[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7595309B2 - Vibration transmitting member, transducer using same, and fluid type discriminating device - Google Patents

Vibration transmitting member, transducer using same, and fluid type discriminating device Download PDF

Info

Publication number
JP7595309B2
JP7595309B2 JP2022025201A JP2022025201A JP7595309B2 JP 7595309 B2 JP7595309 B2 JP 7595309B2 JP 2022025201 A JP2022025201 A JP 2022025201A JP 2022025201 A JP2022025201 A JP 2022025201A JP 7595309 B2 JP7595309 B2 JP 7595309B2
Authority
JP
Japan
Prior art keywords
transducer
fluid
membrane
top plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022025201A
Other languages
Japanese (ja)
Other versions
JP2023121880A (en
Inventor
雅彦 橋本
慎 中野
裕治 中林
真人 佐藤
英知 永原
基之 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022025201A priority Critical patent/JP7595309B2/en
Publication of JP2023121880A publication Critical patent/JP2023121880A/en
Application granted granted Critical
Publication of JP7595309B2 publication Critical patent/JP7595309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、振動体に接合して動作する振動伝搬部材において、一つの部材から複数の周波数の超音波を送出する構成に関するものである。また、それを用いた送受波器、および流体種類判別装置に関するものである。 The present invention relates to a vibration transmission member that is connected to a vibrating body and operates by transmitting ultrasonic waves of multiple frequencies from one member. It also relates to a transducer and a fluid type discrimination device that use the same.

従来、複数の周波数を送出してガス値(発熱量等)を測定する装置が知られている(例えば、特許文献1参照)。 Conventionally, devices that measure gas values (calorific value, etc.) by transmitting multiple frequencies are known (see, for example, Patent Document 1).

図9は、従来のトランスジューサを用いたガス値測定装置の概略構成図である。図9において、ガス値測定装置101は、ガスの入口102,および出口103を備えている。計測部104にて計測が行われるように、トランスジューサ105,106が配置されている。このトランスジューサ105,106は第一の周波数f1で送受信を行う。また、計測部107にて計測が行われるよう、超音波トランスジューサ108と、この超音波トランスジューサ108からの超音波を送受信するように配置された反射体109が対向して配置されている。この超音波トランスジューサ108は、第二の周波数f2で送受信を行う。この様にして、トランスジューサ105,106とで、計測システム110が構成されている。また、超音波トランスジューサ108と反射体109とで、計測システム111が構成されている。 Figure 9 is a schematic diagram of a gas value measurement device using a conventional transducer. In Figure 9, the gas value measurement device 101 has a gas inlet 102 and an outlet 103. Transducers 105 and 106 are arranged so that measurement is performed by the measurement unit 104. The transducers 105 and 106 transmit and receive at a first frequency f1. Also, an ultrasonic transducer 108 and a reflector 109 arranged to transmit and receive ultrasonic waves from the ultrasonic transducer 108 are arranged opposite each other so that measurement is performed by the measurement unit 107. The ultrasonic transducer 108 transmits and receives at a second frequency f2. In this way, the transducers 105 and 106 constitute a measurement system 110. Also, the ultrasonic transducer 108 and the reflector 109 constitute a measurement system 111.

このような構成において、被測定ガスが入口102から流入し、計測部104を経て、出口103より流出する。この間、このガスは計測部107にも充満する。計測部104にて、トランスジューサ105,106間において送受される周波数f1の超音波により、ガスの減衰量が計測される。また、超音波トランスジューサ108と反射体109との間において送受される周波数f2の超音波により、ガスの減衰量が計測される。これら、周波数f1とf2における減衰量を用いて、予め記憶された周波数と減衰量に関係づけられたガス値(発熱量等)との関係を基に、測定されたガスのガス値が導き出される。 In this configuration, the gas to be measured flows in from the inlet 102, passes through the measuring section 104, and flows out from the outlet 103. During this time, the gas also fills the measuring section 107. In the measuring section 104, the amount of gas attenuation is measured by ultrasonic waves of frequency f1 transmitted and received between the transducers 105 and 106. In addition, the amount of gas attenuation is measured by ultrasonic waves of frequency f2 transmitted and received between the ultrasonic transducer 108 and the reflector 109. Using these attenuation amounts at frequencies f1 and f2, the gas value of the measured gas is derived based on the relationship between the frequency stored in advance and the gas value (heat value, etc.) associated with the attenuation amount.

特表平11―511260号公報Special Publication No. 11-511260

しかしながら、前記従来のガス値測定装置では、ガス種特定のために、2種類の周波数を用いるにあたり、3つのトランスジューサ、およびそれらにより構成される2つの計測システムが必要となるものであり、部品点数が多くなるため、構成が複雑になると共に、サイズも大きくなり、コストの増加につながるという課題を有するものであった。また、2種類の物理量からのガス値推定であるため、判別対象ガスの種類も限定され、精度も限定されるという課題を有するものであった。 However, in the conventional gas value measurement device, in order to use two different frequencies to identify the gas type, three transducers and two measurement systems composed of them are required, and because the number of parts is large, the configuration becomes complex and the size becomes large, resulting in problems such as increased costs. In addition, because the gas value is estimated from two types of physical quantities, the types of gas to be identified are limited, and the accuracy is also limited.

本発明は、上記課題に対応するものであり、振動体の一つの面に接合して動作する振動伝搬部材であって、天板と、底板と、側壁と、前記天板及び底板に対し概垂直に配置した隔壁とで形成され、前記天板と前記隔壁とで形成される複数の膜構造で発生する振動を用い、前記隔壁の間隔を異なる値とすることにより前記複数の膜構造が異なる共振周波数を発生するようにしたことにより、一つの部材で複数周波数の送受信を行うと共に、これを用いることにより、単一のシステムで流体種の判別を行うことを目的とするものである。 The present invention addresses the above-mentioned problems, and is a vibration transmission member that operates by being joined to one surface of a vibrating body, and is formed of a top plate, a bottom plate, side walls, and a partition wall arranged approximately perpendicular to the top plate and bottom plate. It uses vibrations generated in multiple membrane structures formed by the top plate and the partition wall, and by setting the spacing between the partition walls to different values, the multiple membrane structures generate different resonance frequencies, thereby enabling a single member to transmit and receive multiple frequencies, and by using this, it is possible to distinguish the type of fluid with a single system.

前記従来の課題を解決するために、本発明の振動伝搬部材は、振動体の一つの面に接合して動作する振動伝搬部材であって、天板と、底板と、側壁と、前記天板及び底板に対し概垂直に配置した隔壁とで形成され、前記天板と前記隔壁とで形成される複数の膜構造で発生する振動を用い、前記隔壁の間隔を異なる値とすることにより前記複数の膜構造が異なる共振周波数を発生するようにしたことにより、一つの振動伝搬部材のみで複数周波数の送受信を行う構成が可能となり、これを用いた送受波器を用いることにより、単一のシステムで、精度の高い流体の種類判別ができるものである。 In order to solve the above-mentioned problems, the vibration propagation member of the present invention is a vibration propagation member that operates by being joined to one surface of a vibrating body, and is formed of a top plate, a bottom plate, a side wall, and a partition wall arranged approximately perpendicular to the top plate and bottom plate. It uses vibrations generated by multiple membrane structures formed by the top plate and the partition wall, and by setting the spacing between the partition walls to different values, the multiple membrane structures are made to generate different resonance frequencies. This makes it possible to configure a configuration that transmits and receives multiple frequencies using only one vibration propagation member, and by using a transmitter/receiver that uses this, it is possible to accurately determine the type of fluid with a single system.

本発明の振動伝搬部材は、天板と、底板と、側壁と、前記天板及び底板に対し概垂直に配置した隔壁とで形成することで、複数の膜構造が異なる共振周波数を発生するようにしたことにより、一つの振動伝搬部材のみで複数周波数の送受信を行う構成が可能となり、これを用いた送受波器を用いることにより、単一のシステムで、精度の高い流体の種類判別ができる。 The vibration transmission member of the present invention is formed from a top plate, a bottom plate, side walls, and a partition wall arranged approximately perpendicular to the top plate and bottom plate, and multiple membrane structures are made to generate different resonance frequencies, making it possible to configure a single vibration transmission member to transmit and receive multiple frequencies, and by using a transducer incorporating this, a single system can accurately determine the type of fluid.

本発明の実施の形態1における振動伝搬部材の分解斜視図FIG. 2 is an exploded perspective view of a vibration propagation member according to the first embodiment of the present invention; 本発明の実施の形態1における振動伝搬部材の断面図1 is a cross-sectional view of a vibration propagation member according to a first embodiment of the present invention; 本発明の実施の形態1における振動伝搬部材の形成方法を示す図1 is a diagram showing a method for forming a vibration propagation member in accordance with the first embodiment of the present invention; 本発明の実施の形態2における送受波器の断面図FIG. 11 is a cross-sectional view of a transducer according to a second embodiment of the present invention. 本発明の実施の形態2における送受波器の特性グラフA characteristic graph of a transducer according to the second embodiment of the present invention. 本発明の実施の形態3における流体種類判別装置の断面図FIG. 11 is a cross-sectional view of a fluid type determination device according to a third embodiment of the present invention. 本発明の実施の形態3における演算部の構成図FIG. 11 is a configuration diagram of a calculation unit according to a third embodiment of the present invention. 本発明の実施の形態3におけるガスの周波数特性図Gas frequency characteristic diagram in the third embodiment of the present invention 従来のトランスジューサを用いたガス値測定装置の概略構成図Schematic diagram of a gas value measuring device using a conventional transducer

第1の発明は、振動体の一つの面に接合して動作する振動伝搬部材であって、天板と、底板と、側壁と、前記天板及び底板に対し概垂直に配置した隔壁とで形成され、前記天板と前記隔壁とで形成される複数の膜構造で発生する振動を用い、前記隔壁の間隔を異なる値とすることにより前記複数の膜構造が異なる共振周波数を発生するようにしたことにより、一つの振動伝搬部材のみで複数周波数の伝達ができる。 The first invention is a vibration propagation member that operates by being joined to one surface of a vibrating body, and is formed of a top plate, a bottom plate, a side wall, and a partition wall arranged approximately perpendicular to the top plate and bottom plate. It uses vibrations generated in multiple membrane structures formed by the top plate and the partition wall, and by setting the spacing between the partition walls to different values, the multiple membrane structures generate different resonance frequencies, making it possible to transmit multiple frequencies using only one vibration propagation member.

第2の発明は、振動体と、前記振動体の一つの面に接合した第1の発明の振動伝搬部材とを備える送受波器であり、一つの振動体とこれに取付けた一つの振動伝搬部材のみで複数周波数の送受が可能な送受波器を構成することができる。 The second invention is a transducer that includes a vibrating body and the vibration transmission member of the first invention that is bonded to one surface of the vibrating body, and a transducer that can transmit and receive multiple frequencies can be constructed using only one vibrating body and one vibration transmission member attached to it.

第3の発明は、被計測流体を介在して配置された第2の発明の一対の送受波器と、前記一対の送受波器の一方から送信し、他方で受信する動作を構成する制御部と、前記一対の送受波器の受信信号を処理する演算部と、を備え、前記送受波器は、複数の共振周波数の送受信を行える構成とし、前記演算部は、複数の共振周波数の受信信号の信号特性に基づき前記被計測流体の種類を判別する流体種類判別装置であり、複数周波数の送受が可能な超音波送受波器を一対用いることにより、精度の高い流体の種類判別ができる。 The third invention comprises a pair of ultrasonic transmitters and receivers of the second invention arranged between the fluid to be measured, a control unit configured to transmit from one of the pair of ultrasonic transmitters and receive from the other, and a calculation unit that processes the received signals of the pair of ultrasonic transmitters and receivers, the transmitters and receivers being configured to be capable of transmitting and receiving at multiple resonant frequencies, the calculation unit being a fluid type discrimination device that discriminates the type of the fluid to be measured based on the signal characteristics of the received signals at the multiple resonant frequencies, and by using a pair of ultrasonic transmitters and receivers capable of transmitting and receiving at multiple frequencies, the type of fluid can be discriminated with high accuracy.

以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Below, the embodiments will be described in detail with reference to the drawings. However, more detailed explanation than necessary may be omitted. For example, detailed explanation of already well-known matters or duplicate explanation of substantially the same configuration may be omitted. This is to avoid the following explanation becoming unnecessarily redundant and to make it easier for those skilled in the art to understand.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
実施の形態1について、図1~図2を用いて説明する。
(Embodiment 1)
The first embodiment will be described with reference to FIGS. 1 and 2. FIG.

図1は、本発明の実施の形態1における振動伝搬部材の分解斜視図である。図1に示す様に、振動伝搬部材1は、天板2,底板3と、側壁4,5により囲まれた空間において、天板2,および底板3に対し、略垂直に配置された複数の隔壁6、7、8、9により構成されている。図1では、振動伝搬部材の内部構造を分かり易くするため、底板3,および側壁5を取り外した配置として示している。このような構成により、天板2は、隔壁6、7により区画された膜面10、隔壁7、8により区画された膜面11,隔壁8、9により区画された膜面12に分割される。 Figure 1 is an exploded perspective view of a vibration propagation member in embodiment 1 of the present invention. As shown in Figure 1, the vibration propagation member 1 is composed of a top plate 2, a bottom plate 3, and a number of partitions 6, 7, 8, and 9 arranged approximately perpendicular to the top plate 2 and bottom plate 3 in a space surrounded by side walls 4 and 5. In Figure 1, in order to make it easier to understand the internal structure of the vibration propagation member, the bottom plate 3 and side walls 5 are shown removed. With this configuration, the top plate 2 is divided into a membrane surface 10 partitioned by partitions 6 and 7, a membrane surface 11 partitioned by partitions 7 and 8, and a membrane surface 12 partitioned by partitions 8 and 9.

図2は、図1における振動伝搬部材1の断面を示したものである。図2(a)は、図1のAA’水平断面であり、図2(b)は、図1のBB’垂直断面である。図2(a)に示すように、膜面10、膜面11、膜面12のそれぞれの幅(W)は等しいが、それぞれの長さ(Ma、Mb、Mc)は、下記の様な関係を有するように構成されている。この膜面長さは、隔壁間の間隔であるとも言える。 Figure 2 shows a cross section of the vibration propagation member 1 in Figure 1. Figure 2(a) is the horizontal cross section AA' of Figure 1, and Figure 2(b) is the vertical cross section BB' of Figure 1. As shown in Figure 2(a), the widths (W) of membrane surfaces 10, 11, and 12 are equal, but their respective lengths (Ma, Mb, Mc) are configured to have the following relationship. This membrane length can also be said to be the distance between the partition walls.

Ma < Mb < Mc
一方、図2(b)に示すように、隔壁6、隔壁7,隔壁8、隔壁9の高さHは等しく、また、それぞれの隔壁6の厚さLa、隔壁7の厚さLb、隔壁8の厚さLc、隔壁9の厚さLdは、ほぼ等しく形成されている。
Ma < Mb < Mc
On the other hand, as shown in FIG. 2B, the heights H of the partition walls 6, 7, 8, and 9 are equal, and the thicknesses La of the partition walls 6, Lb of the partition walls 7, Lc of the partition walls 8, and Ld of the partition walls 9 are substantially equal.

これにより、振動伝搬部材1は、隔壁6,7、および膜面10で構成される膜構造13、隔壁7、8、および膜面11で構成される膜構造14、隔壁8、9、および膜面12で構成される膜構造15の3つの膜構造(それぞれ一点鎖線で示す)の振動部分を有することになる。 As a result, the vibration propagation member 1 has vibrating parts made up of three membrane structures (each shown by a dashed dotted line): membrane structure 13 made up of partitions 6, 7 and membrane surface 10, membrane structure 14 made up of partitions 7, 8 and membrane surface 11, and membrane structure 15 made up of partitions 8, 9 and membrane surface 12.

なお、図1では、振動伝搬部材1を天板2,底板3,側壁4,5、および隔壁6、7、8、9として、別部材の構成としたが図3の様に、金属(例えば、SUS)の薄板をエッチングで所定の形状に形成した中間板54を複数枚積層して隔壁と側壁を形成し、その上下に天板52と底板53とを更に積層することで、振動伝搬部材51とすることもできる。 In FIG. 1, the vibration propagation member 1 is configured as separate members, with the top plate 2, bottom plate 3, side walls 4 and 5, and partitions 6, 7, 8 and 9, but as shown in FIG. 3, the partitions and side walls can be formed by stacking multiple intermediate plates 54, which are made by etching thin metal (e.g., SUS) plates into a predetermined shape, and then stacking top plates 52 and bottom plates 53 above and below them to form the vibration propagation member 51.

この振動伝搬部材の動作説明は、次の実施の形態2の動作説明にて行う。 The operation of this vibration transmission member will be explained in the next section, "Operational Description 2."

(実施の形態2)
実施の形態2について、図4、図5を用いて説明する。
(Embodiment 2)
The second embodiment will be described with reference to FIGS.

図4は送受波器16の断面図を示したものである。送受波器16は、実施の形態1にて説明した振動伝搬部材1の底板3に、振動体17を取付けたものである。振動体17は、例えば圧電体などである。振動伝搬部材1は、実施の形態1と同じものゆえ、図1,2と同じものには同じ番号を付している。 Figure 4 shows a cross-sectional view of the transducer 16. The transducer 16 is configured by attaching a vibrating body 17 to the bottom plate 3 of the vibration propagation member 1 described in the first embodiment. The vibrating body 17 is, for example, a piezoelectric body. The vibration propagation member 1 is the same as in the first embodiment, so the same numbers are used for the same parts as in Figures 1 and 2.

次に、この送受波器16の動作を図4を用いて説明するが、それに先立ち、このような構成を有した振動伝搬部材1の基本特性について説明する。 Next, the operation of the transducer 16 will be explained using FIG. 4, but first, the basic characteristics of the vibration propagation member 1 having such a configuration will be explained.

図4では、膜面10,11,12の長さが異なっているが、長さと膜面の共振周波数の関係を図5に示す。図5の横軸は膜面の長さ(=隔壁の間隔)を、縦軸は膜構造の共振周波数を示す。 In Figure 4, the lengths of the membrane surfaces 10, 11, and 12 are different, but the relationship between the length and the resonant frequency of the membrane surface is shown in Figure 5. The horizontal axis of Figure 5 shows the length of the membrane surface (= the spacing between the partition walls), and the vertical axis shows the resonant frequency of the membrane structure.

図5に示したように、膜構造の膜面長さが大きくなると、共振周波数が小さくなることがわかる。これは、大きい膜面長さをもつ膜構造は低い周波数で、小さい膜面長さを持つ膜構造は、高い周波数で共振することを意味している。従って、種々の膜面長さを有する膜構造を形成すると、複数の周波数の共振を生じさせることが可能となる。 As shown in Figure 5, as the membrane surface length of the membrane structure increases, the resonant frequency decreases. This means that a membrane structure with a large membrane surface length resonates at a low frequency, and a membrane structure with a small membrane surface length resonates at a high frequency. Therefore, by forming membrane structures with various membrane surface lengths, it is possible to generate resonances at multiple frequencies.

この様な振動伝搬部材1の基本特性に基づいた振動伝搬部材1の動作説明を図4により説明する。 The operation of the vibration transmission member 1 based on the basic characteristics of the vibration transmission member 1 is explained with reference to Figure 4.

今、振動体17を振動膜の共振周波数成分を含む駆動信号で励振し、発生した振動が底板3を介して供給されると、振動はそれぞれ、隔壁6、隔壁7、隔壁8、隔壁9を介して天板2に伝達される。この時、先に述べた様に膜面10,11,12の長さが異なるので、膜面10,11,12は、異なる共振周波数で振動する。つまり、異なる周波数の超音波を膜面10,11,12から送出することになり、その周波数は、膜面長さの小さい膜面10の共振周波数が高く、膜面長さの大きい膜面12の共振周波数が低くなる。 Now, when the vibrating body 17 is excited by a drive signal containing the resonant frequency component of the vibrating membrane, and the generated vibration is supplied through the bottom plate 3, the vibration is transmitted to the top plate 2 through the partitions 6, 7, 8, and 9, respectively. At this time, since the lengths of the membrane surfaces 10, 11, and 12 are different as described above, the membrane surfaces 10, 11, and 12 vibrate at different resonant frequencies. In other words, ultrasonic waves of different frequencies are emitted from the membrane surfaces 10, 11, and 12, and the resonant frequency of the membrane surface 10, which has a smaller membrane surface length, is higher, and the resonant frequency of the membrane surface 12, which has a larger membrane surface length, is lower.

以上は、送受波器16を超音波の送波用に用いた場合であるが、受波用に用いた場合でも、膜面長さと共振周波数の関係は変わらないので、その関係を考慮して考えればよい。つまり図4において、超音波が膜面に到達した場合、膜面10、11,12の共振周波数の値は、この順に大きい方から小さい方へと対応することになる。 The above is for the case where the transducer 16 is used to transmit ultrasonic waves, but even if it is used for receiving waves, the relationship between the membrane length and the resonant frequency does not change, so this relationship should be taken into consideration. In other words, in Figure 4, when ultrasonic waves reach the membrane, the resonant frequency values of membranes 10, 11, and 12 correspond in this order from largest to smallest.

従って、2つの送受波器16を対向して用いる場合には、図4において、膜面長さの等しいもの同士が真正面に対向するように配置することで、送波器から送波された超音波を受波器で受波することができる。 Therefore, when two transducers 16 are used facing each other, as shown in Figure 4, they can be arranged so that the transducers with the same membrane length face each other directly opposite each other, allowing the ultrasonic waves transmitted from the transducer to be received by the transducer.

以上、説明したように膜面長さを変化させることにより、共振周波数を制御することができ、その結果、天板から複数の共振周波数の超音波を送出することができる。つまり、一つの振動体と一つの振動伝搬体というシンプルな構成により、同時に複数の共振周波数の超音波を送出できるものである。 As explained above, by changing the membrane length, the resonant frequency can be controlled, and as a result, ultrasonic waves of multiple resonant frequencies can be emitted from the top plate. In other words, with a simple configuration of one vibrating body and one vibration transmitting body, ultrasonic waves of multiple resonant frequencies can be emitted simultaneously.

(実施の形態3)
実施の形態3について、図6~図8を用いて説明する。
(Embodiment 3)
The third embodiment will be described with reference to FIGS.

図6は、本発明の実施の形態3における流体種類判別装置20の断面を示す。図6に示す様に、被計測流体が流れる流路21には、一対の超音波送受波器22、23が対向するように配置されている。超音波送受波器22、23としては、実施の形態2で説明した送受波器を用いる。すなわち、膜面長さは、図4の様に形成されたものを用いる。矢印24は被計測流体の流れる方向を示している。一対の超音波送受波器22,23は、被計測流体を挟んで対向して配置されている。この場合、超音波送受波器22,23は、実施の形態2で述べた様に、膜面長さの等しいもの同士が真正面に対向するように配置されている。制御部25は、送信部26、受信部27、切替部28および演算部29を制御する。 Figure 6 shows a cross section of a fluid type discrimination device 20 in embodiment 3 of the present invention. As shown in Figure 6, a pair of ultrasonic transmitters and receivers 22 and 23 are arranged to face each other in a flow path 21 through which the fluid to be measured flows. The ultrasonic transmitters and receivers 22 and 23 are the same as those described in embodiment 2. That is, the membrane length is formed as shown in Figure 4. Arrow 24 indicates the flow direction of the fluid to be measured. The pair of ultrasonic transmitters and receivers 22 and 23 are arranged to face each other across the fluid to be measured. In this case, the ultrasonic transmitters and receivers 22 and 23 are arranged so that the ones with the same membrane length face each other directly, as described in embodiment 2. The control unit 25 controls the transmission unit 26, the reception unit 27, the switching unit 28, and the calculation unit 29.

図7は、本発明の実施の形態3における演算部29の構成図である。 Figure 7 is a configuration diagram of the calculation unit 29 in embodiment 3 of the present invention.

図7に示す様に、演算部29は、入力信号のA/D変換器30、それぞれ予め定められた周波数f1、f2、f3に対応するフィルタA31,フィルタB32,フィルタC33
、フィルタA31,フィルタB32,フィルタC33を通過した信号の処理部A34、処理部B35、処理部C36、及び処理部A34、処理部B35、処理部C36で処理された信号の統合処理部37で構成されている。
As shown in FIG. 7, the calculation unit 29 includes an A/D converter 30 for an input signal, a filter A 31, a filter B 32, and a filter C 33, which correspond to predetermined frequencies f1, f2, and f3, respectively.
It is composed of processing units A34, B35, and C36 for signals that have passed through filter A31, filter B32, and filter C33, and an integrated processing unit 37 for signals processed by processing units A34, B35, and C36.

図8は、被計測流体であるガスの周波数特性図を模擬的に示した一例である。図8において、横軸は周波数f、縦軸は、対象ガスにおいて、所定の信号を送信したときの所定距離における受信強度Sである。ガスGaとガスGbとでは、その周波数特性(受信信号の信号特性)が異なっている、ガスGaは周波数f1、f2、f3の変化に対して単調減少であるが、ガスGaは極小値を有する。したがって、特定の周波数(例えば、f1、f2、f3)における受信強度がわかれば、その傾向や、値からガスGaとガスGbとの判別が可能となる。 Figure 8 is an example of a simulated frequency characteristic diagram of a gas, which is the fluid to be measured. In Figure 8, the horizontal axis is frequency f, and the vertical axis is the reception strength S at a specified distance when a specified signal is transmitted in the target gas. Gas Ga and gas Gb have different frequency characteristics (signal characteristics of the received signal); gas Ga decreases monotonically with changes in frequencies f1, f2, and f3, but gas Ga has a minimum value. Therefore, if the reception strength at a specific frequency (e.g., f1, f2, f3) is known, it is possible to distinguish between gas Ga and gas Gb from the trend and value.

このように受信強度が変化するのは、端的に言えば、流体中を伝搬する超音波が、流体の分子あるいは原子と相互作用し、吸収あるいは散乱されるためである。 The reason why the received intensity changes in this way is simply because the ultrasonic waves propagating through the fluid interact with the molecules or atoms of the fluid and are absorbed or scattered.

この様にガス種により超音波の受信強度が周波数に依存する要因について詳述する。例えば、単原子気体、ヘリウム(He:4),ネオン(Ne:20)、アルゴン(Ar:40)の場合、原子の重さおよび大きさが大きく異なる。なお、( )内は。元素記号と原子量を表す。軽い元素からなる気体は、高い周波数まで超音波と相互作用すると考えられる、一方、重い元素からなる気体は、低い周波数領域においてのみ超音波と相互作用すると考えられる。 The factors that cause the frequency dependence of ultrasonic reception strength depending on the gas type are detailed below. For example, the weight and size of atoms vary greatly in the case of monoatomic gases helium (He: 4), neon (Ne: 20), and argon (Ar: 40). Note that the parentheses indicate the element symbol and atomic weight. Gases made of light elements are thought to interact with ultrasonic waves up to high frequencies, while gases made of heavy elements are thought to interact with ultrasonic waves only in the low frequency range.

このように、超音波との相互作用に周波数依存性が考えられるので、超音波の透過率がガス種により変化するものと考えられる。また、2原子気体、例えば、水素(H2:2)、窒素(N2:28)、酸素(O2:32)の場合、気体分子の重さが大きく異なり、さらに原子間の結合力も大きく異なるため、原子間に振動あるいは伸縮・膨張運動にも差異が発生する。更には、原子間の捻じれ振動などにも大きな差異があると考えられる。これらが、超音波との相互作用において周波数依存性を示すと考えられる。 As such, it is believed that the interaction with ultrasound is frequency dependent, and therefore the transmittance of ultrasound is thought to change depending on the gas type. Furthermore, in the case of diatomic gases, such as hydrogen (H2:2), nitrogen (N2:28), and oxygen (O2:32), the weights of the gas molecules differ greatly, and the bonding strength between atoms also differs greatly, which results in differences in the vibrations or contraction/expansion movements between atoms. Furthermore, it is believed that there are also large differences in the torsional vibrations between atoms. These are thought to show frequency dependency in the interaction with ultrasound.

さらに、多原子気体、例えば、水蒸気(H2O:18)、二酸化炭素(CO2:44)、二酸化窒素(N2O:44)、メタン(CH4:16)、エタン(C2H6:30)などの場合、気体分子の重さが大きく異なるとともにその立体構造にも大きな差異がある。このため、超音波との相互作用に周波数依存性が発生すると考えられる。 Furthermore, in the case of polyatomic gases, such as water vapor (H2O: 18), carbon dioxide (CO2: 44), nitrogen dioxide (N2O: 44), methane (CH4: 16), and ethane (C2H6: 30), the weights of the gas molecules vary greatly, and there are also large differences in their three-dimensional structures. For this reason, it is thought that frequency dependence occurs in the interaction with ultrasound.

以上のようにガスの有する周波数特性を前提として構成された流体種類判別装置の動作について説明する。 The operation of the fluid type discrimination device configured based on the frequency characteristics of gas as described above will now be explained.

まず、制御部25が、送信部26および切替部28を制御し、超音波送受波器22に駆動信号を送信し、超音波を被計測流体中に送出する。被計測流体中に送出された超音波は、超音波送受波器23に向かって伝搬し、超音波送受波器23で受信される。 First, the control unit 25 controls the transmission unit 26 and the switching unit 28 to transmit a drive signal to the ultrasonic transmitter/receiver 22, and transmits ultrasonic waves into the fluid to be measured. The ultrasonic waves transmitted into the fluid to be measured propagate toward the ultrasonic transmitter/receiver 23 and are received by the ultrasonic transmitter/receiver 23.

既に説明した様に、超音波送受波器22,23は実施の形態2で説明した送受波器を使用しているため、超音波送受波器22から送信する場合、複数の周波数の超音波が送信される。また、超音波送受波器23では、超音波送受波器22の対応する膜面で複数の周波数の超音波が受信される。受信された信号は、切替部28を介して受信部27で受信され、制御部25を介して演算部29に到達する。 As already explained, the ultrasonic transmitter/receivers 22 and 23 use the transmitter/receiver described in embodiment 2, so when transmitting from the ultrasonic transmitter/receiver 22, ultrasonic waves of multiple frequencies are transmitted. In addition, in the ultrasonic transmitter/receiver 23, ultrasonic waves of multiple frequencies are received by the corresponding membrane surface of the ultrasonic transmitter/receiver 22. The received signal is received by the receiver 27 via the switching unit 28, and reaches the calculation unit 29 via the control unit 25.

次に、演算部29での処理内容を図7にて説明する。 Next, the processing contents of the calculation unit 29 are explained with reference to FIG.

演算部29に入力された信号は、A/D変換器30により、デジタル信号に変換される
。その後、周波数f1のフィルタA31,周波数f2のフィルタB32、周波数f3のフィルタC33によりフィルタリングされ、それぞれ、処理部A34,処理部B35,処理部C36により,それぞれの周波数における受信強度を得る。
The signal input to the calculation unit 29 is converted into a digital signal by the A/D converter 30. Thereafter, the signal is filtered by a filter A 31 of frequency f1, a filter B 32 of frequency f2, and a filter C 33 of frequency f3, and the reception strength at each frequency is obtained by processing units A 34, B 35, and C 36, respectively.

これらの受信強度データは、統合処理部37において、予め記憶された図8の周波数f1、f2、f3における受信強度と比較されて、測定された被計測流体であるガスの種類を判別する。 These reception intensity data are compared in the integrated processing unit 37 with the reception intensity at frequencies f1, f2, and f3 in FIG. 8 that are stored in advance to determine the type of gas that is the measured fluid.

以上、説明した様に本発明の流体種類判別装置は、複数周波数の送受が可能な超音波送受波器を用いることにより、シンプルな構成で精度の高い被計測流体の種類判別ができる。 As explained above, the fluid type determination device of the present invention uses an ultrasonic transmitter/receiver capable of transmitting and receiving signals at multiple frequencies, allowing for highly accurate determination of the type of fluid being measured with a simple configuration.

なお、本実施例での周波数は3種類で説明したが、振動伝搬部材の隔壁の数を増やして膜面長さを異なる値とすることにより、3種類以上も可能である。その数が増えるほど、判別できるガスの種類を増やすことができ、また、判別精度の向上が図れるため、周波数特性曲線が接近していても判別が可能となる。 In this embodiment, three types of frequencies have been described, but three or more types are possible by increasing the number of partitions in the vibration propagation member and setting different values for the membrane surface length. The more the number, the more types of gas that can be distinguished can be increased, and the accuracy of the distinction can be improved, making it possible to distinguish even if the frequency characteristic curves are close to each other.

また、判別装置の構成例として、一対の超音波送受波器を対向して配置したが、一つの超音波送受波器で、対向部分に反射部を設け、送信した超音波送受波器で受信する構成とすることも可能である。 As an example of the configuration of the discrimination device, a pair of ultrasonic transmitters and receivers are arranged opposite each other, but it is also possible to use a single ultrasonic transmitter and receiver with a reflector at the opposing part, and have the ultrasonic transmitter and receiver receive the transmitted signal.

また、ガス種類の判別をするための基準として、周波数が変化したときの受信強度の特性を利用したが、受信強度以外の受信信号特性、例えば、減衰率等でも良い。また、膜面の形状として矩形状のものを示したが、これに限らず、円形、楕円形、多角形等であっても良い。また、膜構造の配列として、1次元状のものを示したが、2次元配列も可能なものである。 In addition, the characteristics of the reception strength when the frequency changes are used as a criterion for distinguishing the gas type, but reception signal characteristics other than reception strength, such as attenuation rate, can also be used. In addition, although a rectangular shape is shown as the shape of the membrane surface, it is not limited to this and can be a circle, an ellipse, a polygon, etc. In addition, although a one-dimensional membrane structure arrangement is shown, a two-dimensional arrangement is also possible.

以上のように、本発明の振動伝搬部材は、少ない部品点数で複数周波数の送受信を行うことができ、また、その振動伝搬部材に圧電体を取付けた超音波送受波器として流体の種類判別に適用することにより幅広い種類の流体に対して、精度良く判別を行う構成とすることができるため、各種超音波流量計や、その応用製品であるガスメータなど、流体の種類判別を必要とする用途に幅広く使用することができる。 As described above, the vibration transmission member of the present invention can transmit and receive signals at multiple frequencies with a small number of parts, and can be used to determine the type of fluid as an ultrasonic transmitter/receiver by attaching a piezoelectric body to the vibration transmission member, allowing for accurate determination of a wide variety of fluids. Therefore, it can be widely used in applications requiring the determination of the type of fluid, such as various ultrasonic flowmeters and gas meters, which are applied products of the same.

1、51 振動伝搬部材
2、52 天板
3、53 底板
4、5 側壁
6、7,8,9 隔壁
13、14,15 膜構造
16 送受波器
17 振動体
20 流体種類判別装置
22、23 超音波送受波器(送受波器)
25 制御部
29 演算部
54 中間板(側壁、隔壁)
Reference Signs List 1, 51 vibration transmission member 2, 52 top plate 3, 53 bottom plate 4, 5 side wall 6, 7, 8, 9 partition wall 13, 14, 15 membrane structure 16 transducer 17 vibrator 20 fluid type determination device 22, 23 ultrasonic transducer (transmitter/receiver)
25 Control unit 29 Calculation unit 54 Intermediate plate (side wall, partition wall)

Claims (3)

振動体の一つの面に接合して動作する振動伝搬部材であって、
天板と、底板と、側壁と、前記天板及び底板に対し概垂直に配置した複数の隔壁とで形成され、
前記天板と前記隔壁とで形成される複数の膜構造で発生する振動を用い、
前記複数の隔壁のうち一方の前記隔壁と当該一方の隔壁と隣り合う他方の前記隔壁との間隔を異なる値とすることにより前記複数の膜構造が異なる共振周波数を発生するようにした振動伝搬部材。
A vibration transmission member that operates by being joined to one surface of a vibrating body,
The container is formed of a top plate, a bottom plate, a side wall, and a plurality of partition walls arranged substantially perpendicular to the top plate and the bottom plate,
Using vibrations generated in a plurality of membrane structures formed by the top plate and the partition walls,
A vibration propagation member in which the distance between one of the plurality of partitions and the other partition adjacent to the one partition is set to a different value, so that the plurality of membrane structures generate different resonant frequencies.
振動体と、前記振動体の一つの面に接合した請求項1項に記載の振動伝搬部材とを備える送受波器。 A transducer comprising a vibrating body and a vibration transmission member according to claim 1 bonded to one surface of the vibrating body. 被計測流体を介在して配置された請求項2項に記載の一対の送受波器と、
前記一対の送受波器の一方から送信し、他方で受信する動作を構成する制御部と、
前記一対の送受波器の受信信号を処理する演算部と、を備え、
前記送受波器は、複数の共振周波数の送受信を行える構成とし、
前記演算部は、複数の共振周波数の受信信号の信号特性に基づき前記被計測流体の種類を判別する流体種類判別装置。
A pair of transducers according to claim 2 arranged with a fluid to be measured therebetween;
A control unit that is configured to transmit from one of the pair of transducers and receive from the other;
A calculation unit that processes the reception signals of the pair of transducers,
The transducer is configured to transmit and receive signals at a plurality of resonant frequencies;
The calculation unit is a fluid type determination device that determines the type of the fluid to be measured based on signal characteristics of received signals of a plurality of resonant frequencies.
JP2022025201A 2022-02-22 2022-02-22 Vibration transmitting member, transducer using same, and fluid type discriminating device Active JP7595309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022025201A JP7595309B2 (en) 2022-02-22 2022-02-22 Vibration transmitting member, transducer using same, and fluid type discriminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022025201A JP7595309B2 (en) 2022-02-22 2022-02-22 Vibration transmitting member, transducer using same, and fluid type discriminating device

Publications (2)

Publication Number Publication Date
JP2023121880A JP2023121880A (en) 2023-09-01
JP7595309B2 true JP7595309B2 (en) 2024-12-06

Family

ID=87799164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022025201A Active JP7595309B2 (en) 2022-02-22 2022-02-22 Vibration transmitting member, transducer using same, and fluid type discriminating device

Country Status (1)

Country Link
JP (1) JP7595309B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007328763A (en) 2006-05-12 2007-12-20 Matsushita Electric Works Ltd Fire detector
JP2013246065A (en) 2012-05-28 2013-12-09 Panasonic Corp Ultrasonic flowmeter
JP2019070006A (en) 2005-04-11 2019-05-09 クレアルタ ファーマセウティカルズ エルエルシー Variant forms of urate oxidases and uses thereof
JP2020182038A (en) 2019-04-23 2020-11-05 株式会社Soken Ultrasonic sensor
JP2021164128A (en) 2020-04-03 2021-10-11 パナソニックIpマネジメント株式会社 Ultrasonic transmitter/receiver, ultrasonic flowmeter, ultrasonic current meter, ultrasonic concentration meter, and manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019070006A (en) 2005-04-11 2019-05-09 クレアルタ ファーマセウティカルズ エルエルシー Variant forms of urate oxidases and uses thereof
JP2007328763A (en) 2006-05-12 2007-12-20 Matsushita Electric Works Ltd Fire detector
JP2013246065A (en) 2012-05-28 2013-12-09 Panasonic Corp Ultrasonic flowmeter
JP2020182038A (en) 2019-04-23 2020-11-05 株式会社Soken Ultrasonic sensor
JP2021164128A (en) 2020-04-03 2021-10-11 パナソニックIpマネジメント株式会社 Ultrasonic transmitter/receiver, ultrasonic flowmeter, ultrasonic current meter, ultrasonic concentration meter, and manufacturing method

Also Published As

Publication number Publication date
JP2023121880A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
US7624650B2 (en) Apparatus and method for attenuating acoustic waves propagating within a pipe wall
US7624651B2 (en) Apparatus and method for attenuating acoustic waves in pipe walls for clamp-on ultrasonic flow meter
US6971259B2 (en) Fluid density measurement in pipes using acoustic pressures
JP4034730B2 (en) Liquid level measuring device
EP2639559B1 (en) Ultrasonic flow rate measuring device
US9279707B2 (en) Ultrasonic multipath flow measuring device ascertaining weighing factors for measuring paths
US20070034016A1 (en) Ultrasonic flow sensor
CN110383014B (en) Apparatus and method for measuring flow velocity of fluid in pipe
Johansson et al. Theory and experiments on the coupling of two Helmholtz resonators
US8689639B2 (en) Ultrasonic transducer having a matching layer between a piezoelectric element and a coupling element
CN110972494B (en) Ultrasonic transducer for measuring flow rate by meta plate
KR101919872B1 (en) Measuring apparatus and method for determining the flow speed of a fluid flowing in a conduit
US10837851B2 (en) Measurement device and method for ascertaining a pressure in a measurement volume
CN100414261C (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium
WO2020044887A1 (en) Ultrasonic flowmeter
JP7595309B2 (en) Vibration transmitting member, transducer using same, and fluid type discriminating device
CN109655117B (en) Measuring device for determining a fluid variable
JP2024030737A (en) calorific flow meter
Holmer et al. Transmission of sound through pipe walls in the presence of flow
CA2658849C (en) Apparatus and method for attenuating acoustic waves in propagating within a pipe wall
RU2382989C2 (en) Device for measurement of flow parametres
JP2006292381A (en) Ultrasonic flow meter
JP2021025838A (en) Ultrasonic transmitter/receiver, and ultrasonic flowmeter
JP7634194B2 (en) Vibration transmission member, and transducer, flow velocimetry, and flow meter using the same
JP2003139591A (en) Ultrasonic flowmeter

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20241001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241115

R150 Certificate of patent or registration of utility model

Ref document number: 7595309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150