[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7579751B2 - 組成推定装置及び流体混合システム - Google Patents

組成推定装置及び流体混合システム Download PDF

Info

Publication number
JP7579751B2
JP7579751B2 JP2021088252A JP2021088252A JP7579751B2 JP 7579751 B2 JP7579751 B2 JP 7579751B2 JP 2021088252 A JP2021088252 A JP 2021088252A JP 2021088252 A JP2021088252 A JP 2021088252A JP 7579751 B2 JP7579751 B2 JP 7579751B2
Authority
JP
Japan
Prior art keywords
fluid
flow rate
measured
composition
characteristic coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021088252A
Other languages
English (en)
Other versions
JP2022181347A (ja
Inventor
大統 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2021088252A priority Critical patent/JP7579751B2/ja
Publication of JP2022181347A publication Critical patent/JP2022181347A/ja
Application granted granted Critical
Publication of JP7579751B2 publication Critical patent/JP7579751B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

本発明は、組成推定装置及び流体混合システムに関する。
工業用炉等に用いられる、ガスバーナ等の種々の燃焼機器は、燃料ガスと燃焼用空気とを所定の混合比率で燃焼させるよう構成されている。また、燃料ガスには、都市ガスの他に、プロパン、水素等を用いることがある。この場合には、燃料ガスの組成が異なることになり、適切な燃焼を行うためには、燃料ガスと燃焼用空気との混合比率を適宜変更する必要がある。
例えば、特許文献1に記載された燃料供給システムにおいては、ガス燃料の性状が変化した場合であっても好適な燃料供給を行うために、熱式流量計と、ガス燃料の組成に依存せずに流量を計測可能な組成非依存流量計とを用いる。熱式流量計の計測値と組成非依存流量計の計測値との乖離度合が異常状態を示すほどに大きい場合には、燃料供給装置による供給対象へのガス燃料の供給量を調整するよう構成されている。
WO2013/111776号公報
特許文献1の燃料供給システムにおいては、例えば、燃料ガスの組成(種類)を意図的に異ならせた場合に、流体の組成に応じた熱式流量計における固有係数の違いを利用することによって、燃料ガスと燃焼用空気との混合比率を適切に変更するための工夫はなされていない。また、特許文献1の燃料供給システムにおいては、燃料ガスの組成(種類)を意図的に異ならせた場合に、燃料ガスの組成を推定するための工夫もなされていない。従って、必要とする組成の混合流体をより適切に生成するためには、更なる工夫が必要とされる。
本発明は、かかる課題に鑑みてなされたもので、必要とする組成の流体をより適切に生成することができる組成推定装置及び流体混合システムを提供しようとするものである。
本発明の一態様は、
特定組成の基準流体の質量流量を測定するよう設定され、配管を流れる、前記基準流体と異なる測定流体の質量流量を測定する熱式流量計と、
前記配管に前記熱式流量計と直列に並んで配置されるとともに、前記配管を流れる前記測定流体の体積流量を測定する体積流量計と、
前記熱式流量計に設定された前記基準流体の固有係数をa、前記熱式流量計によって測定される前記測定流体の質量流量をQa、前記体積流量計によって測定される前記測定流体の体積流量をQbとしたとき、前記測定流体の固有係数bを、b=a×Qa/Qbによって求め、前記測定流体の固有係数bに基づいて前記測定流体の組成を推定する演算装置と、を備える組成推定装置にある。
本発明の他の態様は、
第1流体と第2流体とが混合された混合流体を生成し、前記混合流体における前記第1流体と前記第2流体との混合比率を目標混合比率にする流体混合システムであって、
前記第1流体が供給される第1配管と、
前記第2流体が供給される第2配管と、
前記第1配管と前記第2配管とが合わさる合流配管と、
前記合流配管に配置されるとともに、特定組成の基準流体の質量流量を測定するよう設定され、かつ、前記合流配管を流れる前記混合流体の質量流量を測定する熱式流量計と、
前記合流配管に前記熱式流量計と直列に並んで配置されるとともに、前記合流配管を流れる前記混合流体の体積流量を測定する体積流量計と、
前記第1流体と前記第2流体との混合比率を調整するための調整弁と、
前記熱式流量計、前記体積流量計及び前記調整弁を制御する制御装置と、を備え、
前記制御装置は、
前記第1流体の組成、前記第2流体の組成及び前記目標混合比率の各情報を取得する情報取得部と、
前記第1流体の組成、前記第2流体の組成及び前記目標混合比率が定まるときの前記目標混合比率の前記混合流体についての、前記熱式流量計による質量流量と前記体積流量計による体積流量との関係に基づく目標流量関係又は目標固有係数が設定される関係設定部と、
前記熱式流量計によって測定された測定質量流量と前記体積流量計によって測定された測定体積流量との測定流量関係が前記目標流量関係と一致するように、又は前記測定質量流量、前記測定体積流量及び前記基準流体の固有係数に基づく測定固有係数が前記目標固有係数と一致するように、前記調整弁の開度を調整する開度調整部と、を有する、流体混合システムにある。
(一態様の組成推定装置)
前記一態様の組成推定装置においては、熱式流量計と体積流量計とが配管に直列に配置された構成と、熱式流量計に設定された基準流体の固有係数a、熱式流量計によって測定される測定流体の質量流量Qa、及び体積流量計によって測定される測定流体の体積流量Qbを利用して、熱式流量計によって質量流量を測定する測定流体の組成を推定する。熱式流量計における固有係数は、熱式流量計によって質量流量を測定する流体の組成に応じて固有の値を示すものであり、流体の組成に応じて定められるものである。
前記一態様の組成推定装置においては、流体の組成に応じた熱式流量計における固有係数の違いを利用することによって、熱式流量計によって質量流量を測定する測定流体の組成を推定する。具体的には、基準流体の固有係数aと測定流体の質量流量Qaとの積が、測定流体の固有係数bと測定流体の体積流量Qbとの積と等価になることに着目し、演算装置は、測定流体の固有係数bを、b=a×Qa/Qbによって求め、測定流体の固有係数bに基づいて測定流体の組成を推定する。測定流体の固有係数bと測定流体の組成との関係は、試験、理論計算等によって求めておけばよい。
この構成により、熱式流量計と体積流量計とが直列に配置された配管を用い、流量を測定する測定流体の組成が基準流体の組成と異なる場合に、測定流体の組成を推定することができる。そのため、例えば、測定流体を、燃料ガス、又は既知の燃料ガスと燃焼用空気との混合気とする場合には、燃料ガス又は混合気の組成が推定可能になり、燃料ガスと燃焼用空気との混合比率を適切にすることができる。
それ故、前記一態様の組成推定装置によれば、測定流体の組成の推定により、必要とする組成の流体をより適切に生成することができる。
(他の態様の流体混合システム)
前記他の態様の流体混合システムにおいては、第1流体と第2流体とが混合された混合流体が流れる合流配管に、熱式流量計と体積流量計とが直列に配置された構成を利用して、熱式流量計に設定された基準流体の組成と異なる組成の混合流体を用いるときの、第1流体と第2流体との混合比率を目標混合比率にする工夫をしている。前記他の態様の流体混合システムにおいては、制御装置は、流体の組成に応じた熱式流量計における固有係数の違いを利用することによって、第1流体の組成及び第2流体の組成の各情報が取得されたときに、調整弁の開度を調整して、第1流体と第2流体との混合比率を目標混合比率にする。
具体的には、制御装置は、情報取得部、関係設定部及び開度調整部を有している。そして、情報取得部によって、第1流体の組成、第2流体の組成及び目標混合比率の各情報が取得され、関係設定部によって、第1流体の組成、第2流体の組成及び目標混合比率が定まるときの目標混合比率の混合流体についての、熱式流量計による質量流量と体積流量計による体積流量との関係に基づく目標流量関係又は目標固有係数が設定される。目標流量関係は、熱式流量計における基準流体の固有係数と、熱式流量計における目標混合比率の混合流体の目標固有係数との関係を反映する。
そして、開度調整部によって、熱式流量計によって測定された測定質量流量と体積流量計によって測定された測定体積流量との測定流量関係が、目標流量関係と一致するように、又は測定質量流量、測定体積流量及び基準流体の固有係数に基づく測定固有係数が、目標固有係数と一致するように、調整弁の開度が調整される。測定流量関係が目標流量関係と許容範囲内で一致するとき、又は測定固有係数が目標固有係数と許容範囲内で一致するときには、目標とする組成の混合流体が生成されていると判断することができる。そのため、例えば、第1流体を燃料ガスとするとともに第2流体を燃焼用空気とする場合には、燃料ガスと燃焼用空気との混合比率を目標混合比率にすることができる。
それ故、前記他の態様の流体混合システムによれば、目標混合比率の混合流体の生成により、必要とする組成の混合流体をより適切に生成することができる。
図1は、実施形態1にかかる、組成推定装置を示す説明図である。 図2は、実施形態2にかかる、流体混合システムを示す説明図である。 図3は、実施形態2にかかる、体積流量と質量流量との目標流量関係、及び基準流体の固有係数と混合流体の固有係数との関係を示すグラフである。 図4は、実施形態2にかかる、体積流量と質量流量と関係を、実測値及び理論値によって示すグラフである。 図5は、実施形態2にかかる、流体混合システムの制御方法のメインルーチンを示すフローチャートである。 図6は、実施形態2にかかる、流体混合システムの制御方法の第1調整ルーチンを示すフローチャートである。 図7は、実施形態2にかかる、流体混合システムの制御方法の第2調整ルーチンを示すフローチャートである。
前述した組成推定装置及び流体混合システムにかかる好ましい実施形態について、図面を参照して説明する。
<実施形態1>
本形態の組成推定装置1Aは、図1に示すように、熱式流量計2、体積流量計3及び演算装置4Aを備える。熱式流量計2は、特定組成の基準流体の質量流量Qaを測定するよう設定されており、配管5を流れる、基準流体と異なる測定流体Mの質量流量Qaを測定するよう構成されている。体積流量計3は、配管5に熱式流量計2と直列に並んで配置されており、配管5を流れる測定流体Mの体積流量Qbを測定するよう構成されている。
演算装置4Aは、熱式流量計2に設定された基準流体の固有係数をa、熱式流量計2によって測定される測定流体Mの質量流量をQa、体積流量計3によって測定される測定流体Mの体積流量をQbとしたとき、測定流体Mの固有係数bを、b=a×Qa/Qbによって求め、測定流体Mの固有係数bに基づいて測定流体Mの組成を推定するよう構成されている。
以下に、本形態の組成推定装置1Aについて詳説する。
図1に示すように、組成推定装置1Aは、燃料ガスと燃焼用空気との混合気の燃焼を行う燃焼機器6へ、必要とする組成の流体としての混合気の供給を可能にするものである。組成推定装置1Aを構成する配管5は、燃焼機器6に繋がるものであり、燃焼機器6へ測定流体Mとしての混合気を供給するためのものである。
本形態における測定流体M及び基準流体は、気体(ガス)としての、燃料ガスと燃焼用空気の混合気である。燃料ガスには、都市ガス、プロパン、水素等がある。燃焼用空気には、空気(フレッシュエア)、空気と排ガスとの混合エア等がある。配管5は、測定流体Mの供給源50に接続されている。
(熱式流量計2)
図1に示すように、熱式流量計2は、気体の質量流量Qa[g/s]を測定するものである。熱式流量計2は、測定流体Mの単位時間当たりの移動に伴う熱量の変化に基づいて質量流量Qaを検出するものである。熱式流量計2は、ヒータ、ヒータの配置位置の上流側に配置された温度センサ、及びヒータの配置位置の下流側に配置された温度センサ等を有する。熱式流量計2には、ヒータの上流側における流体の温度とヒータの下流側における流体の温度との差に基づいて流量を測定する温度差測定法による方式、ヒータの上流側における流体の温度とヒータの下流側における流体の温度との差が一定になるようにヒータを制御する消費電力測定法による方式等がある。
熱式流量計2は、測定流体Mの組成が変化すると、質量流量Qaの測定結果に誤差を生じさせるものである。熱式流量計2においては、質量流量Qaを正しく測定するために、流体の組成に応じた固有係数が設定されている。熱式流量計2の測定部によって奪われる熱量H[J]は、熱式流量計2の質量流量Qa[g/s]、密度ρ[g/m3]、低圧比熱c[J/(g・K)]、熱伝導率λ[W/(m・K)]を用いて、H∝Qa・ρ・c/λによって表される。換言すれば、Hは、Qa・ρ・c/λに比例する。そして、質量流量Qa及び熱量Hが適宜変化する一方、密度ρ、低圧比熱c及び熱伝導率λによるρ・c/λは、気体としての種々の混合気に応じて固有の値となる。
本形態の組成推定装置1Aは、測定流体Mが、熱式流量計2に設定された基準流体と異なるようにし、熱式流量計2によって測定される質量流量Qaに意図的に誤差を生じさせ、この誤差を利用して測定流体Mの組成を推定する。この誤差は、測定流体Mの組成に応じて、熱式流量計2による測定の係数であるρ・c/λの固有値の違いによって生じる。
(体積流量計3)
図1に示すように、体積流量計3は、気体の体積流量Qb[m3/s]を測定するものである。体積流量計3は、配管5を流れる測定流体Mの体積流量Qbを、測定流体Mの単位時間当たりの体積変化に基づいて検出するものである。体積流量計3には、互いに噛み合う2つの楕円状の歯車の回転を利用して流量を測定する容積式流量計、配管5内に生じさせるカルマン渦の周波数(流速)を利用して流量を測定する渦式流量計、羽根車の回転を利用して流量を測定するタービン式流量計等がある。体積流量計3は、測定流体Mの組成の違いに拘わらず、測定流体Mの流量を適切に測定可能である。
(演算装置4A)
図1に示すように、演算装置4Aは、シーケンサ(プログラマブルコンピュータ)等のコンピュータによって構成されている。演算装置4Aは、熱式流量計2から測定流体Mの質量流量Qaの情報を受け取るとともに、体積流量計3から測定流体Mの体積流量Qbの情報を受け取るよう構成されている。また、演算装置4Aは、熱式流量計2において設定された基準流体の固有係数aの情報を受け取るよう構成されている。
基準流体の固有係数aは、基準流体についての密度ρ1、低圧比熱c1及び熱伝導率λ1を用いて、熱式流量計2による測定の係数であるρ1・c1/λ1の固有値によって示される。測定流体Mの固有係数bは、測定流体Mについての密度ρ2、低圧比熱c2及び熱伝導率λ2を用いて、熱式流量計2による測定の係数であるρ2・c2/λ2の固有値によって示される。演算装置4Aは、測定流体Mの組成が基準流体の組成と異なることによって、基準流体のρ1・c1/λ1の固有値である固有係数aと測定流体Mのρ2・c2/λ2の固有値である固有係数bとが異なることを利用する。
基準流体の組成は既知である一方、測定流体Mの組成は未知である。演算装置4Aにおいては、種々の気体としての混合気について、ρ・c/λの固有値である固有係数を求めておく。固有係数は、熱式流量計2が配置された配管5に気体を流したときの質量熱量Qaを実測して求めてもよく、種々の気体について既知である密度ρ、低圧比熱c及び熱伝導率λの値を用いて計算により求めてもよい。そして、演算装置4Aは、固有係数に基づいて、種々の気体である測定流体Mの組成を推定する。
測定流体Mの組成が基準流体の組成と異なっていれば、熱式流量計2によって測定される質量流量Qaの値は、体積流量計3によって測定される体積流量Qbの値と異なることになる。そして、演算装置4Aは、基準流体の固有係数a、質量流量Qa及び体積流量Qbを用い、測定流体Mの固有係数bを、b=a×Qa/Qbによって求め、測定流体Mの固有係数bに基づいて測定流体Mの組成を推定することが可能になる。
(作用効果)
本形態の組成推定装置1Aにおいては、基準流体の固有係数a、測定流体Mの質量流量Qa及び測定流体Mの体積流量Qbを利用して、測定流体Mの組成を推定する。熱式流量計2における固有係数は、熱式流量計2によって質量流量Qaを測定する流体の組成に応じて固有の値を示すものであり、流体の組成に応じて定められるものである。
本形態の組成推定装置1Aにおいては、流体の組成に応じた熱式流量計2における固有係数の違い、換言すれば、基準流体の固有係数aと測定流体Mの質量流量Qaとの積が、測定流体Mの固有係数bと測定流体Mの体積流量Qbとの積と等価になることを利用して、測定流体Mの固有係数bを、b=a×Qa/Qbによって求め、測定流体Mの固有係数bに基づいて測定流体Mの組成を推定する。この構成により、流量を測定する測定流体Mの組成が基準流体の組成と異なる場合に、測定流体Mの組成を推定することができる。そのため、例えば、測定流体Mを、燃料ガス、又は既知の燃料ガスと燃焼用空気との混合気とする場合には、燃料ガス又は混合気の組成が推定可能になり、燃料ガスと燃焼用空気との混合比率を適切にすることができる。
それ故、本形態の組成推定装置1Aによれば、測定流体Mの組成の推定により、必要とする組成の流体をより適切に生成することができる。
<実施形態2>
本形態は、熱式流量計2及び体積流量計3が直列に配置された配管5を利用して、目標混合比率の混合流体M1を得る流体混合システム1Bについて示す。本形態の流体混合システム1Bは、第1流体R1と第2流体R2とが混合された混合流体M1を生成し、混合流体M1における第1流体R1と第2流体R2との混合比率を目標混合比率にするものである。
流体混合システム1Bは、図2に示すように、第1配管5A、第2配管5B、合流配管5C、熱式流量計2、体積流量計3、調整弁51,52及び制御装置4Bを備える。第1配管5Aは、第1流体R1が供給されるものである。第2配管5Bは、第2流体R2が供給されるものである。合流配管5Cは、第1配管5Aと第2配管5Bとが合わさったものである。熱式流量計2は、合流配管5Cに配置されるとともに、特定組成の基準流体の質量流量Qaを測定するよう設定されており、かつ、合流配管5Cを流れる混合流体M1(測定流体M)の質量流量Qaを測定するよう構成されている。
体積流量計3は、合流配管5Cに熱式流量計2と直列に並んで配置されるとともに、合流配管5Cを流れる混合流体M1(測定流体M)の体積流量Qbを測定するよう構成されている。調整弁51,52は、第1流体R1と第2流体R2との混合比率を調整するためのものである。制御装置4Bは、熱式流量計2、体積流量計3及び調整弁51,52を制御するよう構成されている。
制御装置4Bは、情報取得部41、関係設定部42及び開度調整部43を有する。情報取得部41は、第1流体R1の組成、第2流体R2の組成及び目標混合比率の各情報を取得するよう構成されている。関係設定部42は、第1流体R1の組成、第2流体R2の組成及び目標混合比率が定まるときの目標混合比率の混合流体M1についての、熱式流量計2による質量流量Qaと体積流量計3による体積流量Qbとの関係に基づく目標流量関係が設定されるよう構成されている。なお、関係設定部42は、目標混合比率の混合流体M1についての、質量流量Qaと体積流量Qbとの関係に基づく目標固有係数brが設定されるよう構成されていてもよい。
開度調整部43は、熱式流量計2によって測定された測定質量流量Qaと体積流量計3によって測定された測定体積流量Qbとの測定流量関係が、目標流量関係と一致するように、調整弁51,52の開度を調整するよう構成されている。なお、開度調整部43は、測定質量流量Qa、測定体積流量Qb及び基準流体の固有係数aに基づく測定固有係数bmが、目標固有係数brと一致するように、調整弁51,52の開度を調整してもよい。
以下に、本形態の流体混合システム1Bについて詳説する。
図2に示すように、流体混合システム1Bは、燃料ガスと燃焼用空気との混合気の燃焼を行う燃焼機器6へ、目標混合比率の混合流体M1としての混合気を供給するものである。合流配管5Cは、燃焼機器6に繋がるものであり、燃焼機器6へ混合流体M1としての混合気を供給するためのものである。第1配管5Aは、燃料ガスの供給源53Aに接続されており、第2配管5Bは、ファン等の燃焼用空気の供給源53Bに接続されている。
調整弁51,52には、第1配管5Aに配置された第1調整弁51と、第2配管5Bに配置された第2調整弁52とがある。熱式流量計2及び体積流量計3は、実施形態1に示すものと同様である。
本形態の熱式流量計2は、特定組成の基準流体として、都市ガスと燃焼用空気(フレッシュエア)との混合気の質量流量Qaを測定するよう設定されている。換言すれば、熱式流量計2においては、都市ガスと燃焼用空気との混合気についての固有係数が設定されている。本形態においては、第1流体R1は、都市ガスとは組成が異なる、プロパン、水素等の気体(ガス)とし、第2流体R2は、燃焼用空気とする。なお、第1流体R1及び第2流体R2は、いずれも燃料ガスとしてもよい。例えば、第1流体R1及び第2流体R2は、都市ガス及び水素、プロパン及び水素としてもよい。
(情報取得部41)
図2に示すように、制御装置4Bの情報取得部41は、第1流体R1としてのプロパンの組成、第2流体R2としての燃焼用空気の組成、及び第1流体R1と第2流体R2との目標混合比率の各情報を取得するよう構成されている。目標混合比率は、プロパンと燃焼用空気とが失火を生じることなく安定して燃焼可能な空気比(空気過剰率)又は空燃比として設定する。情報取得部41には、流体混合システム1Bの管理者による入力操作によって、第1流体R1の種類、第2流体R2の種類及び目標混合比率の各情報が入力される。また、情報取得部41においては、第1流体R1の固有係数b1と第2流体R2の固有係数b2とが取得される。これらの固有係数b1,b2は、第1調整弁51又は第2調整弁52の開度を大きくするか、小さくするかを決定するために用いられる。
(関係設定部42)
図2に示すように、制御装置4Bの関係設定部42においては、種々の第1流体R1及び第2流体R2の種類が設定され、第1流体R1と第2流体R2との混合比率が適宜変化したときの、熱式流量計2による質量流量Qaと体積流量計3による体積流量Qbとの目標流量関係が設定されている。また、本形態の関係設定部42においては、第1流体R1の組成及び第2流体R2の組成が定まる場合に、第1流体R1と第2流体R2との混合比率が変化したときの目標流量関係が設定されている。合流配管5Cに流れる混合流体M1の組成が変化すると、体積流量計3による体積流量Qbに変化がない一方、熱式流量計2による質量流量Qaは変化する。そして、混合流体M1の組成の変化に応じて、体積流量計3による体積流量Qbに対する熱式流量計2による質量流量Qaの比率が変化する。
図3に示すように、目標流量関係は、第1流体R1の組成、換言すれば燃料ガスの種類が決められた場合に、第1流体R1の流量に対する第2流体R2の流量の割合を変更したときの、体積流量Qbと質量流量Qaとの関係、又は基準流体の固有係数aと混合流体M1(測定流体M)の固有係数bとの関係として示される。体積流量Qbと質量流量Qaとの関係は直線的な比例関係となり、基準流体の固有係数aと混合流体M1(測定流体M)の固有係数bとの比としても示される。
本形態においても、実施形態1と同様に、基準流体の固有係数aと質量流量Qaとの積は、測定流体Mの固有係数bと体積流量Qbとの積と等価である関係を利用する。この関係は、a・Qa=b・Qbとして表され、書き換えれば、Qb=(a/b)・Qaとして表される。体積流量Qbと質量流量Qaとの関係は、a/bの勾配を有する直線によって表される。
目標混合比率の混合流体M1についての質量流量Qarと体積流量Qbrとの目標流量関係Qar/Qbrは、br=a・(Qar/Qbr)の式、及び基準流体の固有係数aは既知であることに基づき、目標混合比率の混合流体M1の固有係数brとしても表される。この固有係数brは、目標混合比率の混合流体M1についての密度ρ、低圧比熱c及び熱伝導率λを用いて、br=ρ・c/λの固有値によって示される。
また、この場合には、測定質量流量Qaと測定体積流量Qbとの測定流量関係Qa/Qbは、bm=a・(Qa/Qb)の式、及び基準流体の固有係数aは既知であることに基づき、測定された混合流体M1の測定固有係数bmとしても表される。この測定固有係数bmは、基準流体の固有係数a、測定質量流量Qa及び測定体積流量Qbを用いて計算される。
図4においては、基準流体が都市ガス及び燃焼用空気の混合気として設定された熱式流量計2を用い、プロパン及び燃焼用空気の混合気を混合流体M1として、熱式流量計2によって質量流量Qaを測定するとともに体積流量計3によって体積流量Qbを測定した場合の、体積流量Qbと質量流量Qaとの関係を第1直線L1として示す。また、図4においては、基準流体の固有係数aと混合流体M1(測定流体M)の固有係数bとの比から求めた、計算上の体積流量Qbと質量流量Qaとの関係を第2直線L2として示す。第1直線L1と第2直線L2との間には、若干の違いがある。目標流量関係及び目標固有係数brは、実測値と理論値との間の校正を行って決定すればよい。
目標流量関係を設定する際には、理論値の関係である第2直線L2が、実測値の関係である第1直線L1に近くなるよう補正係数を求める。そして、目標流量関係は、第2直線L2を補正係数によって補正した補正後の目標流量関係とする。
一方、実測値の関係である第1直線L1が、理論値の関係である第2直線L2に近くなるよう補正係数を求めてもよい。この場合には、開度調整部43は、測定質量流量Qaと測定体積流量Qbとの測定流量関係を補正係数によって補正した、補正後の測定流量関係が、目標流量関係と一致するように調整弁51,52を調整する。
(開度調整部43)
図に示すように、開度調整部43は、第1調整弁51の開度を調整して、燃焼に用いる第1流体R1としての燃料ガスの供給量を決定し、その後、第2調整弁52の開度を調整して、燃焼に用いる第2流体R2としての燃焼用空気の供給量を決定するよう構成されている。そして、開度調整部43は、測定流量関係が目標流量関係と一致するように第2調整弁52を調整して、目標混合比率の混合流体M1としての、燃焼機器6に供給する混合気の空気比を決定するよう構成されている。
(流体混合システム1Bの制御方法)
以下に、流体混合システム1Bの制御方法について、図5~図7のフローチャートを参照して説明する。また、各フローチャートにおいては、関係設定部42において、目標流量関係の代わりに目標固有係数brを用いる場合について示す。
図5のメインルーチンにおいて、制御装置4Bは、情報取得部41によって、第1流体R1に用いる燃料ガスの種類、第2流体R2には燃焼用空気を用いること、及び第1流体R1と第2流体R2との目標混合比率の各情報を取得する(図5のステップS101)。このとき、第1流体R1の固有係数b1と第2流体R2の固有係数b2とが取得される。これらの固有係数b1,b2は、情報取得部41におけるデータベースに基づいて求められる(ステップS102)。また、制御装置4Bは、関係設定部42において、目標混合比率を有する、燃料ガスと燃焼用空気との混合気(混合流体M1)の目標固有係数brを求め、これを設定する(ステップS103)。
次いで、制御装置4Bは、開度調整部43によって、第1調整弁51の開度を調整して、第1配管5Aから合流配管5Cへ流れる第1流体R1としての燃料ガスの流量を決定する(ステップS104)。次いで、制御装置4Bは、開度調整部43によって、第2調整弁52の開度を調整して、第2配管5Bから合流配管5Cへ流れる第2流体R2としての燃焼用空気の流量を変更する(ステップS105)。
次いで、制御装置4Bは、熱式流量計2によって混合気の質量流量Qaを測定するとともに、体積流量計3によって混合気の体積流量Qbを測定する(ステップS106)。そして、制御装置4Bは、基準流体の固有係数a、測定された測定質量流量Qa及び測定された測定体積流量Qbを用いて、測定された混合気の測定固有係数bmを求める(ステップS107)。
次いで、制御装置4Bは、測定された混合気の測定固有係数bmが、目標混合比率を有する混合気の目標固有係数brの許容範囲内にあるか否かを判定する(ステップS108)。目標固有係数brの許容範囲は、br±αとして表される。測定固有係数bmが目標固有係数brの許容範囲内にある場合には、混合気における、第1流体R1と第2流体R2との混合比率が、目標混合比率の許容範囲内にあると判断し、第2調整弁52の開度を固定する(ステップS109)。
一方、測定固有係数bmが目標固有係数brの許容範囲内にない場合には、制御装置4Bは、第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも大きいか否かを判定する(ステップS110)。第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも大きい場合には、制御装置4Bは、第1調整ルーチンを実行する(ステップS111)。
図6の第1調整ルーチンにおいては、測定固有係数bmが目標固有係数brの許容範囲超過であるか否かを判定する(図6のステップS201)。測定固有係数bmが目標固有係数brの許容範囲超過である場合には、第2調整弁52の開度を所定量大きくする(ステップS202)。一方、測定固有係数bmが目標固有係数brの許容範囲超過でない場合には、測定固有係数bmが目標固有係数brの許容範囲未満であると判断し、第2調整弁52の開度を所定量小さくする(ステップS203)。
例えば、第1流体R1がプロパンである場合には、密度ρ、低圧比熱c及び熱伝導率λを用いたρ・c/λによって算出される固有係数b1は、0.2042となる。また、第2流体R2としての燃焼用空気(フレッシュエア)についての、ρ・c/λによって算出される固有係数b2は、0.0538となる。第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも大きい場合であって、測定固有係数bmが目標固有係数brの許容範囲超過である場合は、第2流体R2としての燃焼用空気が不足していると判断され、第2調整弁の開度を所定量大きくする。一方、第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも大きい場合であって、測定固有係数bmが目標固有係数brの許容範囲超過でない場合は、第2流体R2としての燃焼用空気が過剰であると判断され、第2調整弁の開度を所定量小さくする。
次いで、第1調整ルーチンからメインルーチンに戻り、制御装置4Bは、熱式流量計2によって混合気の質量流量Qaを再び測定するとともに、体積流量計3によって混合気の体積流量Qbを再び測定する(図5のステップS106)。そして、制御装置4Bは、基準流体の固有係数a、測定された測定質量流量Qa及び測定された測定体積流量Qbを用いて、測定された混合気の測定固有係数bmを再び求める(ステップS107)。
ステップS110において、第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも大きくない(小さい)場合には、制御装置4Bは、第2調整ルーチンを実行する(ステップS112)。図7の第2調整ルーチンにおいては、測定固有係数bmが目標固有係数brの許容範囲超過であるか否かを判定する(図7のステップS301)。測定固有係数bmが目標固有係数brの許容範囲超過である場合には、第2調整弁52の開度を所定量小さくする(ステップS302)。一方、測定固有係数bmが目標固有係数brの許容範囲超過でない場合には、測定固有係数bmが目標固有係数brの許容範囲未満であると判断し、第2調整弁52の開度を所定量大きくする(ステップS303)。
例えば、第1流体R1が水素である場合には、固有係数b1は、0.0076となる。また、第2流体R2としての燃焼用空気(フレッシュエア)についての固有係数b2は、0.0538となる。第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも小さい場合であって、測定固有係数bmが目標固有係数brの許容範囲超過である場合は、第2流体R2としての燃焼用空気が過剰であると判断され、第2調整弁の開度を所定量小さくする。一方、第1流体R1の固有係数b1が第2流体R2の固有係数b2よりも小さい場合であって、測定固有係数bmが目標固有係数brの許容範囲超過でない場合は、第2流体R2としての燃焼用空気が不足していると判断され、第2調整弁の開度を所定量大きくする。
次いで、第2調整ルーチンからメインルーチンに戻り、制御装置4Bは、熱式流量計2によって混合気の質量流量Qaを再び測定するとともに、体積流量計3によって混合気の体積流量Qbを再び測定する(図5のステップS106)。そして、制御装置4Bは、基準流体の固有係数a、測定された測定質量流量Qa及び測定された測定体積流量Qbを用いて、測定された混合気の測定固有係数bmを再び求める(ステップS107)。
その後、測定固有係数bmが目標固有係数brの許容範囲内になるまで、ステップS106~S112を繰り返し行う。そして、混合気の混合比率が目標混合比率の許容範囲内になったときには、第2調整弁52の開度を固定する(ステップS109)。こうして、燃焼機器6に供給される混合気の混合比率(空気比)が目標混合比率の許容範囲内に設定される。
本形態の流体混合システム1Bの制御方法においては、第1流体R1を燃料ガスとし、第2流体R2を燃焼用空気とする場合について示した。これ以外にも、第1流体R1及び第2流体R2は、互いに組成の異なる種々の燃料ガスとしてもよい。
(作用効果)
本形態の流体混合システム1Bにおいては、制御装置4Bは、流体の組成に応じた熱式流量計2における固有係数の違いを利用することによって、第1流体R1の組成及び第2流体R2の組成の各情報が取得されたときに、調整弁51,52の開度を調整して、第1流体R1と第2流体R2との混合比率を目標混合比率にする。
具体的には、制御装置4Bは、情報取得部41、関係設定部42及び開度調整部43を有している。そして、情報取得部41によって、第1流体R1の組成、第2流体R2の組成及び目標混合比率の各情報が取得され、関係設定部42によって、第1流体R1の組成、第2流体R2の組成及び目標混合比率が定まるときの目標混合比率の混合流体M1についての、熱式流量計2による質量流量Qaと体積流量計3による体積流量Qbとの関係に基づく目標流量関係又は目標固有係数brが設定される。目標流量関係は、熱式流量計2における基準流体の固有係数aと、熱式流量計2における目標混合比率の混合流体M1の目標固有係数brとの関係を反映する。
そして、開度調整部43によって、熱式流量計2によって測定された測定質量流量Qaと体積流量計3によって測定された測定体積流量Qbとの測定流量関係が、目標流量関係と一致するように、又は測定質量流量Qa、測定体積流量Qb及び基準流体の固有係数aに基づく測定固有係数bmが、目標固有係数brと一致するように、調整弁51,52の開度が調整される。測定流量関係が目標流量関係と許容範囲内で一致するとき、又は測定固有係数bmが目標固有係数brと許容範囲内で一致するときには、目標とする組成の混合流体M1が生成されていると判断することができる。そのため、第1流体R1を燃料ガスとするとともに第2流体R2を燃焼用空気とする場合には、燃料ガスと燃焼用空気との混合比率を目標混合比率にすることができる。
それ故、本形態の流体混合システム1Bによれば、目標混合比率の混合流体M1の生成により、必要とする組成の混合流体M1をより適切に生成することができる。
本形態の流体混合システム1Bにおける、その他の構成、作用効果等については、実施形態1の組成推定装置1Aの構成、作用効果等と同様である。また、本形態においても、実施形態1に示した符号と同一の符号が示す構成要素は、実施形態1の構成要素と同様である。
<その他の実施形態>
第1流体R1及び第2流体R2は、組成が異なる燃料ガスとし、混合流体Mは、複数種類の燃料ガスが混合されたものとしてもよい。また、流体混合システム1Bは、2段階に構成し、第1流体R1、第2流体R2及び第3流体の3種類の流体が混合された、目標混合比率の混合流体を生成するために用いてもよい。この場合には、1段目の流体混合システム1Bによって、第1流体R1と第2流体R2とが目標混合比率で混合された混合流体Mを生成し、2段目の流体混合システム1Bによって、混合流体Mと第3流体とが目標混合比率で混合された最終的な混合流体を生成すればよい。
本発明は、各実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲においてさらに異なる実施形態を構成することが可能である。また、本発明は、様々な変形例、均等範囲内の変形例等を含む。さらに、本発明から想定される様々な構成要素の組み合わせ、形態等も本発明の技術思想に含まれる。
1A 組成推定装置
1B 流体混合システム
2 熱式流量計
3 体積流量計
4A 演算装置
4B 制御装置
41 情報取得部
42 関係設定部
43 開度調整部
5 配管
5A 第1配管
5B 第2配管
5C 合流配管
51 第1調整弁
52 第2調整弁
6 燃焼機器
Qa 質量流量
Qb 体積流量
M 測定流体
R1 第1流体
R2 第2流体
M1 混合流体

Claims (3)

  1. 特定組成の基準流体の質量流量を測定するよう設定され、配管を流れる、前記基準流体と異なる測定流体の質量流量を測定する熱式流量計と、
    前記配管に前記熱式流量計と直列に並んで配置されるとともに、前記配管を流れる前記測定流体の体積流量を測定する体積流量計と、
    前記熱式流量計に設定された前記基準流体の固有係数をa、前記熱式流量計によって測定される前記測定流体の質量流量をQa、前記体積流量計によって測定される前記測定流体の体積流量をQbとしたとき、前記測定流体の固有係数bを、b=a×Qa/Qbによって求め、前記測定流体の固有係数bに基づいて前記測定流体の組成を推定する演算装置と、を備える組成推定装置。
  2. 第1流体と第2流体とが混合された混合流体を生成し、前記混合流体における前記第1流体と前記第2流体との混合比率を目標混合比率にする流体混合システムであって、
    前記第1流体が供給される第1配管と、
    前記第2流体が供給される第2配管と、
    前記第1配管と前記第2配管とが合わさる合流配管と、
    前記合流配管に配置されるとともに、特定組成の基準流体の質量流量を測定するよう設定され、かつ、前記合流配管を流れる前記混合流体の質量流量を測定する熱式流量計と、
    前記合流配管に前記熱式流量計と直列に並んで配置されるとともに、前記合流配管を流れる前記混合流体の体積流量を測定する体積流量計と、
    前記第1流体と前記第2流体との混合比率を調整するための調整弁と、
    前記熱式流量計、前記体積流量計及び前記調整弁を制御する制御装置と、を備え、
    前記制御装置は、
    前記第1流体の組成、前記第2流体の組成及び前記目標混合比率の各情報を取得する情報取得部と、
    前記第1流体の組成、前記第2流体の組成及び前記目標混合比率が定まるときの前記目標混合比率の前記混合流体についての、前記熱式流量計による質量流量と前記体積流量計による体積流量との関係に基づく目標流量関係又は目標固有係数が設定される関係設定部と、
    前記熱式流量計によって測定された測定質量流量と前記体積流量計によって測定された測定体積流量との測定流量関係が前記目標流量関係と一致するように、又は前記測定質量流量、前記測定体積流量及び前記基準流体の固有係数に基づく測定固有係数が前記目標固有係数と一致するように、前記調整弁の開度を調整する開度調整部と、を有する、流体混合システム。
  3. 前記関係設定部においては、前記第1流体の組成及び前記第2流体の組成が定まる場合に、前記第1流体と前記第2流体との混合比率が変化したときの、前記目標流量関係又は前記目標固有係数が設定されている、請求項2に記載の流体混合システム。
JP2021088252A 2021-05-26 2021-05-26 組成推定装置及び流体混合システム Active JP7579751B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088252A JP7579751B2 (ja) 2021-05-26 2021-05-26 組成推定装置及び流体混合システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088252A JP7579751B2 (ja) 2021-05-26 2021-05-26 組成推定装置及び流体混合システム

Publications (2)

Publication Number Publication Date
JP2022181347A JP2022181347A (ja) 2022-12-08
JP7579751B2 true JP7579751B2 (ja) 2024-11-08

Family

ID=84328189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088252A Active JP7579751B2 (ja) 2021-05-26 2021-05-26 組成推定装置及び流体混合システム

Country Status (1)

Country Link
JP (1) JP7579751B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111776A1 (ja) 2012-01-23 2013-08-01 Jx日鉱日石エネルギー株式会社 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013111777A1 (ja) 2012-01-23 2013-08-01 Jx日鉱日石エネルギー株式会社 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013141083A1 (ja) 2012-03-19 2013-09-26 Jx日鉱日石エネルギー株式会社 ガス燃料の組成判別方法、ガス燃料の組成判別装置、燃料供給システム、及び、燃料電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111776A1 (ja) 2012-01-23 2013-08-01 Jx日鉱日石エネルギー株式会社 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013111777A1 (ja) 2012-01-23 2013-08-01 Jx日鉱日石エネルギー株式会社 燃料供給システム、燃料電池システム、及びそれらの運転方法
WO2013141083A1 (ja) 2012-03-19 2013-09-26 Jx日鉱日石エネルギー株式会社 ガス燃料の組成判別方法、ガス燃料の組成判別装置、燃料供給システム、及び、燃料電池システム

Also Published As

Publication number Publication date
JP2022181347A (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
US8640731B2 (en) Flow rate control device
US8636024B2 (en) Fuel supply device
US9938905B2 (en) Method and arrangement for controlling fuel supply for a gas turbine
JP4944037B2 (ja) 質量流量センサ用レイノルズ数補正関数
JP6615217B2 (ja) 可燃性ガスと燃焼用空気を混合するための装置及び方法、これで提供される熱水設備、及び、ガス流の質量流量の計測方法
RU2611543C2 (ru) Способ и устройство для подачи топлива в газовую турбину
US11592430B2 (en) Method for estimating a combustion characteristic of a gas that may contain dihydrogen
JP7579751B2 (ja) 組成推定装置及び流体混合システム
JP2001013097A (ja) 可燃性ガスの火力の評価並びに調節のための装置と方法
JP5704560B2 (ja) ガスタービン燃料制御方法およびガスタービン燃料制御装置
Guillou Uncertainty and measurement sensitivity of turbocharger compressor gas stands
JP7257898B2 (ja) 酸素比制御システム
JPH0339623A (ja) 熱量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241028