[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7575028B1 - Carbide Tools - Google Patents

Carbide Tools Download PDF

Info

Publication number
JP7575028B1
JP7575028B1 JP2024524976A JP2024524976A JP7575028B1 JP 7575028 B1 JP7575028 B1 JP 7575028B1 JP 2024524976 A JP2024524976 A JP 2024524976A JP 2024524976 A JP2024524976 A JP 2024524976A JP 7575028 B1 JP7575028 B1 JP 7575028B1
Authority
JP
Japan
Prior art keywords
punching
phase
tool
cemented carbide
binder phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024524976A
Other languages
Japanese (ja)
Inventor
翔太 青柳
優斗 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Application granted granted Critical
Publication of JP7575028B1 publication Critical patent/JP7575028B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

WC相と、Coを含む結合相からなる超硬合金を用いた超硬工具であって、前記WC相の平均粒径Xμmと、前記結合相の総量Y質量%とが、下記式(1),(2)及び(3):X≦1.2 ・・・(1)2≦Y ・・・(2)-6.7X+6≦Y≦-14X+38 ・・・(3)を満たし、Cr及び/又はVを前記結合相の総量に対して炭化物換算で2~20質量%含む超硬工具。A cemented carbide tool using a cemented carbide alloy consisting of a WC phase and a binder phase containing Co, wherein an average grain size of the WC phase is X μm and a total amount of the binder phase is Y mass % and satisfies the following formulas (1), (2), and (3): X≦1.2 ... (1) 2≦Y ... (2) -6.7X+6≦Y≦-14X+38 ... (3), and the cemented carbide tool contains 2 to 20 mass % of Cr and/or V, calculated as carbide, with respect to the total amount of the binder phase.

Description

本発明は、超硬工具に関する。 The present invention relates to a cemented carbide tool.

脱炭素社会への大きな流れのなか、その大きな役割を担うものに自動車等の電動化がある。電動自動車に用いられるモータには軽量化と高性能化がさらに求められている。モータ等の鉄心としては、低鉄損かつ高磁束密度を達成するために電磁鋼板を複数枚積層した鉄心が多く用いられる。特にアモルファス合金箔は機械的特性、磁気特性、耐食性等に優れた特性を示す。中でも磁気特性が特に優れているため、通常の電磁鋼板の代わりにアモルファス合金箔を使用することにより大幅な性能の向上が見込まれる。 In the major trend towards a decarbonized society, the electrification of automobiles and other vehicles plays a major role. Motors used in electric vehicles are required to be lighter and have higher performance. Iron cores for motors and other devices are often made of multiple laminated electromagnetic steel sheets to achieve low iron loss and high magnetic flux density. Amorphous alloy foil in particular exhibits excellent mechanical properties, magnetic properties, corrosion resistance, and other properties. As its magnetic properties are particularly excellent, using amorphous alloy foil instead of regular electromagnetic steel sheets is expected to significantly improve performance.

モータ等の鉄心に使用する電磁鋼板は一般的に厚さ100~500μmのものであるのに対し、アモルファス金属箔は厚さ10~100μm程度あるため、アモルファス金属箔の場合には多数の打抜きを行う必要がある。ここで、アモルファス合金箔のような高硬度かつ高強度な金属箔を所定形状に連続して打抜いていくと、打抜き用工具が急速に摩耗してしまうため、工具寿命が短いという問題がある。 While magnetic steel sheets used in the iron cores of motors and the like are generally 100 to 500 μm thick, amorphous metal foil is around 10 to 100 μm thick, and therefore requires multiple punching operations. However, when continuously punching high-hardness, high-strength metal foil such as amorphous alloy foil into a specified shape, the punching tools wear out rapidly, resulting in a short tool life.

特開2021-130131号公報(特許文献1)は、非晶質合金リボンの表面に、所定形状の打抜き輪郭線となる塑性加工溝を形成し、打抜き用パンチ及びダイにより、塑性加工溝に沿って打抜き加工を行い、非晶質合金片を得る方法を開示している。合金箔の表面に所定形状の打抜き輪郭線となる塑性加工溝を形成することにより、打抜き荷重を低下させ工具寿命を向上させている。 JP 2021-130131 A (Patent Document 1) discloses a method for forming a plastically processed groove that becomes a punched outline of a predetermined shape on the surface of an amorphous alloy ribbon, and performing punching along the plastically processed groove with a punching punch and die to obtain an amorphous alloy piece. By forming a plastically processed groove that becomes a punched outline of a predetermined shape on the surface of an alloy foil, the punching load is reduced and the tool life is improved.

またアモルファス合金箔の打抜きを行う際、生産性確保の観点から合金箔を複数枚積層させて打抜きが行われる場合があるが、積層枚数が増すとともに打抜き荷重は上昇し、被打抜き材の品質も低下する。特開2023-8048号公報(特許文献2)は、アモルファス電磁鋼板をダイ及びパンチを用いて打抜くに際し、打抜き加工前のアモルファス電磁鋼板に弾性皮膜を塗布することにより、打抜き荷重を低下させる打抜き加工方法を開示している。このように合金箔の間に弾性被膜を塗布した積層材とすることにより、打抜き荷重を抑制し、工具の摩耗を低減させている。 In addition, when punching amorphous alloy foil, multiple alloy foils may be stacked to ensure productivity, but as the number of layers increases, the punching load increases and the quality of the punched material decreases. JP 2023-8048 A (Patent Document 2) discloses a punching method in which an amorphous electromagnetic steel sheet is punched using a die and a punch, and an elastic coating is applied to the amorphous electromagnetic steel sheet before punching to reduce the punching load. In this way, by using a laminated material in which an elastic coating is applied between the alloy foils, the punching load is suppressed and tool wear is reduced.

打抜き用工具の形状を工夫する試みもある。特許第7129048号(特許文献3)は、複数枚積層されたアモルファス合金箔の打抜き加工に用いるパンチに、パンチ先端面に形成された第1のエッジと、パンチ側面に形成された第2のエッジとを設け、第1のエッジからパンチ側面までの水平方向の距離と、第2のエッジからパンチ先端面までの垂直方向の距離を所定の距離にするアモルファス合金箔のせん断加工法を開示している。アモルファス合金箔を複数枚積層させて打抜きする際、割れがなく寸法安定性が高い製品が得られるように打抜き用工具の先端を所定の形状にしている。There have also been attempts to improve the shape of punching tools. Patent No. 7129048 (Patent Document 3) discloses a shearing method for amorphous alloy foils, in which a punch used for punching multiple laminated sheets of amorphous alloy foil is provided with a first edge formed on the tip face of the punch and a second edge formed on the side face of the punch, and the horizontal distance from the first edge to the side face of the punch and the vertical distance from the second edge to the tip face of the punch are set to predetermined distances. When multiple laminated sheets of amorphous alloy foil are punched, the tip of the punching tool is shaped to a predetermined shape so that a product with no cracks and high dimensional stability can be obtained.

特開2021-130131号公報JP 2021-130131 A 特開2023-8048号公報JP 2023-8048 A 特許第7129048号Patent No. 7129048

しかし、特許文献1の製造方法では、所定形状の打抜き輪郭線となる塑性加工溝を予め形成する必要があるため、特殊な加工を行う工具が必要であり、工数も多くなる。また特許文献2の打抜き加工方法は、合金箔の間に弾性被膜を塗布した積層材を作製する工程を必要とする。特許文献3のせん断加工法では、打抜き用工具の先端を所定の形状にする必要があるため、加工の自由度が制限される。However, the manufacturing method of Patent Document 1 requires the pre-formation of a plastic processing groove that will become the punched contour line of a predetermined shape, which requires a special processing tool and increases the number of steps. The punching method of Patent Document 2 requires a process to create a laminated material in which an elastic coating is applied between alloy foils. The shear processing method of Patent Document 3 requires the tip of the punching tool to be shaped to a predetermined shape, which limits the freedom of processing.

以上のように、アモルファス合金箔への加工や、打抜き用工具の形状の検討等は行われているが、高硬度かつ高強度な金属箔(単層又は複数枚積層させたもの)を所定形状に連続して打抜く工具の材料として好適な超硬合金についての検討は見当たらない。As described above, research has been conducted into the processing of amorphous alloy foil and the shape of punching tools, but there has been no research into cemented carbide alloys that are suitable as materials for tools to continuously punch out high-hardness, high-strength metal foil (single layer or multiple laminated sheets) into a specified shape.

従って、本発明の目的は、高硬度かつ高強度な金属箔(単層又は複数枚積層させたもの)を所定形状に連続して打抜くのに好適な超硬工具を提供することにある。Therefore, the object of the present invention is to provide a carbide tool suitable for continuously punching high-hardness, high-strength metal foil (single layer or multiple laminated sheets) into a predetermined shape.

本発明は、アモルファス合金箔などの高硬度かつ高強度の金属箔(単層又は複数枚積層させたもの)を打抜くための抜き用工具に最適な超硬合金に関する発明である。上記課題を解決するために、本発明ではアモルファス合金箔の打抜き用工具の摩耗・損傷形態を詳しく調査し、その改善を試みた。 The present invention relates to a cemented carbide that is optimal for punching tools for punching high-hardness, high-strength metal foils (single layer or multi-layer laminates) such as amorphous alloy foils. In order to solve the above problems, the present invention investigated in detail the wear and damage patterns of punching tools for amorphous alloy foils and attempted to improve them.

最も重要な点は、アモルファス合金箔の打抜き加工において、使用する打抜き用工具の超硬合金の硬度と耐摩耗性が必ずしも比例関係にあるとは言えないことである。これまで打抜き用工具の耐摩耗性は工具材料の硬さで議論されてきた。つまり、打抜き用工具の耐摩耗性を向上させるためには硬度の高い超硬合金を選定するが、それに伴い靭性も低下し、耐チッピング性は低下する。本発明では、アモルファス合金箔を打抜く際の打抜き用工具への合金箔の凝着による摩耗が、打抜き用工具の超硬合金のWC相粒径に大きく依存し、かつWC相が微粒である超硬合金を用いた打抜き用工具ほど耐摩耗性に優れる傾向がある点に注目した。The most important point is that the hardness and wear resistance of the cemented carbide used in punching tools for amorphous alloy foils are not necessarily in a proportional relationship. Until now, the wear resistance of punching tools has been discussed in terms of the hardness of the tool material. In other words, to improve the wear resistance of punching tools, a cemented carbide with high hardness is selected, but this also reduces toughness and chipping resistance. In the present invention, we have focused on the fact that the wear caused by adhesion of the alloy foil to the punching tool when punching amorphous alloy foils is largely dependent on the WC phase grain size of the cemented carbide of the punching tool, and that punching tools using cemented carbide with finer WC phase grains tend to have better wear resistance.

電磁鋼板などの厚さ250μm程度の従来の金属箔を潤滑油を使用して打抜く際は、被加工材の打抜き用工具への凝着量は少ない。このため、打抜き中に凝着物が引きはがされる際の応力も小さく、WC粒径が大きいほうが結合相による担持力が優れるため、同じ硬度でWC粒径が異なる超硬合金を比較すると、相対的にWC相粒径が大きい超硬合金は粒子が脱落せず耐摩耗性に優れる。When punching conventional metal foils with a thickness of about 250 μm, such as electromagnetic steel sheets, using lubricating oil, the amount of the workpiece adhering to the punching tool is small. For this reason, the stress when the adhered material is pulled off during punching is also small, and the larger the WC grain size, the better the support force of the binder phase. Therefore, when comparing cemented carbide alloys with the same hardness but different WC grain sizes, cemented carbide alloys with a relatively large WC phase grain size have better wear resistance and do not drop out particles.

一方、厚さが10~100μm程度アモルファス合金箔の打抜き加工をする際に潤滑油を使用するとコア接着積層を行うことができない。一方、アモルファス合金箔を潤滑油を使用せずに打抜くと、被加工材の打抜き用工具への凝着物の量が多くなり、アモルファス合金が高硬度かつ高強度であるため、凝着物が引きはがされる際の応力が非常に大きい。そのため、粒径が大きく結合相による担持力が高いWC相であっても凝着物が引きはがされる際の応力により脱落し、打抜き用工具が摩耗してしまう。On the other hand, if lubricating oil is used when punching amorphous alloy foil with a thickness of about 10 to 100 μm, core adhesive lamination cannot be performed. On the other hand, if amorphous alloy foil is punched without using lubricating oil, a large amount of material adheres to the punching tool of the processed material, and because amorphous alloys are hard and strong, the stress when the adhered material is peeled off is very large. As a result, even WC phases with large particle sizes and high support power by the binder phase fall off due to the stress when the adhered material is peeled off, causing wear on the punching tool.

上記知見に基づき鋭意研究の結果、発明者は、WC相粒径が小さい超硬合金のほうが脱落時の損失体積が小さいため、脱落の繰り返しによるトータルの損失体積=摩耗量が少なくなることを見出だした。すなわち、高硬度かつ高強度の金属箔(単層又は複数枚積層させたもの)を打抜き加工を行う際には、同等の硬度を有する超硬合金であってもWC粒径が小さい超硬合金のほうが耐摩耗性が小さくなる。結果として、所定の打抜き加工条件で打抜き用工具がチッピングしない範囲でより高い硬度を有し、かつWC粒径が小さい超微粒子超硬合金を打抜き用工具に用いることにより、従来の超硬合金製打抜き用工具と比べて優れた耐摩耗性と耐チッピング性を両立できることを見出した。 As a result of intensive research based on the above findings, the inventors found that a cemented carbide with a smaller WC phase grain size loses less volume when it falls off, and therefore the total lost volume (i.e., wear amount) due to repeated falling off is smaller. In other words, when punching a metal foil (single layer or multi-layer laminate) with high hardness and strength, a cemented carbide with a smaller WC grain size has lower wear resistance, even if the cemented carbide has the same hardness. As a result, the inventors found that by using an ultrafine-grain cemented carbide with a small WC grain size that has a higher hardness within the range where the punching tool does not chip under specified punching conditions and is used for the punching tool, it is possible to achieve both superior wear resistance and chipping resistance compared to conventional cemented carbide punching tools.

すなわち、本発明の一実施態様による打抜き用の超硬工具は、WC相と、Coを含む結合相からなり、
前記WC相の平均粒径Xμmと、前記結合相の総量Y質量%とが、下記式(1),(2)及び(3):
X≦1.2 ・・・(1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
を満たし、
Cr及び/又はVを前記結合相の総量に対して炭化物換算で2~20質量%含むことを特徴とする。
That is, a cemented carbide tool for punching according to one embodiment of the present invention comprises a WC phase and a binder phase containing Co,
The average grain size of the WC phase is X μm, and the total amount of the binder phase is Y mass %. The following formulas (1), (2) and (3):
X≦1.2 ・・・(1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
Fulfilling
The alloy is characterized in that it contains 2 to 20 mass % of Cr and/or V, calculated as carbide, relative to the total amount of the binder phase.

前記結合相の総量Y質量%は下記式(4):
-7X+12≦Y ・・・(4)
を満たすのが好ましく、下記式(5)及び(6):
X≦0.9 ・・・(5)
-11X+22≦Y ・・・(6)
を満たすのがより好ましい。
The total amount Y mass% of the binder phase is determined by the following formula (4):
-7X+12≦Y ... (4)
It is preferable that the following formulas (5) and (6) are satisfied:
X≦0.9 ・・・(5)
-11X+22≦Y ... (6)
It is more preferable that the following conditions are satisfied:

本発明の一実施態様による超硬工具において、前記結合相の総量Y質量%は下記式(7)及び(8):
X≦0.7 ・・・(7)
-6.7X+9.1≦Y ・・・(8)
を満たすのが好ましい。
In one embodiment of the present invention, the total amount Y (wt%) of the binder phase satisfies the following formulas (7) and (8):
X≦0.7 ・・・(7)
-6.7X+9.1≦Y ... (8)
It is preferable that the following conditions are satisfied.

本発明の一実施態様による超硬工具において、Cr及びV以外の周期律表第4~6族からなる群から選ばれた少なくとも一種の元素を含み、前記元素の総含有量は炭化物換算で0.2~5質量%であるのが好ましく、
前記元素の炭化物及び/又は炭窒化物からなる化合物相を含み、前記化合物相の粒径は0.02~2μmであるのが好ましい。
In one embodiment of the present invention, the cemented carbide tool preferably contains at least one element selected from the group consisting of Groups 4 to 6 of the periodic table other than Cr and V, and the total content of the elements is 0.2 to 5 mass% calculated as carbide,
It is preferable that the alloy contains a compound phase consisting of carbides and/or carbonitrides of the above elements, and the particle size of the compound phase is 0.02 to 2 μm.

本発明の一実施態様による超硬工具において、前記結合相がNi及びFeのうち少なくとも一種を含むのが好ましい。In one embodiment of the cemented carbide tool of the present invention, it is preferable that the binder phase contains at least one of Ni and Fe.

かかる超硬工具は、厚さ10~100μmで硬度が700 HV以上の金属箔の打抜き用工具として好適に用いることができ、前記金属箔はアモルファス合金箔であるのが好ましい。Such a carbide tool can be suitably used as a punching tool for metal foil having a thickness of 10 to 100 μm and a hardness of 700 HV or more, and it is preferable that the metal foil is an amorphous alloy foil.

本発明の一実施態様による超硬工具において、厚さ25μm及び硬度900 HVのアモルファス合金箔を5枚重ねた積層材に対してクリアランス5%t及び無潤滑で500回以上の打抜き加工試験を行った後、刃先部の表面粗さRaが0.1μm以下であるのが好ましい。In one embodiment of the present invention, in a cemented carbide tool, after a punching test of 500 or more times is performed on a laminated material made of five layers of amorphous alloy foil, each having a thickness of 25 μm and a hardness of 900 HV, with a clearance of 5% t and without lubrication, it is preferable that the surface roughness Ra of the cutting edge is 0.1 μm or less.

本発明の一実施態様による超硬工具は、硬質被膜を被覆しているのが好ましい。In one embodiment of the present invention, the carbide tool is preferably coated with a hard coating.

本発明によれば、高硬度かつ高強度な金属箔(単層又は複数枚積層させたもの)を所定形状に連続して打抜くのに好適な超硬工具が得られる。According to the present invention, a carbide tool is obtained that is suitable for continuously punching out high-hardness, high-strength metal foil (single layer or multiple laminated layers) into a predetermined shape.

摩耗部の線粗さRaの測定位置を示す概略図である。FIG. 4 is a schematic diagram showing measurement positions of the line roughness Ra of the worn portion.

本発明の一実施態様による打抜き用の超硬工具は、WC相と、Coを含む結合相からなり、
前記WC相の平均粒径Xμmと、前記結合相の総量Y質量%とが、下記式(1),(2)及び(3):
X≦1.2 ・・・(1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
を満たし、
Cr及び/又はVを前記結合相の総量に対して炭化物換算で2~20質量%含むことを特徴とする。
A cemented carbide tool for punching according to one embodiment of the present invention comprises a WC phase and a binder phase containing Co,
The average grain size of the WC phase is X μm, and the total amount of the binder phase is Y mass %. The following formulas (1), (2) and (3):
X≦1.2 ・・・(1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
Fulfilling
The alloy is characterized in that it contains 2 to 20 mass % of Cr and/or V, calculated as carbide, relative to the total amount of the binder phase.

WC相の平均粒径Xは1.2μm以下である。WC相の平均粒径Xは、超硬合金の任意の断面の組織を基にしてフルマンの式により求められる。WC相の平均粒径Xが1.2μm超であると、高硬度かつ高強度の金属箔(単層又は複数枚積層させたもの)を打抜き加工を行う際に、WC相の脱落摩耗が起きやすく、打抜き用工具として十分な耐摩耗性が得にくい。硬質相の平均粒径Xは0.9μm以下であるのが好ましく、0.7μm以下であるのがより好ましく、0.6μm以下であるのがさらに好ましく、0.4μm以下であるのが特に好ましい。The average grain size X of the WC phase is 1.2 μm or less. The average grain size X of the WC phase is determined by the Fullman formula based on the structure of any cross section of the cemented carbide. If the average grain size X of the WC phase exceeds 1.2 μm, the WC phase is likely to wear away when punching a high-hardness and high-strength metal foil (single layer or multiple laminated foils), making it difficult to obtain sufficient wear resistance as a punching tool. The average grain size X of the hard phase is preferably 0.9 μm or less, more preferably 0.7 μm or less, even more preferably 0.6 μm or less, and particularly preferably 0.4 μm or less.

結合相の総量Y(質量%)は2以上であって、かつ下記式(3):
-6.7X+6≦Y≦-14X+38 ・・・(3)
を満たす。ここで、結合相の総量Yは、結合相における結合相成分として添加した成分の総和を意味し、それ以外の成分として添加した後に固溶している成分は結合相の総量Yには含めない。結合相の総量Y(質量%)が2未満又は-6.7X+6未満であると、超硬合金の靭性が低下し、打抜き用工具の耐チッピング性が低下する。結合相の総量Y(質量%)が-14X+38超であると、超硬合金の硬度が不足し、打抜き用工具の耐摩耗性が低下する。結合相の総量Y(質量%)は-6.7X+9.1以上あるのが好ましく、Y(質量%)は-6.7X+9.6以上あるのがより好ましく、Y(質量%)は-6.7X+10.1以上あるのがさらに好ましく、-7X+12以上あるのがさらに好ましく、-11X+22であるのが特に好ましい。
The total amount Y (mass%) of the binder phase is 2 or more and satisfies the following formula (3):
-6.7X+6≦Y≦-14X+38 ・・・(3)
Here, the total amount Y of the binder phase means the sum of the components added as binder phase components in the binder phase, and the components that are solid-dissolved after being added as other components are not included in the total amount Y of the binder phase. If the total amount Y of the binder phase (mass%) is less than 2 or less than -6.7X+6, the toughness of the cemented carbide decreases, and the chipping resistance of the punching tool decreases. If the total amount Y of the binder phase (mass%) is more than -14X+38, the hardness of the cemented carbide is insufficient, and the wear resistance of the punching tool decreases. The total amount Y of the binder phase (mass%) is preferably -6.7X+9.1 or more, more preferably -6.7X+9.6 or more, even more preferably -6.7X+10.1 or more, even more preferably -7X+12 or more, and particularly preferably -11X+22.

結合相は主成分であるCoに加え、Ni及びFeのうち少なくとも一種を含むのが好ましい。結合相の総量に対してNi及びFeのうち少なくとも一種が30質量%含まれても良く、20質量%であればさらに特性を低下させずに長所を引き出すことができる。またAl,Cu等の結合相として用いうる成分を含んでも良い。これらの成分が上述の結合相成分として添加した成分に該当する。また超硬合金の結合相には硬質相を構成する金属元素が固溶しうる。上述のようにCo以外の成分が結合相成分として含まれている場合、結合相の総量に対してCoは70質量%以上含まれているのが好ましく、80質量%以上含まれているのがより好ましい。In addition to the main component Co, the binder phase preferably contains at least one of Ni and Fe. At least one of Ni and Fe may be contained in 30 mass% of the total amount of the binder phase, and if it is 20 mass%, the advantages can be further enhanced without deteriorating the properties. It may also contain components that can be used as binder phases, such as Al and Cu. These components correspond to the components added as the binder phase components described above. Furthermore, metal elements that make up the hard phase can be dissolved in the binder phase of the cemented carbide. When components other than Co are contained as binder phase components as described above, it is preferable that Co be contained in 70 mass% or more of the total amount of the binder phase, and more preferably 80 mass% or more.

本発明の超硬合金は、Cr及び/又はVを前記結合相に対して炭化物換算で2~20質量%含む。Crを炭化物換算で2~20質量%添加すると、焼結時におけるWCの粒成長が抑制されるとともに、耐食性が向上する。Vを炭化物換算で2~20質量%添加すると、Crよりもさらに粒成長抑制効果が得られる。Cr及び/又はVの添加量は炭化物換算で3~18質量%であるのが好ましく、4~15質量%であるのがより好ましい。The cemented carbide of the present invention contains 2 to 20 mass% Cr and/or V in terms of carbide relative to the binder phase. Adding 2 to 20 mass% Cr in terms of carbide inhibits grain growth of WC during sintering and improves corrosion resistance. Adding 2 to 20 mass% V in terms of carbide provides an even greater grain growth inhibition effect than Cr. The amount of Cr and/or V added is preferably 3 to 18 mass% in terms of carbide, and more preferably 4 to 15 mass%.

Cr及びV以外の周期律表第4~6族からなる群から選ばれた少なくとも一種の元素を含んでいても良い。上記元素の総含有量は炭化物換算で0.2~5質量%であるのが好ましい。上記元素の総含有量は炭化物換算で0.5~4質量%であるのがより好ましく、1~3質量%であるのがさらに好ましい。なお、これらの成分は結合相にも固溶しうる。 At least one element selected from the group consisting of Groups 4 to 6 of the periodic table other than Cr and V may be included. The total content of the above elements is preferably 0.2 to 5 mass% in terms of carbide. The total content of the above elements is more preferably 0.5 to 4 mass%, and even more preferably 1 to 3 mass%, in terms of carbide. These components can also be dissolved in the binder phase.

上記元素の炭化物及び/又は炭窒化物からなる化合物相を含み、化合物相の粒径は0.02~2μmであるのが好ましい。化合物相は、複数の化合物が単独で存在していても良いし、固溶相を形成していても良い。固溶相としては、例えば(Ta,Nb)C,(W,Ti)C,(W,Cr,Ti)C,(W,Ti)CN,(W,Ti,Nb)C等が挙げられる。化合物相の粒径は0.05~1μmであるのがより好ましい。It is preferable that the compound phase contains carbides and/or carbonitrides of the above elements, and the particle size of the compound phase is 0.02 to 2 μm. The compound phase may be composed of a plurality of compounds present alone, or may form a solid solution phase. Examples of the solid solution phase include (Ta, Nb)C, (W, Ti)C, (W, Cr, Ti)C, (W, Ti)CN, (W, Ti, Nb)C, etc. It is more preferable that the particle size of the compound phase is 0.05 to 1 μm.

本発明の一実施態様による超硬工具は、耐チッピング性の向上を重視し、下記式(4):
-7X+12≦Y ・・・(4)
を満たすのが好ましい。超硬合金のWC相粒径を小さくしつつ、Coを主成分とする結合相量を多くすることにより、高硬度かつ高強度な金属箔(単層又は複数枚積層させたもの)を所定形状に連続して打抜いても刃先に欠けが生じにくく、より好適な超硬合金製の金属箔打抜き用工具が得られる。
The cemented carbide tool according to one embodiment of the present invention has an improved chipping resistance and satisfies the following formula (4):
-7X+12≦Y ... (4)
By decreasing the grain size of the WC phase of the cemented carbide while increasing the amount of the binder phase mainly composed of Co, it is possible to obtain a more suitable cemented carbide metal foil punching tool that is less likely to chip at the cutting edge even when continuously punching a high-hardness, high-strength metal foil (single layer or multiple laminated sheets) into a predetermined shape.

耐チッピング性をさらに向上させ、かつ耐摩耗性も従来品よりさらに改善するために、本発明の一実施態様による超硬工具は、下記式(5)及び(6):
X≦0.9 ・・・(5)
-11X+22≦Y ・・・(6)
を満たすのがより好ましい。かかる超硬工具は、特に高硬度かつ高強度な金属箔を複数枚積層させて打抜くのに好適であり、打抜き荷重が上昇したとしても刃先に欠けが生じにくく、打抜き用工具刃先の摩耗を抑えることができる。つまり負荷の大きい条件や欠けが生じやすい形状の工具で打抜き加工する場合に有利となる。
In order to further improve chipping resistance and wear resistance as compared with conventional products, a cemented carbide tool according to one embodiment of the present invention has a composition satisfying the following formulas (5) and (6):
X≦0.9 ・・・(5)
-11X+22≦Y ... (6)
Such a carbide tool is particularly suitable for punching multiple laminated metal foils having high hardness and strength, and is less likely to chip at the cutting edge even when the punching load increases, making it possible to suppress wear at the cutting edge of the punching tool. In other words, this tool is advantageous when punching is performed under conditions of high load or with a tool having a shape that is prone to chipping.

また本発明の一実施態様による超硬工具は、十分な耐チッピング性を確保しつつ、耐摩耗性の向上を重視し、下記式(7)及び(8):
X≦0.7 ・・・(7)
-6.7X+9.1≦Y ・・・(8)
を満たすのが好ましい。超硬合金のWC相粒径を0.7μmと小さくすることにより、耐摩耗性をさらに向上させることができる。WC相粒径は0.6μm以下であるとさらに耐摩耗性に優れてより好ましく、0.4μm以下であるとさらに好ましい。またWC相の平均粒径Xμmと結合相の総量Y質量%が-6.7X+9.6≦Yの関係を満たすと、打抜き用工具の刃先に欠けも生じにくく安定して加工することができてより好ましく、-6.7X+10.1≦Yであるとさらに好ましい。
In addition, the cemented carbide tool according to one embodiment of the present invention has an advantage of improving wear resistance while ensuring sufficient chipping resistance, and satisfies the following formulas (7) and (8):
X≦0.7 ・・・(7)
-6.7X+9.1≦Y ... (8)
It is preferable that the above relationship is satisfied. By reducing the WC phase grain size of the cemented carbide to 0.7 μm, the wear resistance can be further improved. If the WC phase grain size is 0.6 μm or less, the wear resistance is further improved, and it is more preferable that the WC phase grain size is 0.4 μm or less. In addition, if the average grain size X μm of the WC phase and the total amount Y mass % of the binder phase satisfy the relationship -6.7X+9.6≦Y, the cutting edge of the punching tool is less likely to chip and stable processing can be achieved, which is more preferable, and -6.7X+10.1≦Y is even more preferable.

本発明の一実施態様による超硬工具は、適宜用途に応じて、その表面に硬質被膜を被覆しても良い。それにより、工具寿命を延ばすことができる。硬質被膜の被覆方法は特に限定されないが、DLC、PVD、CVD等の既知の被覆方法を採用できる。The surface of the cemented carbide tool according to one embodiment of the present invention may be coated with a hard film depending on the application. This can extend the tool life. There is no particular limitation on the method for coating the hard film, but known coating methods such as DLC, PVD, and CVD can be used.

また本発明の一実施態様による超硬工具は、その表面にショットピーニング、レーザーピーニング等の処理をして耐チッピング性を高めることができる。ショットピーニング及びレーザーピーニングは通常用いられている方法を採用できる。In addition, the surface of the cemented carbide tool according to one embodiment of the present invention can be treated with shot peening, laser peening, or the like to enhance chipping resistance. For shot peening and laser peening, methods that are commonly used can be used.

本発明の超硬工具の製造方法の一例を以下説明する。ただし、本発明の超硬工具の製造方法は以下のものに限らず、金属箔打抜き用工具などの超硬工具を製造する通常の方法であれば適用可能である。原料粉末をボールミル等で湿式混合した後、乾燥し、超硬合金の素材となる成形用粉末を調製する。成形用粉末を、金型成形、冷間静水圧成形(CIP)等の方法で成形する。得られた成形体を液相出現温度以上の温度で真空中又は不活性雰囲気中で焼結する。成形体の液相出現温度は、焼結の昇温過程で液相が発生する温度であり、示差熱分析装置を用いて測定する。焼結温度の上限は液相出現温度+100℃以下であるのが好ましい。得られた焼結体に対して、さらにHIP処理を行っても良い。An example of a method for manufacturing a cemented carbide tool of the present invention is described below. However, the method for manufacturing a cemented carbide tool of the present invention is not limited to the following, and any ordinary method for manufacturing a cemented carbide tool such as a tool for punching metal foil can be applied. The raw powder is wet mixed in a ball mill or the like, and then dried to prepare a molding powder that will be the raw material for cemented carbide. The molding powder is molded by a method such as die molding or cold isostatic pressing (CIP). The obtained molded body is sintered in a vacuum or in an inert atmosphere at a temperature equal to or higher than the liquid phase appearance temperature. The liquid phase appearance temperature of the molded body is the temperature at which a liquid phase occurs during the heating process of sintering, and is measured using a differential thermal analyzer. The upper limit of the sintering temperature is preferably the liquid phase appearance temperature + 100°C or less. The obtained sintered body may be further subjected to HIP treatment.

本発明の超硬工具は、アモルファス合金箔のような高硬度かつ高強度な金属箔を所定形状に連続して打抜くのに用いることができる。本発明の超硬工具は、HV200程度以上の被加工材で効果を発揮することができ、HV500以上の被加工材ではより効果を発揮でき、HV700以上の被加工材ではさらに効果を発揮する。被加工材の厚さは特に限定されず、例えば電磁鋼板等の厚さ100~500μmの一般的な金属板に対しても適用可能であるが、10~100μm程度の金属箔に対して好適であり、25~50μm程度の金属箔に対して特に好適である。被加工材の加工性により単層または積層での打抜き加工をすれば良く、打抜き方法も最適な方法で行えばよい。特にアモルファス合金箔を潤滑油を使用せずに打抜くのに好適である。またアモルファス合金箔等の高硬度かつ高強度な金属箔を複数枚積層させて打抜く場合であっても、打抜き用工具の摩耗を抑えることができる。従って、本発明の金属箔打抜き用工具は、アモルファス合金箔を複数枚積層させて潤滑油を使用せずに打抜く場合にも好適に用いることができる。The carbide tool of the present invention can be used to continuously punch out high-hardness and high-strength metal foils such as amorphous alloy foils into a predetermined shape. The carbide tool of the present invention is effective for workpieces of about HV200 or more, more effective for workpieces of HV500 or more, and even more effective for workpieces of HV700 or more. The thickness of the workpiece is not particularly limited, and can be applied to general metal plates of 100 to 500 μm thick, such as electromagnetic steel sheets, but is suitable for metal foils of about 10 to 100 μm thick, and particularly suitable for metal foils of about 25 to 50 μm thick. Depending on the workability of the workpiece, punching may be performed in a single layer or in a multi-layered form, and the punching method may be performed in an optimal manner. It is particularly suitable for punching out amorphous alloy foils without using lubricating oil. Even when punching out multiple layers of high-hardness and high-strength metal foils such as amorphous alloy foils, the wear of the punching tool can be suppressed. Therefore, the metal foil punching tool of the present invention can be suitably used even when punching a plurality of laminated amorphous alloy foils without using lubricating oil.

超硬工具において、摩耗面から超硬合金のWC相が脱落すると、その部分は窪み、その周辺部は鋭角なWC粒子角部が突出しやすくなるため、摩耗面の粗さは大きくなる。その結果、打抜き時の被加工材と摩耗面との摩擦力も増大し摩耗面はさらに摩耗しやすくなる。つまり、摩耗面粗さが小さい超硬工具の摩耗面は打抜き時の被加工材との摩擦力が小さく、摩耗もしにくいことが分かった。 When the WC phase of the cemented carbide alloy falls off from the wear surface of a cemented carbide tool, that area becomes recessed and the sharp corners of the WC particles tend to protrude from the surrounding area, increasing the roughness of the wear surface. As a result, the frictional force between the workpiece and the wear surface during punching also increases, making the wear surface more susceptible to wear. In other words, it was found that the wear surface of a cemented carbide tool with low wear surface roughness experiences less friction with the workpiece during punching and is less susceptible to wear.

すなわち、厚さ25μm及び硬度900 HVのアモルファス合金箔を5枚重ねた積層材に対してクリアランス5%t及び無潤滑で500回以上の打抜き加工試験を行った後、刃先部の表面粗さRaが0.1μm以下であるのが好ましい。ここで、刃先部の表面粗さRaの測定方法を図1を用いて説明する。刃先部の表面粗さRaは、図1(1) に示すように打抜き加工試験の後に超硬工具の刃先周辺の側面の摩耗している部分を摩耗部とし、工具端面から摩耗部の端までの距離(工具端面と垂直方向の長さ)をAとしたとき、工具端面からA/2の位置における打抜き方向に垂直な方向の線粗さRa(カットオフλcは8μmとし他はJIS B 0601に準拠した。)を意味する。凝着物を避けて計測しにくい場合、工具端面からA/8~A/2の範囲における位置において測定した値を刃先部の表面粗さRaとしても良い。That is, after a punching test of 500 times or more is performed on a laminated material consisting of five layers of amorphous alloy foil with a thickness of 25 μm and a hardness of 900 HV, with a clearance of 5% t and without lubrication, the surface roughness Ra of the cutting edge is preferably 0.1 μm or less. Here, the method for measuring the surface roughness Ra of the cutting edge is explained using Figure 1. The surface roughness Ra of the cutting edge means the line roughness Ra in the direction perpendicular to the punching direction at a position A/2 from the tool end face, when the worn part on the side around the cutting edge of the cemented carbide tool after the punching test is the worn part as shown in Figure 1 (1) and the distance from the tool end face to the end of the worn part (length perpendicular to the tool end face) is A (cutoff λc is 8 μm, and the rest conforms to JIS B 0601). If it is difficult to measure by avoiding adhered materials, the value measured at a position in the range of A/8 to A/2 from the tool end face may be used as the surface roughness Ra of the cutting edge.

また刃先にC面加工(図1(2))又はR加工(図1(3))等が施されている場合、それらの加工部と側面部の境界に相当する摩耗部位置(図1(2)及び図1(3)の矢印で示す位置)における打抜き方向に垂直な方向の線粗さRa(カットオフλcは8μmとし他はJIS B 0601に準拠した。)とする。凝着物を避けて計測しにくい場合や、刃先に加工が施されているが加工部と側面部の境界が明瞭でない場合には図1(1) の工具における測定位置に従う。 In addition, if the cutting edge has been subjected to C-surface machining (Fig. 1(2)) or R-machining (Fig. 1(3)), etc., the line roughness Ra (cut-off λc is 8μm, and the rest conforms to JIS B 0601) in the direction perpendicular to the punching direction at the worn part position (positions indicated by arrows in Fig. 1(2) and Fig. 1(3)) corresponding to the boundary between the machined part and the side part shall be measured. If it is difficult to measure by avoiding adhered matter, or if the cutting edge has been machined but the boundary between the machined part and the side part is not clear, follow the measurement position for the tool in Fig. 1(1).

線粗さRaの測定方法は、凝着物を避けて、または凝着物を除去してから測定長さ258μm以上で3カ所以上を全測定長さ1,000μm以上となるように測定するのが好ましい。また凝着物を避けて測定しやすいように、A/2の位置は工具端面から10μm以上の位置にあるのが望ましい。上記打抜き加工試験を行った後の刃先部の表面粗さRaは0.06μm以下であるのがより好ましく、0.04μm以下であるのがさらに好ましい。 The method for measuring line roughness Ra is preferably to avoid adhered matter or to remove the adhered matter and then measure at three or more locations with a measurement length of 258 μm or more so that the total measurement length is 1,000 μm or more. In order to make it easier to measure while avoiding adhered matter, it is desirable for the position of A/2 to be 10 μm or more from the tool end face. After the above punching test, the surface roughness Ra of the cutting edge is more preferably 0.06 μm or less, and even more preferably 0.04 μm or less.

本発明の金属箔打抜き用工具は、潤滑油を使用して打抜きを行う場合は、より優れた耐摩耗性、耐チッピング性を発揮することができる。特許文献2に開示されているような積層材に対しても優れた性能を発揮する。アモルファス合金に限らす、ナノ結晶合金でも優れた性能を発揮できるし、通常の電磁鋼板打抜きの場合にはさらに優れた性能を発揮することができる。また、モータコア用の打抜きに限らず、各種用途に用いる箔、薄板の打抜きに適用できる。The metal foil punching tool of the present invention can exhibit better wear resistance and chipping resistance when punching is performed using a lubricating oil. It also exhibits excellent performance with laminated materials such as those disclosed in Patent Document 2. It can exhibit excellent performance not only with amorphous alloys but also with nanocrystalline alloys, and can exhibit even better performance when punching normal electromagnetic steel sheets. It can also be applied to punching foils and thin sheets used for various purposes, not limited to punching motor cores.

次に示す実施例では研削加工で作製した工具で性能評価を行い、本発明の超硬工具は種々の打抜き条件でも優れた性能を発揮することを示した。なお、打抜き工具が複雑な形状を有する場合には放電加工により作製することがある。このとき、例えば耐チッピング性向上を重視した超硬合金の工具であれば打抜き加工時に欠けになりうる放電加工時に発生する欠陥をごくわずかに抑えて優れた工具性能を発揮することができる。In the following examples, performance evaluation was performed on tools made by grinding, and it was shown that the carbide tool of the present invention exhibits excellent performance under various punching conditions. If the punching tool has a complex shape, it may be made by electric discharge machining. In this case, for example, if the tool is made of a carbide alloy that emphasizes improved chipping resistance, it is possible to minimize defects that occur during electric discharge machining, which can cause chipping during punching, and exhibit excellent tool performance.

本発明を発明品によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。The present invention will be described in further detail with reference to the inventions, but the present invention is not limited thereto.

実施例1
原料粉末として、粒径の異なるWC粉末(0.07~1.4μm)、Co粉末(1.3μm)、Ni粉末(2.5μm)、VC粉末(2.2μm)、TaC粉末(1.2μm)、Cr3C2粉末(2.3μm)及びMo2C粉末(3.4μm)を用い、表1に示す組成に粉末を配合して湿式混合し、乾燥して混合粉末を得た。この混合粉末を加圧成形した後、1320~1400℃の真空焼結を行い、さらにHIP処理を行って焼結体(超硬合金)を作製した。
Example 1
The raw powders used were WC powder (0.07-1.4μm), Co powder (1.3μm), Ni powder (2.5μm), VC powder (2.2μm), TaC powder (1.2μm), Cr3C2 powder (2.3μm) and Mo2C powder (3.4μm) with different particle sizes, and were wet mixed and dried to obtain a mixed powder as shown in Table 1. This mixed powder was pressurized and then vacuum sintered at 1320-1400℃, and further HIP treated to produce a sintered body (super hard alloy).

Figure 0007575028000001
Figure 0007575028000001

発明品1~15及び比較品1~5の超硬合金のWC相粒径、結合相量、抗折力及びビッカース硬度を以下の方法によりそれぞれ求めた。得られた結果を表2に示す。The WC phase grain size, binder phase amount, transverse rupture strength and Vickers hardness of the cemented carbide alloys of invention products 1 to 15 and comparison products 1 to 5 were determined by the following methods. The results are shown in Table 2.

(WC相粒径)
発明品1~15及び比較品1~5の超硬合金のWC相の平均粒径Xを、超硬合金の任意の断面の組織を基にしてフルマンの式により求めた。
(WC phase grain size)
The average grain size X of the WC phase in the cemented carbide of the invention samples 1 to 15 and the comparative samples 1 to 5 was determined by the Fullman's formula based on the structure of an arbitrary cross section of the cemented carbide.

(結合相量)
発明品1~15及び比較品1~5の超硬合金の結合相量Yは配合組成の質量比とした。
(Amount of binding phase)
The binder phase amount Y of the cemented carbide alloys of the invention products 1 to 15 and the comparative products 1 to 5 was determined as the mass ratio of the blended composition.

(抗折力)
発明品1~15及び比較品1~5の超硬合金の抗折力(MPa)を、JISB4104の方法による抗折力測定(3点曲げ試験)により求めた。
(Transverse strength)
The flexural strength (MPa) of the cemented carbide alloys of the invention samples 1 to 15 and the comparison samples 1 to 5 was determined by flexural strength measurement (three-point bending test) according to the method of JIS B4104.

(ビッカース硬度)
発明品1~15及び比較品1~5の超硬合金のビッカース硬度(HV)を、ビッカース硬度計HV30を用いて計測した。
(Vickers hardness)
The Vickers hardness (HV) of the cemented carbide alloys of the invention products 1 to 15 and the comparison products 1 to 5 was measured using a Vickers hardness tester HV30.

Figure 0007575028000002
Figure 0007575028000002

発明品1~15及び比較品1~4の超硬合金を用いて、打抜き形状5mm角の打抜き用工具をそれぞれ研削加工により作製した。またこれに対応するダイを超硬合金(WC-1.0%Cr3C2-15Co,WC相粒径1.4μm)で作製し、これらの打抜き用工具を用いて、アモルファス合金箔(厚さ25μm)の打抜き試験を実施した。その際、工具寿命の傾向は打抜き条件によって変わるので、打抜き試験は以下の2条件(試験A、試験B)で実施した。なお比較品5については結合相量Yが1質量%と少なく、ポアが生じたため打抜き試験は実施しなかった。
(1) 試験A:単層のアモルファス合金箔(厚さ25μm、硬度900 HV)を、クリアランス10%t、無潤滑で打抜き加工した。
(2) 試験B:上記のアモルファス合金箔を単純に5枚重ねたもの(厚さ計125μm)を、クリアランス5%t、無潤滑で打抜き加工した。
Punching tools with a punching shape of 5 mm square were produced by grinding each of the cemented carbide alloys of invention products 1 to 15 and comparison products 1 to 4. Corresponding dies were also produced from cemented carbide alloy (WC-1.0% Cr3C2-15Co , WC phase grain size 1.4 μm), and punching tests of amorphous alloy foils ( thickness 25 μm) were carried out using these punching tools. At that time, since the tendency of tool life varies depending on the punching conditions, the punching tests were carried out under the following two conditions (Test A, Test B). Note that a punching test was not carried out for comparison product 5 because the binder phase amount Y was as small as 1 mass%, and pores were generated.
(1) Test A: A single layer of amorphous alloy foil (thickness 25 μm, hardness 900 HV) was punched with a clearance of 10% t and without lubrication.
(2) Test B: Five sheets of the above amorphous alloy foil were simply stacked (total thickness 125 μm) and punched with a clearance of 5% t and without lubrication.

試験後の打抜き工具刃先をそれぞれ観察し、耐摩耗性及び耐チッピング性の評価を行った。耐摩耗性の評価は、摩耗が小さいものを〇、ある程度摩耗はしているが使用可能なものを△、摩耗が大きいものを×とした。耐チッピング性の評価は、欠けやチッピングが認められないものを〇、微小なチッピングが認められるものを△、比較的大きい欠けがあるものを×とした。得られた結果を表3に示す。 After the test, the cutting edges of the punching tools were observed and evaluated for wear resistance and chipping resistance. Wear resistance was rated as ◯ for small wear, △ for some wear but still usable, and × for large wear. Chipping resistance was rated as ◯ for no visible chipping or chipping, △ for small chipping, and × for relatively large chipping. The results are shown in Table 3.

Figure 0007575028000003
Figure 0007575028000003

(1) 試験Aについて
比較品1及び2は、WC相粒径が1.2μmより大きいため、耐摩耗性が低かった。比較品3は、WC相粒径が1.2μmより小さいが、WC相粒径に対して結合相量が27質量%と多いため、硬度が非常に低く、耐摩耗性が劣っていた。比較品4は、WC相粒径が0.25μmと小さいが、WC相粒径に対して結合相量が39質量%と多いため、硬度が非常に低く、耐摩耗性が劣っていた。発明品1~5及び14は、硬度が高いため微小チッピングが生じたが、使用には問題ない程度であった。またWC相粒径が1.2μmより小さく、硬度が高いので耐摩耗性が優れていた。発明品6~9,11及び12は、硬度が高すぎないので欠けやチッピングは認められず、WC相粒径が1.2μmより小さいため、耐摩耗性も優れていた。発明品10及び13は、WC相粒径がそれぞれ1.0μm及び0.90μmと1.2μmに近く硬度が低めであったため、ある程度摩耗したが、使用可能であった。発明品15は、WC相粒径が0.25μmと小さい一方で、結合相量が34質量%と多く硬度が低めであったため、ある程度摩耗したが、使用可能であった。
(1) Test A Comparative products 1 and 2 had low wear resistance because the WC phase grain size was larger than 1.2 μm. Comparative product 3 had a WC phase grain size smaller than 1.2 μm, but the binder phase amount was 27 mass% higher than the WC phase grain size, so the hardness was very low and the wear resistance was poor. Comparative product 4 had a WC phase grain size of 0.25 μm, but the binder phase amount was 39 mass% higher than the WC phase grain size, so the hardness was very low and the wear resistance was poor. Invention products 1 to 5 and 14 had high hardness, so micro-chipping occurred, but it was not a problem for use. In addition, the WC phase grain size was smaller than 1.2 μm, and the hardness was high, so the wear resistance was excellent. Invention products 6 to 9, 11 and 12 had a hardness that was not too high, so no chipping or chipping was observed, and the WC phase grain size was smaller than 1.2 μm, so the wear resistance was also excellent. Invention samples 10 and 13 had low hardness due to the WC phase grain size of 1.0 μm and 0.90 μm, respectively, close to 1.2 μm, and therefore wore to some extent but were usable. Invention sample 15 had a small WC phase grain size of 0.25 μm, but a large binder phase amount of 34 mass%, and therefore low hardness, and therefore wore to some extent but was usable.

(2) 試験Bについて
比較品1は、硬度が高いため微小チッピングが生じたが使用には問題ない程度であった。またWC相粒径が1.2μmより大きいため、耐摩耗性が低かった。比較品2は、欠けやチッピングは認められなかったが、WC相粒径が1.2μmより大きく、硬度も低いため、耐摩耗性が低かった。比較品3は、WC相粒径が1.2μmより小さいが、WC相粒径に対して結合相量が27質量%と多いため、硬度が非常に低く、耐摩耗性が劣っていた。比較品4は、WC相粒径が0.25μmと小さいが、WC相粒径に対して結合相量が39質量%と多いため、硬度が非常に低く、耐摩耗性が劣っていた。発明品1~4及び14は、硬度が高すぎるため、打抜き初期に大きな欠けが発生した。また早期に使用不可となったため、摩耗量の定量比較はできなかった。発明品5及び6は、WC相粒径が1.2μmより小さいため耐摩耗性に優れていたが、硬度が高すぎるため大きな欠けが発生した。発明品7,8及び10は、硬度が高いため微小チッピングが生じたが使用には問題ない程度であった。また、ある程度摩耗したが使用可能であった。発明品9は、WC相粒径が0.24μmと小さいため、耐摩耗性も優れていた。また微小チッピングが生じたが使用には問題ない程度であった。発明品11~13及び15は、硬度が低めであったため、ある程度摩耗したが、使用可能であった。
(2) Test B Comparative product 1 had micro-chipping due to its high hardness, but this was not a problem for use. In addition, the WC phase grain size was larger than 1.2 μm, so the wear resistance was low. Comparative product 2 did not show any chipping or chipping, but the WC phase grain size was larger than 1.2 μm and the hardness was low, so the wear resistance was low. Comparative product 3 had a WC phase grain size smaller than 1.2 μm, but the binder phase amount was 27 mass% higher than the WC phase grain size, so the hardness was very low and the wear resistance was poor. Comparative product 4 had a WC phase grain size of 0.25 μm, but the binder phase amount was 39 mass% higher than the WC phase grain size, so the hardness was very low and the wear resistance was poor. Invention products 1 to 4 and 14 had too high hardness, so large chipping occurred in the early stages of punching. In addition, since they became unusable early on, a quantitative comparison of the wear amount was not possible. Invention products 5 and 6 had excellent wear resistance because the WC phase grain size was smaller than 1.2 μm, but large chipping occurred because the hardness was too high. Invention products 7, 8, and 10 had high hardness, so micro-chipping occurred, but this was not enough to affect use. Invention product 9 also had excellent wear resistance because the WC phase grain size was small at 0.24 μm. It also had micro-chipping, but this was not enough to affect use. Invention products 11 to 13, and 15 had low hardness, so they were worn to some extent, but were still usable.

実施例2
実施例1で行った打抜き試験Bにおいて、発明品5、7及び9、及び比較品2の500ショット及び1000ショット後の刃先部の各摩耗部の表面粗さRaを測定した。測定位置は前記の所定位置での線粗さとし、測定はレーザー顕微鏡OLS4100(オリンパス社製)にて凝着物を避けて、または凝着物を除去してから測定長さ258μmで4カ所を測定、カットオフλc=8μmとしそれ以外はJIS B 0601に準拠して算出した数値を平均化した。得られた結果を表4に示す。
Example 2
In punching test B carried out in Example 1, the surface roughness Ra of each worn portion of the cutting edge was measured after 500 shots and 1000 shots for invention products 5, 7 and 9, and comparative product 2. The measurement positions were the line roughness at the above-mentioned predetermined positions, and measurements were taken at four locations over a measurement length of 258 μm using a laser microscope OLS4100 (Olympus Corporation), avoiding any adhered matter or after removing the adhered matter, with a cutoff λc of 8 μm and the values calculated in accordance with JIS B 0601 for the rest being averaged. The results are shown in Table 4.

Figure 0007575028000004
Figure 0007575028000004

発明品5はパンチ刃先の表面粗さRaが0.1μm以下で、硬さもHV1530と高いため耐摩耗性が優れていた。発明品7はパンチ刃先の表面粗さある程度摩耗したが使用可能であった。発明品9はパンチ刃先の表面粗さRaが非常に小さいため耐摩耗性が優れていた。比較品2はパンチ刃先の表面粗さRaが0.1μmを超えており、耐摩耗性が劣っていた。 Invention product 5 had excellent wear resistance because the surface roughness Ra of the punch blade tip was 0.1 μm or less and the hardness was high at HV1530. Invention product 7 had some wear to the surface roughness of the punch blade tip, but was still usable. Invention product 9 had excellent wear resistance because the surface roughness Ra of the punch blade tip was very small. Comparison product 2 had poor wear resistance because the surface roughness Ra of the punch blade tip exceeded 0.1 μm.

Claims (13)

WC相と、Coを含む結合相とを含み、
前記WC相の平均粒径Xμmと、前記結合相の総量Y質量%とが、下記式(1),(2)及び(3):X≦1.2 ・・・(1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
を満たし、
Cr及び/又はVを前記結合相の総量に対して炭化物換算で2~20質量%含むことを特徴
とする金属箔又は薄板の打抜き用超硬工具。
The alloy includes a WC phase and a binder phase including Co.
The average grain size of the WC phase is X μm, and the total amount of the binder phase is Y mass %. The following formulas (1), (2), and (3) are satisfied: X≦1.2 (1)
2≦Y ・・・(2)
-6.7X+6≦Y≦-14X+38 ・・・(3)
Fulfilling
A carbide tool for punching metal foils or thin plates, comprising 2 to 20 mass% of Cr and/or V, calculated as carbide, based on the total amount of the binder phase.
前記結合相の総量Y質量%は下記式(4):
-7X+12≦Y ・・・(4)
を満たすことを特徴とする請求項1に記載の金属箔又は薄板の打抜き用超硬工具。
The total amount Y mass% of the binder phase is determined by the following formula (4):
-7X+12≦Y ... (4)
2. The cemented carbide tool for punching a metal foil or thin plate according to claim 1, wherein the above-mentioned satisfies the above.
前記結合相の総量Y質量%は下記式(5):
X≦0.9 ・・・(5)
満たすことを特徴とする請求項2に記載の金属箔又は薄板の打抜き用超硬工具。
The total amount Y mass% of the binder phase is determined by the following formula (5):
X≦0.9 ・・・(5)
3. The cemented carbide tool for punching a metal foil or thin plate according to claim 2, wherein the above-mentioned satisfies the above .
前記結合相の総量Y質量%は下記式(6):The total amount Y mass% of the binder phase is determined by the following formula (6):
-11X+22≦Y ・・・(6)-11X+22≦Y...(6)
を満たすことを特徴とする請求項1に記載の金属箔又は薄板の打抜き用超硬工具。2. The cemented carbide tool for punching a metal foil or thin plate according to claim 1, wherein the above-mentioned condition is satisfied.
前記結合相の総量Y質量%は下記式(7):
X≦0.67 ・・・(7)
を満たすことを特徴とする請求項1に記載の金属箔又は薄板の打抜き用超硬工具。
The total amount Y mass% of the binder phase is determined by the following formula (7):
X≦ 0.67 ... (7)
2. The cemented carbide tool for punching a metal foil or thin plate according to claim 1, wherein the above-mentioned satisfies the above.
Cr及びV以外の周期律表第4~6族からなる群から選ばれた少なくとも一種の元素を含
み、
前記元素の総含有量は炭化物換算で0.2~5質量%であることを特徴とする請求項1~
のいずれかに記載の金属箔又は薄板の打抜き用超硬工具。
Contains at least one element selected from the group consisting of Groups 4 to 6 of the periodic table other than Cr and V;
The total content of the elements is 0.2 to 5 mass % in terms of carbide.
6. A carbide tool for punching a metal foil or thin plate according to any one of claims 5 to 5 .
Cr及び/又はVの炭化物及び/又は炭窒化物、又はCr及び/又はVとCr及びV以外の周期Carbides and/or carbonitrides of Cr and/or V, or Cr and/or V and periods other than Cr and V
律表第4~6族からなる群から選ばれた少なくとも一種の元素との炭化物及び/又は炭窒Carbide and/or carbonitride with at least one element selected from the group consisting of Groups 4 to 6 of the fundamental table 化物からなる化合物相を含むことを特徴とする請求項1~5のいずれかに記載の金属箔又The metal foil or the metal sheet according to any one of claims 1 to 5, characterized in that it contains a compound phase consisting of an oxide. は薄板の打抜き用超硬工具。is a carbide tool used for punching thin plates.
前記結合相がNi及びFeのうち少なくとも一種を含むことを特徴とする請求項1~のいずれかに記載の金属箔又は薄板の打抜き用超硬工具。 The cemented carbide tool for punching metal foils or thin plates according to any one of claims 1 to 5 , characterized in that the binder phase contains at least one of Ni and Fe. 前記結合相がNi及びFeのうち少なくとも一種を含むことを特徴とする請求項6に記載の7. The method according to claim 6, wherein the binder phase contains at least one of Ni and Fe. 金属箔又は薄板の打抜き用超硬工具。A carbide tool for punching metal foil or thin plate. 厚さ10~100μmで硬度が700 HV以上の金属箔の打抜き用工具であることを特徴とする請求項1~のいずれかに記載の金属箔又は薄板の打抜き用超硬工具。 6. The cemented carbide tool for punching metal foil or thin plate according to any one of claims 1 to 5, characterized in that it is a tool for punching metal foil having a thickness of 10 to 100 μm and a hardness of 700 HV or more. 前記金属箔はアモルファス合金箔であることを特徴とする請求項10のいずれかに記載の金属箔又は薄板の打抜き用超硬工具。 11. The carbide tool for punching metal foils or thin plates according to claim 10 , wherein the metal foil is an amorphous alloy foil. 厚さ25μm及び硬度900 HVのアモルファス合金箔を5枚重ねた積層材に対してクリアラ
ンス5%t及び無潤滑で500回以上の打抜き加工試験を行った後、刃先部の表面粗さRaが0.1μm以下であることを特徴とする請求項1~に記載の金属箔又は薄板の打抜き用超硬工
具。
6. The carbide tool for punching metal foils or thin plates according to any one of claims 1 to 5, characterized in that after a punching test is conducted 500 times or more on a laminate material having five stacked amorphous alloy foils each having a thickness of 25 μm and a hardness of 900 HV with a clearance of 5% t and without lubrication, the surface roughness Ra of the cutting edge is 0.1 μm or less.
硬質被膜を被覆していることを特徴とする請求項1~のいずれかに記載の金属箔又は 薄板の打抜き用超硬工具。
The cemented carbide tool for punching metal foil or thin plate according to any one of claims 1 to 5 , characterized in that it is coated with a hard coating.
JP2024524976A 2024-04-24 2024-04-24 Carbide Tools Active JP7575028B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024016009 2024-04-24

Publications (1)

Publication Number Publication Date
JP7575028B1 true JP7575028B1 (en) 2024-10-29

Family

ID=93254405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024524976A Active JP7575028B1 (en) 2024-04-24 2024-04-24 Carbide Tools

Country Status (1)

Country Link
JP (1) JP7575028B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063416A (en) 2004-08-30 2006-03-09 Tungaloy Corp Chromium-containing hard metal and coated hard metal thereof
JP2022108807A (en) 2021-01-14 2022-07-27 三菱マテリアル株式会社 Cutting tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063416A (en) 2004-08-30 2006-03-09 Tungaloy Corp Chromium-containing hard metal and coated hard metal thereof
JP2022108807A (en) 2021-01-14 2022-07-27 三菱マテリアル株式会社 Cutting tool

Similar Documents

Publication Publication Date Title
JP5221951B2 (en) Cemented carbide and cutting tools
JP5597786B1 (en) Cutting tools
EP2576854B1 (en) Coated cutting tool
KR20080106124A (en) Fine grained cemented carbide for turning in heat resistant super alloys (hrsa) and stainless steels
WO2011122554A1 (en) Cutting tool
WO2013015302A1 (en) Cutting tool
JP5185032B2 (en) Cutting tools
JP7173026B2 (en) Cutting tool and manufacturing method thereof
KR101133476B1 (en) ??? coated cutting tool insert
KR20090028444A (en) Coated cutting insert for milling applications
WO2016047585A1 (en) Composite sintered body cutting tool
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP7575028B1 (en) Carbide Tools
JP2009007615A (en) Cemented carbide, and cutting tool using the same
CN111286661A (en) High-temperature alloy machining tool and application thereof
JP2893886B2 (en) Composite hard alloy material
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
JPH10298698A (en) Cemented carbide
KR20210124463A (en) Coating mold, coating mold manufacturing method, and target for forming a hard film
JPH116025A (en) Cemented carbide, and coated alloy and coated hard tool using this cemented carbide as base material
JP7541423B1 (en) Cemented carbide and its processing method, dies and tools
JPH10298699A (en) Cemented carbide
KR102278436B1 (en) Surface-coated cutting tool with excellent chipping and abrasion resistance
JP6900099B1 (en) Cemented carbide and mold
JPH05230589A (en) Wc-based cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241008

R150 Certificate of patent or registration of utility model

Ref document number: 7575028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150