を前記第1~第4の支持部材の切断片が固着された状態で研磨する第3工程と、
前記第3工程で研磨され、前記第1~第4の支持部材の切断片を除去した光反射素子材を複数枚重ねて剥離可能な第3の接着剤で固着して第2の積層ブロックを形成する第4工程と、
前記第2の積層ブロックの対向する面C′、面D′を研磨して、前記光反射素子材の幅を規定値に合わせる第5工程と、
前記第3の接着剤を解いて前記光反射素子を形成する第6工程とを有する光反射素子の製造方法。
A method for manufacturing an optical reflecting element for use in an optical imaging device that forms an image of an object placed in one space as a real image in the other space, comprising:
a first step of forming a first laminated block by stacking and fixing a plurality of rectangular transparent plates, at least one of which has a light reflecting layer formed on it, in a direction perpendicular to the light reflecting layer via a first adhesive, and pressing and fixing first to fourth support members to surfaces A and B on the top and bottom in the thickness direction of the original laminate, and surfaces C and D opposing the surfaces C and D perpendicular to the surfaces A and B, respectively, via a peelable second adhesive;
a second step of cutting the first laminated block together with the first to fourth support members at equal intervals in a direction perpendicular to the light reflecting layer to manufacture a light reflecting element raw material;
a third step of polishing the cut surfaces of the cut raw light reflecting element with the cut pieces of the first to fourth support members fixed thereto;
a fourth step of stacking a plurality of light reflecting element materials, which have been polished in the third step and from which the cut pieces of the first to fourth support members have been removed, and bonding the stacked light reflecting element materials with a third adhesive that is removable, to form a second laminated block;
a fifth step of polishing the opposing surfaces C′ and D′ of the second laminate block to adjust the width of the light reflecting element material to a specified value;
and a sixth step of removing the third adhesive to form the light reflecting element.
請求項1記載の光反射素子の製造方法において、前記第5工程の前に前記面C′及び前記面D′に直交して囲む面E~面Hに剥離可能な第4の接着剤で第5~第8の補強用の支持部材を接合し、前記第2の積層ブロックの疵の発生を防止することを特徴とする光反射素子の製造方法。 The method for manufacturing a light reflecting element according to claim 1, characterized in that, before the fifth step, fifth to eighth reinforcing support members are bonded to faces E to H that surround face C' and face D' perpendicularly with a fourth peelable adhesive, thereby preventing the occurrence of defects in the second laminated block. 請求項2記載の光反射素子の製造方法において、前記第2の積層ブロックを囲む前記対向する第6、第8の補強用の支持部材が前記対向する第5、第7の補強用の支持部材を挟持していることを特徴とする光反射素子の製造方法。 The method for manufacturing a light reflecting element according to claim 2, characterized in that the opposing sixth and eighth reinforcing support members surrounding the second laminated block sandwich the opposing fifth and seventh reinforcing support members. 請求項1~3のいずれか1項記載の光反射素子の製造方法において、前記原積層体の厚みをhとすると、研磨された前記第2の積層ブロックから得られた前記光反射素子の幅wは、h±0.5mmの範囲にあって、前記光反射素子の平面視した形状は正方形であることを特徴とする光反射素子の製造方法。 The method for manufacturing a light reflecting element according to any one of claims 1 to 3, characterized in that, when the thickness of the original laminate is h, the width w of the light reflecting element obtained from the polished second laminate block is in the range of h ± 0.5 mm, and the shape of the light reflecting element in plan view is square.
JP2020181638A 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device Active JP7503475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020181638A JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020181638A JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Publications (2)

Publication Number Publication Date
JP2022072280A JP2022072280A (en) 2022-05-17
JP7503475B2 true JP7503475B2 (en) 2024-06-20

Family

ID=81604409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020181638A Active JP7503475B2 (en) 2020-10-29 2020-10-29 Method for manufacturing an optical reflecting element for use in an optical imaging device

Country Status (1)

Country Link
JP (1) JP7503475B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199810A (en) 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
WO2013179405A1 (en) 2012-05-30 2013-12-05 パイオニア株式会社 Method for manufacturing reflective plane-symmetrical image-formation element, reflective plane-symmetrical image-formation element, and space image display device provided with reflective plane-symmetrical image-formation element
CN104635329A (en) 2013-11-14 2015-05-20 胜华科技股份有限公司 Display device, optical assembly thereof and manufacturing method of optical assembly
US20150212335A1 (en) 2012-08-03 2015-07-30 Sharp Kabushiki Kaisha Reflective type imaging element and optical system, and method of manufacturing relective type imaging element
JP2016151689A (en) 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199810A (en) 1998-10-30 2000-07-18 Toyo Commun Equip Co Ltd Manufacture of optical device
WO2013179405A1 (en) 2012-05-30 2013-12-05 パイオニア株式会社 Method for manufacturing reflective plane-symmetrical image-formation element, reflective plane-symmetrical image-formation element, and space image display device provided with reflective plane-symmetrical image-formation element
US20150212335A1 (en) 2012-08-03 2015-07-30 Sharp Kabushiki Kaisha Reflective type imaging element and optical system, and method of manufacturing relective type imaging element
CN104635329A (en) 2013-11-14 2015-05-20 胜华科技股份有限公司 Display device, optical assembly thereof and manufacturing method of optical assembly
JP2016151689A (en) 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element

Also Published As

Publication number Publication date
JP2022072280A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP6876656B2 (en) Optical component array
JP6165206B2 (en) Manufacturing method of light control panel, light control panel, optical imaging apparatus, and aerial image forming system
JP6109879B2 (en) Manufacturing method of light control panel
JP2015522852A5 (en)
TWI304137B (en)
JP4006855B2 (en) Optical device manufacturing method
JPH03131803A (en) Optical fiber arranging member and formation thereof
JP7503475B2 (en) Method for manufacturing an optical reflecting element for use in an optical imaging device
JPS60158410A (en) Preparation of optical branching filter
JP2008158144A (en) Manufacturing method of cross prism
JP2005526277A (en) Light reflecting polarizer having a polarizing film between two serrated surfaces
JP6541987B2 (en) Optical element and method of manufacturing imaging element
JP2000199810A (en) Manufacture of optical device
JP4449168B2 (en) Optical device manufacturing method
JPWO2008136243A1 (en) Optical element manufacturing method and joining jig
JP2000241610A (en) Manufacture of optical prism
JP3499717B2 (en) Synthetic corundum joining method and synthetic corundum cell manufacturing method
JP4655659B2 (en) Optical element manufacturing method
WO2011074466A1 (en) Method for manufacturing optical element and jig used in the method
JP6541986B2 (en) Optical element and method of manufacturing imaging element
JP7489297B2 (en) Manufacturing method for optical imaging device and light reflecting element forming body
CN114624797B (en) Method for manufacturing optical imaging device and light reflection element forming body
CN117075252B (en) Geometric optical waveguide and preparation method thereof
JPH0566303A (en) Manufacture of polarized light separating prism
JPH0588019A (en) Production of polarized light separating prism

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230920

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240610

R150 Certificate of patent or registration of utility model

Ref document number: 7503475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150