[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7571547B2 - Polymer Electrolytes - Google Patents

Polymer Electrolytes Download PDF

Info

Publication number
JP7571547B2
JP7571547B2 JP2021001900A JP2021001900A JP7571547B2 JP 7571547 B2 JP7571547 B2 JP 7571547B2 JP 2021001900 A JP2021001900 A JP 2021001900A JP 2021001900 A JP2021001900 A JP 2021001900A JP 7571547 B2 JP7571547 B2 JP 7571547B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
group
polymer
alkali metal
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001900A
Other languages
Japanese (ja)
Other versions
JP2022031092A (en
Inventor
羽皋 デン
博門 仲村
健太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2022031092A publication Critical patent/JP2022031092A/en
Application granted granted Critical
Publication of JP7571547B2 publication Critical patent/JP7571547B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ポリマー電解質に関する。 The present invention relates to a polymer electrolyte.

近年、リチウム二次電池をはじめとするアルカリ二次電池はスマートフォン、携帯電話などの携帯機器、ハイブリッド自動車、電気自動車、及び家庭用蓄電器などといった様々な用途に用いられつつあり、それらに関する研究開発が盛んに行われている。 In recent years, alkaline secondary batteries, including lithium secondary batteries, have come to be used in a variety of applications, such as in smartphones, mobile phones, and other portable devices, hybrid and electric vehicles, and home storage batteries, and research and development into these devices is being actively conducted.

リチウム二次電池は、特に電気自動車などの用途において、安全性の向上が強く求められている。従来の電解液電池は、可燃性の電解液を使用するため、電池の燃焼や爆発が起きることがあった。そのため、安全性向上に寄与できる固体電解質の研究が活発となっている。 There is a strong demand for improved safety in lithium secondary batteries, especially for applications such as electric vehicles. Conventional electrolyte batteries use flammable electrolytes, which can lead to battery combustion or explosion. For this reason, research into solid electrolytes that can contribute to improved safety has become active.

固体電解質はイオンを容易に伝導する固体であり、一般的に固体電解質は酸化物系、硫化物系及びポリマー系に分けられる。ポリマー系固体電解質は、生産性、柔軟性などの利点があり注目されているが、室温でのイオン伝導度が低く、その解決が求められている。 Solid electrolytes are solids that easily conduct ions, and are generally divided into oxide-based, sulfide-based, and polymer-based solid electrolytes. Polymer-based solid electrolytes have been attracting attention due to their advantages such as productivity and flexibility, but they have low ionic conductivity at room temperature, and a solution to this problem is required.

近年、ポリマー系固体電解質の中で、ポリフェニレンサルファイド(以下PPSと略す。)を代表とするポリアリーレンスルフィド(以下PASと略す。)系電解質は、難燃性及び機械特性で注目されている。特許文献1のように、PPSは共役ポリマーであって、電子受容性ドーパントを添加することで電子導電することが可能であることが知られているが、近年PPSとアルカリ金属塩の混合物に電子アクセプターをドープした固体電解質が特許文献2~4で開示されている。さらに、特許文献2~4において、PPS固体電解質はPPS、アルカリ金属塩及び電子受容性ドーパント等、各原料を高温で混合させた後に成型する方法で製造されている。 In recent years, among polymer-based solid electrolytes, polyarylene sulfide (PAS)-based electrolytes, such as polyphenylene sulfide (PPS), have been attracting attention for their flame retardancy and mechanical properties. As in Patent Document 1, PPS is a conjugated polymer, and it is known that adding an electron-accepting dopant makes it possible to conduct electricity. In recent years, Patent Documents 2 to 4 have disclosed solid electrolytes in which a mixture of PPS and an alkali metal salt is doped with an electron acceptor. Furthermore, in Patent Documents 2 to 4, the PPS solid electrolyte is manufactured by mixing the raw materials, such as PPS, an alkali metal salt, and an electron-accepting dopant, at high temperature and then molding the mixture.

また、固体電解質ポリマーに電解液を含有させることでイオン伝導度を向上させる方法が知られている(特許文献5~6)。前記方法で作製した電解質は、Polymer Matrix Eectrolyte(PME)とよばれている。 In addition, a method is known in which ionic conductivity is improved by incorporating an electrolyte solution into a solid electrolyte polymer (Patent Documents 5 to 6). The electrolyte produced by this method is called Polymer Matrix Electrolyte (PME).

特開昭59-157151号公報Japanese Unexamined Patent Publication No. 59-157151 米国特許出願公開第2018/006308号明細書US Patent Application Publication No. 2018/006308 中国特許出願公開第106450424号明細書Chinese Patent Publication No. 106450424 米国特許出願公開第2017/0005356号明細書US Patent Application Publication No. 2017/0005356 台湾特許出願公開202015279号明細書Taiwan Patent Application Publication No. 202015279 米国特許出願公開第2006/0177740号明細書US Patent Application Publication No. 2006/0177740

特許文献2~4において、PPSを含む固体電解質の結晶化度が高いことがイオン伝導度に重要であることが示されており、結晶化度の高いPPSを用いた固体電解質が開示されている。しかし、結晶化度の高いPPSを使用する場合、300℃前後の高温で加工しなければならず、リチウム塩やドーパントなど含有成分の劣化が起こり、室温でのイオン伝導性の低下や品質の不安定化を引き起こす可能性がある。また、電子受容性ドーパントを含有することで、ポリマーマトリックスが酸化劣化や脆化などの機械特性低下を引き起こす可能性がある。さらに、前記固体電解質を生産する際には、高温加工による機械特性低下が起きると、成膜する際に膜の割れや崩れなどが発生することがあり、生産性に課題がある。特許文献5~6においては、PMEを作製する際にソルベントキャスト法を使用しているため、PMEの製造工程において溶媒を蒸発させる工程が必要となり、生産性に課題がある。また、ポリマーを溶解するための溶剤はポリマー電解質の導電性の向上に貢献しない一方で、原料コストが増加し生産性が低下するとの課題がある。また、蒸発された溶媒が環境に散逸することがあり、環境適性にも課題がある。前記観点から、従来のPME電解質は生産性および環境適性に課題がある。 In Patent Documents 2 to 4, it has been shown that a high degree of crystallinity of a solid electrolyte containing PPS is important for ionic conductivity, and a solid electrolyte using PPS with a high degree of crystallinity has been disclosed. However, when using PPS with a high degree of crystallinity, it must be processed at a high temperature of around 300°C, which causes deterioration of the contained components such as lithium salts and dopants, which may cause a decrease in ionic conductivity at room temperature and instability of quality. In addition, the inclusion of an electron-accepting dopant may cause a decrease in mechanical properties such as oxidative deterioration and embrittlement of the polymer matrix. Furthermore, when producing the solid electrolyte, if a decrease in mechanical properties occurs due to high-temperature processing, the film may crack or collapse during film formation, which is a problem in productivity. In Patent Documents 5 to 6, since the solvent casting method is used to prepare the PME, a process of evaporating the solvent is required in the manufacturing process of the PME, which is a problem in productivity. In addition, while the solvent for dissolving the polymer does not contribute to improving the conductivity of the polymer electrolyte, there is a problem that the raw material cost increases and productivity decreases. In addition, the evaporated solvent may dissipate into the environment, which is also a problem in environmental suitability. From this perspective, conventional PME electrolytes have problems with productivity and environmental compatibility.

また、特許文献6に記載されたポリイミド(PI)は、ポリマー電解質の基材として、吸湿しやすい課題がある。水を電離助剤としてポリマー電解質が含有する場合に、吸湿により、ポリマー電解質の成分の比率が変化することがあり、このことにより、ポリマー電解質の電位窓が低下し、水が電気分解しやすくなることがある。一方で、有機溶剤を電離助剤として含有するポリマー電解質である場合には、吸湿による電離助剤の電気分解などの劣化が起きる。前記観点から、保管及び貯蔵に課題がある。また、一般的なPI基材は、電気分解の電位窓が2V未満であり、高電圧電池用途に適用しにくい課題がある。 In addition, the polyimide (PI) described in Patent Document 6 has the problem of being easily hygroscopic as a base material for polymer electrolytes. When the polymer electrolyte contains water as an ionization assistant, the ratio of the components of the polymer electrolyte may change due to moisture absorption, which may reduce the potential window of the polymer electrolyte and make water more susceptible to electrolysis. On the other hand, when the polymer electrolyte contains an organic solvent as an ionization assistant, deterioration such as electrolysis of the ionization assistant occurs due to moisture absorption. From the above viewpoint, there are problems with storage and preservation. In addition, a general PI base material has a potential window for electrolysis of less than 2 V, which makes it difficult to apply it to high-voltage battery applications.

本発明は、かかる課題を解決すべく鋭意検討した結果、室温での良好なイオン伝導度を示し、且つ、吸湿性が低く、生産性、環境適性、電位窓が広い等の点に優れたポリマー電解質を見出し、本発明に至った。 As a result of extensive research aimed at solving these problems, the inventors discovered a polymer electrolyte that exhibits good ionic conductivity at room temperature, has low hygroscopicity, and is excellent in terms of productivity, environmental suitability, and a wide potential window, resulting in the present invention.

すなわち、上記課題を解決するため、本発明は以下の構成からなる。 In other words, in order to solve the above problems, the present invention has the following configuration.

(1)アルカリ金属塩、電離助剤およびポリアリーレンスルフィドを含有するポリマー電解質であって、上記ポリアリーレンスルフィドが式-(Ar-S)-を構成単位とするポリアリーレンスルフィド共重合体であって、Arが化学式(1)の(A)で表される構成単位および、化学式(1)の(B)~(G)からなる群より選ばれる少なくとも1つの構成単位を有する、ポリマー電解質。 (1) A polymer electrolyte containing an alkali metal salt, an ionization assistant, and a polyarylene sulfide, the polyarylene sulfide being a polyarylene sulfide copolymer having a structural unit of the formula -(Ar-S)-, where Ar has a structural unit represented by (A) in chemical formula (1) and at least one structural unit selected from the group consisting of (B) to (G) in chemical formula (1).

Figure 0007571547000001
Figure 0007571547000001

(R1,R2はアルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。R3、R4は、水素、アルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R3とR4は同一でも異なっていてもよい。Yはアルキレン基、O、CO、SOおよびSOから選ばれる。)
(2)上記電離助剤が、25℃における式(1)で得られたイオン解離度(1-ξ)が0.1以上、かつ式(2)で得られる溶媒拡散係数が15以下となる溶媒を1つ以上含有する、(1)に記載のポリマー電解質。
(R1 and R2 are substituents selected from an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R1 and R2 may be the same or different. R3 and R4 are substituents selected from a hydrogen atom, an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R3 and R4 may be the same or different. Y is selected from an alkylene group, O, CO, SO, and SO2 .)
(2) The polymer electrolyte according to (1), wherein the ionization assistant contains one or more solvents having a degree of ionic dissociation (1-ξ) at 25°C of 0.1 or more, as calculated by the formula (1), and a solvent diffusion coefficient at 25°C of 15 or less, as calculated by the formula (2).

Figure 0007571547000002
Figure 0007571547000002

Figure 0007571547000003
Figure 0007571547000003

(3)上記電離助剤が、少なくとも水、γブチロラクトン、N-メチルピロリドン(NMP)、ブチレンカーボネート(BC)、エチレンカーボネート(EC)プロピレンカーボネート(PC)、メチル-γ-ブチロラクトン(GVL)、トリグリム(TG)、ダイグリム(DG)、炭酸エチルメチル(EMC)、炭酸ジメチル(DMC)から選ばれる1つ以上を含む、(1)~(2)に記載のポリマー電解質。 (3) The polymer electrolyte according to (1) to (2), in which the ionization assistant includes at least one selected from water, gamma-butyrolactone, N-methylpyrrolidone (NMP), butylene carbonate (BC), ethylene carbonate (EC), propylene carbonate (PC), methyl-gamma-butyrolactone (GVL), triglyme (TG), diglyme (DG), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).

(4)上記アルカリ金属塩が、LIFSI及びLITFSIを一つ以上含む、(1)~(3)に記載のポリマー電解質。 (4) The polymer electrolyte described in (1) to (3), in which the alkali metal salt contains one or more of LIFSI and LITFSI.

(5)(1)~(4)のいずれかに記載のポリマー電解質を有する電池。 (5) A battery having a polymer electrolyte according to any one of (1) to (4).

本発明により、室温状態でも良好なイオン伝導度を示し、且つ吸湿性が低く、生産性及び環境適性に優れた広い電位窓を有するポリマー電解質を提供することができる。 The present invention provides a polymer electrolyte that exhibits good ionic conductivity even at room temperature, has low hygroscopicity, and has a wide potential window with excellent productivity and environmental suitability.

(ポリマー電解質の定義)
本発明のポリマー電解質とは、ポリマーマトリックスを有し、外部から電場をかけることで容易にイオンを移動させる物質のことをいう。前記ポリマー電解質は、後述の電離助剤を含有している。本発明のポリマー電解質におけるアルカリ金属イオンの移動しやすさは、25℃におけるイオン拡散係数で判断することができる。アルカリ金属イオンのイオン拡散係数(m/s)は、そのイオンの核磁気共鳴分光法(NMR)で測定してもよい。
(Definition of Polymer Electrolyte)
The polymer electrolyte of the present invention refers to a substance that has a polymer matrix and easily migrates ions when an electric field is applied from the outside. The polymer electrolyte contains an ionization assistant described below. The ease of migration of alkali metal ions in the polymer electrolyte of the present invention can be determined by the ion diffusion coefficient at 25° C. The ion diffusion coefficient (m 2 /s) of the alkali metal ion may be measured by nuclear magnetic resonance spectroscopy (NMR) of the ion.

また、NMRで測定したイオン拡散係数は、同じ温度条件でも複数の値をとる可能性があるため、本発明においてのイオン拡散係数はそのイオンの25℃におけるイオン拡散係数の最大値をいう。イオン伝導度の観点から、本発明のポリマー電解質の25℃におけるイオン拡散係数は10-132/s以上であることが好ましく、10-122/s以上であることがより好ましく、10-112/s以上であることがさらに好ましい。また、本発明のポリマー電解質は、アルカリ金属塩、電離助剤およびポリアリーレンスルフィド(以下、PASと称することがある)を含む。以下、アルカリ金属塩、電離助剤およびPASについて説明を行う。 In addition, since the ion diffusion coefficient measured by NMR may take multiple values even under the same temperature conditions, the ion diffusion coefficient in the present invention refers to the maximum value of the ion diffusion coefficient of the ion at 25° C. From the viewpoint of ion conductivity, the ion diffusion coefficient of the polymer electrolyte of the present invention at 25° C. is preferably 10 −13 m 2 /s or more, more preferably 10 −12 m 2 /s or more, and even more preferably 10 −11 m 2 /s or more. In addition, the polymer electrolyte of the present invention contains an alkali metal salt, an ionization assistant, and polyarylene sulfide (hereinafter sometimes referred to as PAS). The alkali metal salt, the ionization assistant, and the PAS will be described below.

(アルカリ金属塩)
本発明のポリマー電解質はイオン伝導度の観点からアルカリ金属塩を含むことが重要である。本発明におけるアルカリ金属塩は、アルカリ金属イオンが構成イオンとして含まれる塩をいう。例えばリチウム金属イオン、ナトリウム金属イオン、カリウム金属イオンなどを含む金属塩があげられる。イオン拡散性の観点から、イオン径が小さい金属イオンが好ましい。
(alkali metal salt)
It is important that the polymer electrolyte of the present invention contains an alkali metal salt from the viewpoint of ion conductivity. The alkali metal salt in the present invention refers to a salt containing an alkali metal ion as a constituent ion. For example, metal salts containing lithium metal ions, sodium metal ions, potassium metal ions, etc. are included. From the viewpoint of ion diffusibility, metal ions with small ion diameters are preferred.

アニオンは、イオンへの解離性の高さからHSAB則に基づくやわらかい塩基であることが好ましく、ビス(トリフルオロメタンスルホニル)イミドアニオンや、ビス(フルオロスルホニル)イミドアニオンであることが好ましい。すなわち、アルカリ金属塩は、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメタン)スルホンイミドの少なくとも一方を含むものであることが好ましい。 The anion is preferably a soft base based on the HSAB rule due to its high dissociation property into ions, and is preferably a bis(trifluoromethanesulfonyl)imide anion or a bis(fluorosulfonyl)imide anion. In other words, the alkali metal salt preferably contains at least one of lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethane)sulfonimide.

なお、HSAB則(Principle of Hard and Soft Acids and Bases)は、R.G.Pearsonが提唱した酸塩基の強さに関して、かたい、やわらかいという観点で分類したものである。かたい酸はかたい塩基に対して親和性が大きく、やわらかい酸はやわらかい塩基に対して親和性が大きい。かたい酸とは、電子受容体になる原子が小さく、容易に変形する軌道に入った価電子を持たず、大きな正電荷をもつものである。やわらかい酸とは、電子受容体になる原子が大きく、容易に変形する軌道に入った価電子を持ち、電荷がないかあっても小さいものである。かたい塩基とは、価電子が原子に強く結合している塩基であり、やわらかい塩基とは、価電子が容易に分極する塩基である。HSAB則およびHSABの酸塩基の分類は、R.B.HeslopとK.Jones著「Inorganic Chemistry -A Guide to Advanced Study」の9章の酸塩基の15節に記載されている。 The HSAB rule (Principle of Hard and Soft Acids and Bases) is a classification of acids and bases proposed by R. G. Pearson in terms of their strength. Hard acids have a high affinity for hard bases, and soft acids have a high affinity for soft bases. A hard acid is an acid whose electron acceptor atom is small, has no valence electrons in an orbit that easily deforms, and has a large positive charge. A soft acid is an acid whose electron acceptor atom is large, has valence electrons in an orbit that easily deforms, and has no or only a small charge. A hard base is a base whose valence electrons are strongly bonded to the atom, and a soft base is a base whose valence electrons are easily polarized. The HSAB rule and the classification of acids and bases according to HSAB were proposed by R. B. Heslop and K. This is described in Chapter 9, Section 15 on Acids and Bases in "Inorganic Chemistry - A Guide to Advanced Study" by John Jones.

具体的には、アルカリ金属塩として、リチウム塩類、ナトリウム塩類を含むことが好ましく、水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、過塩素酸リチウム(LiClO)、四フッ化ホウ酸リチウム(LiBF)、六フッ化リン酸リチウム(LiPF)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)、リチウムビス(オキサレート)ボレート(LiBOB)、六フッ化リン酸ナトリウム(NaPF)、四フッ化ホウ酸ナトリウム(NaBF)、過塩素酸ナトリウム(NaClO)、ナトリウムビス(フルオロスルホニル)イミド(NaFSI)、及びナトリウムビス(トリフルオロメタンスルホニル)イミド(NaTFSI)より選ばれる1種以上を含むことがより好ましく、イオンの解離性の高さの観点から、LiTFSI、及びLiFSIより得られる1種以上を含むことがさらに好ましい。 Specifically, the alkali metal salt preferably contains lithium salts and sodium salts, and examples of the alkali metal salt include lithium hydroxide (LiOH), lithium carbonate (LiCO 3 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium bis(oxalate)borate (LiBOB), sodium hexafluorophosphate (NaPF 6 ), sodium tetrafluoroborate (NaBF 4 ), sodium perchlorate (NaClO 4 ), sodium bis(fluorosulfonyl)imide (NaFSI), and sodium bis(trifluoromethanesulfonyl)imide (NaTFSI), and from the viewpoint of high ionic dissociation property, it is even more preferable to include LiTFSI and one or more derived from LiFSI.

また、アルカリ金属塩は複数種類の塩を適宜な比で混合して使用してもよい。 Alkali metal salts may also be used by mixing multiple types of salts in an appropriate ratio.

イオンの解離度及びイオン伝導度の観点から、ポリマーにおける全構成単位及びアルカリ金属塩のモル比が、100:2~100:400であることが好ましく、100:2~100:100がより好ましく、100:2~100:50がさらに好ましい。 From the viewpoint of the degree of ionic dissociation and ionic conductivity, the molar ratio of all structural units and alkali metal salt in the polymer is preferably 100:2 to 100:400, more preferably 100:2 to 100:100, and even more preferably 100:2 to 100:50.

(電離助剤)
本発明のポリマー電解質に含まれる電離助剤は、溶媒を含む。そして、アルカリ金属塩の解離及びイオン伝導度の観点から、この溶媒は以下のものであることが重要である。すなわち、この溶媒は、25℃における式(1)で得られたイオン解離度(1-ξ)が0.1以上であり、かつ、式(2)で得られる溶媒拡散係数(Dsolvent)が15以下である。
(Ionization Aid)
The ionization assistant contained in the polymer electrolyte of the present invention contains a solvent. From the viewpoint of dissociation of the alkali metal salt and ionic conductivity, it is important that this solvent is as follows: That is, this solvent has a degree of ionic dissociation (1-ξ) at 25°C obtained by formula (1) of 0.1 or more, and a solvent diffusion coefficient (Dsolvent) obtained by formula (2) of 15 or less.

Figure 0007571547000004
Figure 0007571547000004

Figure 0007571547000005
Figure 0007571547000005

式(1)で得られたイオン解離度(1-ξ)は電離助剤、温度、イオン濃度、イオン種類によって変わることがある。ここでイオン解離度は、温度が25℃、イオン濃度が0.2mol/L、且つカチオンがリチウムイオン、アニオンがN(SOCF である場合のイオン解離度をいう。 The degree of ionic dissociation (1-ξ) obtained by formula (1) may vary depending on the ionization assistant, temperature, ion concentration, and ion type. Here, the degree of ionic dissociation refers to the degree of ionic dissociation when the temperature is 25° C., the ion concentration is 0.2 mol/L, the cation is lithium ion, and the anion is N(SO 2 CF 3 ) 2 - .

なお、式(1)及び式(2)の表記は下記通りの数値を表す。σimp:イオン伝導度、e:電子電量、N:アボガドロ定数、k:ボルツマン定数、T:温度、DLithium:リチウムイオンの拡散係数、DAnion:N(SOCF の拡散係数、(1-ξ):イオン解離度、Dsolvent:溶媒拡散係数、c:境界条件定数、η:粘度、ra:拡散半径。 The notations in formula (1) and formula (2) represent the following values: σ imp : ionic conductivity, e 0 : electron charge, N: Avogadro constant, k: Boltzmann constant, T: temperature, D Lithium : diffusion coefficient of lithium ion, D Anion : diffusion coefficient of N(SO 2 CF 3 ) 2 - , (1-ξ): degree of ion dissociation, D solvent : solvent diffusion coefficient, c: boundary condition constant, η: viscosity, r a : diffusion radius.

上記電離助剤は、ポリマー電解質の界面、または非結晶部分でリチウムイオンと結合し、ポリマーマトリックスよりもイオン導電性に優れた第三の相を形成することができる。前記第三の相により、導電通路が形成され、ポリマー電解質のイオン導電性を向上させることができる。 The ionization assistant can bond with lithium ions at the interface or in the amorphous portion of the polymer electrolyte to form a third phase that has better ionic conductivity than the polymer matrix. The third phase forms a conductive path, improving the ionic conductivity of the polymer electrolyte.

式(1)で得られたイオン解離度(1-ξ)は、イオン解離の割合を示す。アルカリ金属塩の解離を促進させる観点から、上記溶媒の式(1)で得られたイオン解離度(1-ξ)は、0.1以上であることが好ましい。 The degree of ionic dissociation (1-ξ) obtained from formula (1) indicates the rate of ionic dissociation. From the viewpoint of promoting dissociation of the alkali metal salt, it is preferable that the degree of ionic dissociation (1-ξ) obtained from formula (1) of the above solvent is 0.1 or more.

また、式(2)で得られる溶媒拡散係数(Dsolvent)は、溶媒の粘性を示しており、この数値が低いほどアルカリ金属イオンのイオン伝導度が高くなる傾向にある。上記観点から、上記溶媒の式(2)で得られる溶媒拡散係数(Dsolvent)は、15以下であること好ましい。 The solvent diffusion coefficient (Dsolvent) obtained by formula (2) indicates the viscosity of the solvent, and the lower this value, the higher the ionic conductivity of the alkali metal ions tends to be. From the above viewpoint, it is preferable that the solvent diffusion coefficient (Dsolvent) obtained by formula (2) of the above solvent is 15 or less.

上記観点から、上記電離助剤式(1)で得られたイオン解離度(1-ξ)が0.1以上、かつ式(2)で得られる溶媒拡散係数(Dsolvent)が15以下となる溶媒を1つ以上、含有することが好ましい。 From the above viewpoint, it is preferable that the ionization assistant contains one or more solvents whose degree of ion dissociation (1-ξ) obtained by the above formula (1) is 0.1 or more and whose solvent diffusion coefficient (Dsolvent) obtained by the formula (2) is 15 or less.

また、同様な観点から、上記の電離助剤は、水、γブチロラクトン(GBL)、n-メチルピロリドン(NMP)、ブチレンカーボネート(BC)、エチレンカーボネート(EC)プロピレンカーボネート(PC)、メチル-γ-ブチロラクトン(GVL)、トリグリム(TG)、ダイグリム(DG)、炭酸エチルメチル(EMC)、および炭酸ジメチル(DMC)からなる群より選ばれる1つ以上を含有することが好ましい。なかでも、電解質の電位窓の観点から、上記電離助剤は、γブチロラクトン(GBL)およびn-メチルピロリドン(NMP)の少なくとも何れか一方を含有するものであることがより好ましく、前述のポリマーとの親和性の観点から、上記電離助剤は、γブチロラクトン(GBL)を含有するものであることが最も好ましい。 From a similar viewpoint, the ionization assistant preferably contains one or more selected from the group consisting of water, gamma-butyrolactone (GBL), n-methylpyrrolidone (NMP), butylene carbonate (BC), ethylene carbonate (EC), propylene carbonate (PC), methyl-gamma-butyrolactone (GVL), triglyme (TG), diglyme (DG), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). In particular, from the viewpoint of the potential window of the electrolyte, it is more preferable that the ionization assistant contains at least one of gamma-butyrolactone (GBL) and n-methylpyrrolidone (NMP), and from the viewpoint of affinity with the above-mentioned polymer, it is most preferable that the ionization assistant contains gamma-butyrolactone (GBL).

(ポリアリーレンスルフィド)
本発明におけるPAS(アリーレン基を「Ar」と略す。)は、式-(Ar-S)-を構成単位とするポリマーである。また、上記の構成単位-(Ar-S)-のArは化学式(1)の(A)の構成単位、および、化学式(1)の(B)~(G)からなる群より選ばれる少なくとも1つの構成単位を有する。融点や分子量を制御する観点で、特に、Arが化学式(1)の(B)の構成単位、または化学式(1)の(C)の構成単位を有することが好ましい。
(Polyarylene sulfide)
The PAS (arylene group is abbreviated as "Ar") in the present invention is a polymer having a structural unit of the formula -(Ar-S)-. Furthermore, Ar in the structural unit -(Ar-S)- has a structural unit (A) in chemical formula (1) and at least one structural unit selected from the group consisting of (B) to (G) in chemical formula (1). From the viewpoint of controlling the melting point and molecular weight, it is particularly preferable that Ar has a structural unit (B) in chemical formula (1) or a structural unit (C) in chemical formula (1).

Figure 0007571547000006
Figure 0007571547000006

(R1,R2はアルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。R3、R4は、水素、アルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R3とR4は同一でも異なっていてもよい。Yはアルキレン基、O、CO、SOおよびSOから選ばれる。)
また、-(Ar-S)-で表される構成単位1モルに対し、共重合単位(-(Ar-S)-のArが化学式(1)の(B)~(G)からなる群より選ばれる少なくとも1つの構成単位を有するものは、1モル%以上50モル%以下であることが好ましく。3モル%以上30モル%以下がより好ましく、5モル%以上25モル%以下がいっそう好ましい。共重合単位が1モル%以上であることで、PASの融点が大きく低下し、固体電解質を作製する際の加工温度を低くすることができ、ポリマー電解質のイオン伝導度や品質安定性の向上につながる。一方、50モル%以下であることで、PAS共重合体の重合反応終了後の反応液からPAS共重合体を回収する際に、回収を効率的に行えるようになる傾向にある。なお、PAS共重合体中の共重合単位の含有比率は、重合時に添加する化学式(2)の(A’)~(G’)で表されるジハロゲン化芳香族化合物全量に対する、共重合成分として添加する(B’)~(G’)の化合物の添加量の比率、と同じである。
(R1 and R2 are substituents selected from an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R1 and R2 may be the same or different. R3 and R4 are substituents selected from a hydrogen atom, an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R3 and R4 may be the same or different. Y is selected from an alkylene group, O, CO, SO, and SO2 .)
In addition, the copolymerization unit (-(Ar-S)- in which Ar has at least one structural unit selected from the group consisting of (B) to (G) of chemical formula (1) is preferably 1 mol% to 50 mol%, more preferably 3 mol% to 30 mol%, and even more preferably 5 mol% to 25 mol%. When the copolymerization unit is 1 mol% or more, the melting point of PAS is significantly lowered, and the processing temperature when producing a solid electrolyte can be lowered, leading to improvement in the ionic conductivity and quality stability of the polymer electrolyte. On the other hand, when the copolymerization unit is 50 mol% or less, the PAS copolymer tends to be efficiently recovered when recovered from the reaction solution after the polymerization reaction of the PAS copolymer is completed. The content ratio of the copolymerization unit in the PAS copolymer is the same as the ratio of the amount of the compounds (B') to (G') added as copolymerization components to the total amount of the dihalogenated aromatic compounds represented by (A') to (G') of chemical formula (2) added during polymerization.

Figure 0007571547000007
Figure 0007571547000007

上記-(Ar-S)-で表される単位を主要構成単位とする限り、下記の化学式(3)の(H)~(J)で表される分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、-(Ar-S)-で表される構成単位1モルに対して0~1モル%の範囲であることが好ましい。 As long as the unit represented by -(Ar-S)- is the main structural unit, it may contain branched units or crosslinked units represented by (H) to (J) in the following chemical formula (3). The copolymerization amount of these branched units or crosslinked units is preferably in the range of 0 to 1 mol % per 1 mol of the structural unit represented by -(Ar-S)-.

Figure 0007571547000008
Figure 0007571547000008

また、本発明におけるPAS共重合体は、ランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。 In addition, the PAS copolymer in the present invention may be a random copolymer, a block copolymer, or a mixture thereof.

本発明の固体電解質用PAS共重合体の合成方法は特に限定されるものではなく、有機極性溶媒中でスルフィド化剤とジハロゲン化芳香族化合物を反応させて得る方法や、ジヨード芳香族化合物と硫黄を無溶媒下で溶融反応させて得る方法などが挙げられるが、工業的に生産されている前者の重合方法を採用するのが汎用性の観点で好ましい。 The synthesis method of the PAS copolymer for solid electrolytes of the present invention is not particularly limited, and examples include a method in which a sulfidizing agent is reacted with a dihalogenated aromatic compound in an organic polar solvent, and a method in which a diiodo aromatic compound is melt-reacted with sulfur in the absence of a solvent, but it is preferable to adopt the former polymerization method, which is industrially produced, from the viewpoint of versatility.

(結晶化度)
ここで、ポリマー電解質の結晶化度は、電離助剤を含有しない状態の結晶化度をいう。本発明のポリマー電解質は融点、加工性及び電離助剤の含浸の観点から、本発明のポリマー電解質に含まれるポリマーの結晶化度が20%以下であることが好ましい。
(Crystallization degree)
Here, the crystallinity of the polymer electrolyte refers to the crystallinity in a state in which the polymer electrolyte does not contain an ionization assistant. From the viewpoints of melting point, processability, and impregnation of the ionization assistant, the polymer contained in the polymer electrolyte of the present invention preferably has a crystallinity of 20% or less.

結晶化度は一般的に、ポリマー全体における結晶領域が占める割合をいうが、ここでは、電離助剤を含浸する前のポリマー電解質の結晶融解熱量を、パラフェニレンスルファイド完全結晶の融解熱量(146.2J/g)にて除した値をポリマーの結晶化度とみなす。 Crystallization generally refers to the proportion of crystalline regions in the entire polymer, but here, the value obtained by dividing the heat of fusion of crystals of the polymer electrolyte before impregnation with the ionization assistant by the heat of fusion of perfectly crystalline paraphenylene sulfide (146.2 J/g) is regarded as the crystallinity of the polymer.

特許文献1等において、ポリマー電解質は結晶化度が高いことがイオン伝導度に重要であることが知られているが、結晶化度を低くすることで、ポリマーの融点が低くなる傾向にあり、低温加工することが可能になり、リチウム塩の分解や、ポリマーの酸化、架橋などが抑制され、電離助剤との親和性が高くなり、導電通路が形成しやすくなるため、低結晶化度でも高いイオン伝導度に至ることができる。 It is known from Patent Document 1 and other sources that a high degree of crystallinity in a polymer electrolyte is important for ionic conductivity, but by lowering the degree of crystallinity, the melting point of the polymer tends to be lower, making it possible to process it at a low temperature, suppressing the decomposition of lithium salts, oxidation and crosslinking of the polymer, increasing the affinity with the ionization assistant, and facilitating the formation of conductive paths, so that high ionic conductivity can be achieved even with a low degree of crystallinity.

また、結晶化度が低い場合、ポリマー電解質を成型させるのに必要な温度が低くなる。特にアルカリ金属塩などの成分を含有する場合、成分の混合と成型のプロセスを連続して又は同時に行うことができる。 In addition, when the degree of crystallinity is low, the temperature required to mold the polymer electrolyte is lower. In particular, when components such as alkali metal salts are contained, the process of mixing the components and molding can be carried out continuously or simultaneously.

以上の観点から、本発明におけるポリマー電解質の結晶化度は、20%以下であることが好ましく、15%以下であることがより好ましい。また、本発明におけるポリマー電解質の結晶化度は、示差走査熱量計(DSC)で測定することができる。具体的に、ポリマー電解質を窒素雰囲気下10℃/分の速度で25℃から120℃に昇温し、120℃にて2時間保持する。その後400℃まで10℃/分の速度で昇温し、得られた吸熱ピークのうち、最も面積の広いピークを融解ピークとみなし、融解ピーク面積より求められる融解熱量(J/g)を146.2(J/g)で除した値を結晶化度(%)とする。 From the above viewpoints, the crystallinity of the polymer electrolyte in the present invention is preferably 20% or less, more preferably 15% or less. The crystallinity of the polymer electrolyte in the present invention can be measured by a differential scanning calorimeter (DSC). Specifically, the polymer electrolyte is heated from 25°C to 120°C at a rate of 10°C/min in a nitrogen atmosphere and held at 120°C for 2 hours. The temperature is then raised to 400°C at a rate of 10°C/min, and the peak with the widest area among the obtained endothermic peaks is regarded as the melting peak, and the heat of fusion (J/g) calculated from the melting peak area is divided by 146.2 (J/g) to obtain the crystallinity (%).

(融点)
ここでいうポリマー電解質の融点は、電離助剤を含有しない状態の融点をいう。ポリマー電解質の融点は、成型性、生産性、及び品質安定性の観点から、融点が200℃以上320℃以下であることが好ましい。ポリマー電解質の融点が低いことによって、より低温で混合することができ、原料の昇華や変質を防ぐことができる。また、溶融状態で昇華しやすい原料がある場合、昇華を防ぐために各々の原料とポリマーとをそれぞれ混合する必要があるが、ポリマー電解質の融点が低いことによって、一度で溶融混合することができる。このようなことによって、プロセスを単純化できる。以上の観点から、本発明におけるポリマー電解質の融点が200℃以上、320℃以下であることが好ましく、200℃以上、280℃以下であることがより好ましく、200℃以上、250℃以下であることがさらに好ましい。本発明におけるポリマー電解質の融点は、以下とおり測定する。ポリマー電解質を窒素雰囲気下10℃/分の速度で25℃から120℃に昇温し、120℃にて2時間保持する。その後400℃まで10℃/分の速度で昇温し、得られた吸熱ピークのうち、最も面積の広いピークを融解ピークとみなし、融解ピークのピーク温度を融点とする。
(Melting Point)
The melting point of the polymer electrolyte referred to here refers to the melting point in a state in which the ionization assistant is not contained. The melting point of the polymer electrolyte is preferably 200° C. or more and 320° C. or less from the viewpoints of moldability, productivity, and quality stability. The low melting point of the polymer electrolyte allows mixing at a lower temperature, and prevents sublimation and deterioration of the raw materials. In addition, when there are raw materials that are prone to sublimation in a molten state, it is necessary to mix each raw material with the polymer separately to prevent sublimation, but the low melting point of the polymer electrolyte allows melt mixing in one go. This simplifies the process. From the above viewpoints, the melting point of the polymer electrolyte in the present invention is preferably 200° C. or more and 320° C. or less, more preferably 200° C. or more and 280° C. or less, and even more preferably 200° C. or more and 250° C. or less. The melting point of the polymer electrolyte in the present invention is measured as follows. The polymer electrolyte is heated from 25° C. to 120° C. at a rate of 10° C./min in a nitrogen atmosphere, and held at 120° C. for 2 hours. The temperature is then increased to 400° C. at a rate of 10° C./min., and the endothermic peak having the widest area is regarded as the melting peak, and the peak temperature of the melting peak is taken as the melting point.

(イオン伝導度)
本発明のポリマー電解質は電池用途の電解質としてのイオン伝導度や電池の充放電性能の観点から、本発明のポリマー電解質のイオン伝導度は10-6S/cm以上であることが好ましい。また、同様の観点から、10-5S/cm以上であることがより好ましく、10-4S/cm以上であることがさらに好ましい。なお、上記のポリマー電解質のイオン伝導度は、25℃におけるものをいう。
(Ionic Conductivity)
From the viewpoint of the ionic conductivity as an electrolyte for battery applications and the charge/discharge performance of the battery, the ionic conductivity of the polymer electrolyte of the present invention is preferably 10 -6 S/cm or more. From the same viewpoint, the ionic conductivity is more preferably 10 -5 S/cm or more, and further preferably 10 -4 S/cm or more. The ionic conductivity of the above polymer electrolyte refers to that at 25°C.

イオン伝導度の測定は次の方法により行うことができる。ポリマー電解質を直径10mmの円形にサンプリングし、測定用試料とする。この試料の厚さをマイクロメーターで測定後、サンプルホルダーに設置し、高周波インピーダンス測定システム(東陽テクニカ社製4990EDMS-120K)を用いて、100Hz~100MHzの交流電圧を印加し、複素インピーダンス法によるイオン伝導度を測定する。本発明におけるリチウムイオンの伝導度は、固体電池の内部抵抗及びレート特性等の観点から10-6S/cm以上であることが好ましく、10-5S/cm以上であることがより好ましい、10-4S/cm以上が最も好ましい。 The ionic conductivity can be measured by the following method. The polymer electrolyte is sampled in a circle with a diameter of 10 mm to be used as a measurement sample. The thickness of this sample is measured with a micrometer, and then the sample is placed on a sample holder. An AC voltage of 100 Hz to 100 MHz is applied using a high-frequency impedance measurement system (4990EDMS-120K manufactured by Toyo Corporation) to measure the ionic conductivity by the complex impedance method. In the present invention, the lithium ion conductivity is preferably 10 −6 S/cm or more, more preferably 10 −5 S/cm or more, and most preferably 10 −4 S/cm or more, from the viewpoint of the internal resistance and rate characteristics of the solid-state battery.

(原料の微粒化)
本発明における原料の微粒化する方法は、本発明の効果を損ない限り限定されないが、ボールミル、ジェットミル、クライオミルなどの方法があげられる。また、原料を微粒化してから混合してもよいが、混合してから微粒化するのもよい。混合の均一性の観点から、微粒化した平均粒子径は20マイクロメーター以下であることが好ましく、10マイクロメーター以下がより好ましい。
(Atomization of raw materials)
The method for atomizing the raw material in the present invention is not limited as long as it does not impair the effects of the present invention, and examples thereof include methods such as ball milling, jet milling, and cryomilling. The raw material may be atomized before mixing, or may be mixed and then atomized. From the viewpoint of uniformity of mixing, the average particle size of the atomized material is preferably 20 micrometers or less, and more preferably 10 micrometers or less.

(ポリマー電解質の厚み)
本発明におけるポリマー電解質の厚みは、電気抵抗の観点から、200マイクロメーター以下であることが好ましい、100マイクロメーター以下がより好ましく、30マイクロメーター以下がさらに好ましい。本発明におけるポリマー電解質の厚みは、JISK6250(2019)に従って、定圧厚さ測定器で測定する。
(Thickness of polymer electrolyte)
The thickness of the polymer electrolyte in the present invention is preferably 200 micrometers or less, more preferably 100 micrometers or less, and even more preferably 30 micrometers or less, from the viewpoint of electrical resistance. The thickness of the polymer electrolyte in the present invention is measured with a constant pressure thickness gauge in accordance with JIS K6250 (2019).

(吸湿度)
本発明における吸湿度は、ポリマー電解質の吸湿能力をいう。具体的に、ポリマー電解質を露点-40℃以下の乾燥室から取り出し、25℃、相対湿度80%状態1時間処理する。処理前後の重量増加を処理前のポリマー電解質の重量で割った値を吸湿度とする。ポリマー電解質の保管の観点から、電解質の吸湿が成分比率変化・電解質の劣化につながることがある。前記観点から、本発明におけるポリマー電解質の吸湿度は0%以上20%以下が好ましく、0%以上10%以下がより好ましい。
(Moisture Absorption)
The moisture absorption in the present invention refers to the moisture absorption capacity of the polymer electrolyte. Specifically, the polymer electrolyte is taken out of a drying chamber with a dew point of -40°C or less, and treated at 25°C and a relative humidity of 80% for 1 hour. The moisture absorption is calculated by dividing the weight increase before and after the treatment by the weight of the polymer electrolyte before the treatment. From the viewpoint of storage of the polymer electrolyte, moisture absorption of the electrolyte may lead to a change in the component ratio and deterioration of the electrolyte. From this viewpoint, the moisture absorption of the polymer electrolyte in the present invention is preferably 0% or more and 20% or less, and more preferably 0% or more and 10% or less.

(電池)
本発明の電池は、本発明のポリマー電解質を含むことが好ましい。本発明の効果を損ない限り限定されない、公知の方法で製造することができる。例えば、まずポリマー電解質フィルムと正極材、負極材を捲回機で巻き取り、捲回体を得る。その後得た捲回体を外装材で密封し、ポリマー電解質を有する電池を得る。
(battery)
The battery of the present invention preferably contains the polymer electrolyte of the present invention. It can be manufactured by a known method, which is not limited as long as it does not impair the effects of the present invention. For example, first, a polymer electrolyte film, a positive electrode material, and a negative electrode material are wound by a winding machine to obtain a wound body. The wound body is then sealed with an exterior material to obtain a battery having a polymer electrolyte.

以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれらに限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not necessarily limited to these.

(結晶化度の測定)
ここでいうポリマー電解質の結晶化度は、電離助剤を含有しないフィルムの結晶化度をいう。本発明におけるポリマー電解質の結晶化度は、示差走査量熱計(DSC)で測定した。まずクライオミルでポリマー電解質を平均粒子径が0.5mm以下に粉砕した。2.5mgのポリマー電解質をアルミ製サンプルホルダーに充填し、サンプル台に設置した。ポリマー電解質を窒素雰囲気下10℃/分の速度で25℃から120℃に昇温し、120℃にて2時間保持した。その後400℃まで10℃/分の速度で昇温し、得られた吸熱ピークのうち、最も面積の広いピークを融解ピークとみなし、融解ピーク面積より求められる融解熱量(J/g)を146.2(J/g)で除した値を結晶化度(%)とした。
(Measurement of Crystallinity)
The crystallinity of the polymer electrolyte referred to here refers to the crystallinity of a film that does not contain an ionization assistant. The crystallinity of the polymer electrolyte in the present invention was measured by a differential scanning calorimeter (DSC). First, the polymer electrolyte was pulverized to an average particle size of 0.5 mm or less using a cryomill. 2.5 mg of the polymer electrolyte was filled into an aluminum sample holder and placed on the sample stage. The polymer electrolyte was heated from 25°C to 120°C at a rate of 10°C/min under a nitrogen atmosphere and held at 120°C for 2 hours. Thereafter, the temperature was raised to 400°C at a rate of 10°C/min, and the peak with the widest area among the obtained endothermic peaks was regarded as the melting peak, and the value obtained by dividing the heat of fusion (J/g) calculated from the melting peak area by 146.2 (J/g) was taken as the crystallinity (%).

(融点の測定)
ポリマー電解質の融点は、示差走査量熱計(DSC)で測定した。クライオミルで平均粒子径約0.5mm以下に粉砕した2.5mgのポリマー電解質をアルミ製サンプルホルダーに充填し、サンプル台に設置した。ポリマー電解質を窒素雰囲気下10℃/分の速度で25℃から120℃に昇温し、120℃にて2時間保持した。その後400℃まで10℃/分の速度で昇温し、得られた吸熱ピークのうち、最も面積の広いピークを融解ピークとみなし、融解ピークのピーク温度を融点とした。
(Melt point measurement)
The melting point of the polymer electrolyte was measured by a differential scanning calorimeter (DSC). 2.5 mg of the polymer electrolyte, which was pulverized to an average particle size of about 0.5 mm or less using a cryomill, was filled into an aluminum sample holder and placed on the sample stage. The polymer electrolyte was heated from 25°C to 120°C at a rate of 10°C/min under a nitrogen atmosphere and held at 120°C for 2 hours. The temperature was then raised to 400°C at a rate of 10°C/min, and the peak with the widest area among the obtained endothermic peaks was regarded as the melting peak, and the peak temperature of the melting peak was taken as the melting point.

(イオン伝導度の測定)
本発明におけるイオン伝導度の測定は次の方法で測定した。ポリマー電解質フィルムの厚みを測定したあと、径10mmになるようサンプリングし、面積(S)を78.5mmと算出した。ポリマー電解質フィルムを直径10mmのサンプルホルダー(Hohsen社製KP-SolidCell)に入れた。その後高周波インピーダンス測定システム(東陽テクニカ社製4990EDMS-120K)を用いて、100Hz~100MHzの交流電圧を印加し、複素インピーダンス法によるインピーダンスを測定した。得たインピーダンスから、抵抗値(R)を算出し、測定した厚み(D)、面積(S)と合わせて、下記の式(3)でイオン伝導度(σ)を算出した。
(Measurement of ionic conductivity)
The ionic conductivity in the present invention was measured by the following method. After measuring the thickness of the polymer electrolyte film, a sample was taken to have a diameter of 10 mm, and the area (S) was calculated to be 78.5 mm2 . The polymer electrolyte film was placed in a sample holder (KP-SolidCell manufactured by Hohsen) with a diameter of 10 mm. Then, an AC voltage of 100 Hz to 100 MHz was applied using a high-frequency impedance measurement system (4990EDMS-120K manufactured by Toyo Corporation), and the impedance was measured by the complex impedance method. From the obtained impedance, the resistance value (R) was calculated, and the ionic conductivity (σ) was calculated by the following formula (3) together with the measured thickness (D) and area (S).

Figure 0007571547000009
Figure 0007571547000009

(イオン拡散係数の測定)
ここでいうポリマー電解質のイオン拡散係数は、電離助剤、ポリマー及びアルカリ金属塩を含有するフィルムのイオン拡散係数をいう。本発明におけるイオン拡散係数はPFG-NMR(パルス磁場勾配核磁気共鳴分光法)で測定した。Bruker Biospin社製のAVANCE III HD400を用い、乾燥窒素雰囲気下、25℃にて測定した。観測はLi、155.6MHzで行った。拡散プロットから、最小二乗法を用い、二成分でフィッテングした。得られた値のうち、最大のものをイオン拡散係数とした。
(Measurement of ion diffusion coefficient)
The ion diffusion coefficient of the polymer electrolyte referred to here refers to the ion diffusion coefficient of a film containing an ionization assistant, a polymer, and an alkali metal salt. The ion diffusion coefficient in the present invention was measured by PFG-NMR (pulsed field gradient nuclear magnetic resonance spectroscopy). It was measured at 25°C under a dry nitrogen atmosphere using an AVANCE III HD400 manufactured by Bruker Biospin. The observation was performed at 7 Li and 155.6 MHz. From the diffusion plot, fitting was performed with two components using the least squares method. The largest of the obtained values was determined as the ion diffusion coefficient.

(フィルムの厚みの測定)
本発明におけるポリマー電解質フィルムの厚みは、JISK6250(2019)に従って、定圧厚さ測定器で測定した。
(Film Thickness Measurement)
The thickness of the polymer electrolyte membrane in the present invention was measured using a constant pressure thickness gauge in accordance with JIS K6250 (2019).

(アルカリ金属塩を含有するフィルム)
本発明におけるアルカリ金属塩を含有するフィルムは、アルカリ金属塩とポリマーを溶融混錬した後、成膜工程でフィルムを作製した。本発明における成膜手法は、公知の手法で成膜してもよい。本発明における成膜手法は延伸工程を含んでもよいが、フィルムが延伸することによってPASが結晶化することがあり、後記電離助剤が含有しにくくなることがある。前記観点から、本発明における成膜手法は延伸工程を含まないことが好ましい。
(Films containing alkali metal salts)
The film containing an alkali metal salt in the present invention is produced by melt-kneading an alkali metal salt and a polymer, and then forming a film in a film-forming process. The film-forming method in the present invention may be a known method. The film-forming method in the present invention may include a stretching process, but stretching the film may cause crystallization of the PAS, which may make it difficult to incorporate the ionization assistant described below. From the above viewpoint, it is preferable that the film-forming method in the present invention does not include a stretching process.

(電離助剤の含浸)
本発明における電離助剤の含浸は、密閉容器内で前記アルカリ金属塩を含有するフィルムフィルムと電離助剤を一定条件で含浸させた。前記含浸条件は、含浸時の温度、圧力等の条件を含み、PAS、アルカリ金属塩及び電離助剤の種類によって適宜選択した。例えば、リチウム塩を含有するPPSフィルムにGBLを含浸させる場合、フィルムとGBLを密閉容器に入れて、常圧、120℃でオーブン1時間加熱した。また、減圧する場合、リチウム塩を含有するPPSフィルムとGBLを開放容器に入れて、120℃にて真空オーブンにて真空引きしながら1時間加熱した。
(Impregnation of ionization assistant)
In the present invention, the impregnation of the ionization assistant was performed by impregnating the film containing the alkali metal salt and the ionization assistant in a sealed container under certain conditions. The impregnation conditions included conditions such as temperature and pressure during impregnation, and were appropriately selected depending on the types of PAS, alkali metal salt, and ionization assistant. For example, when GBL was impregnated into a PPS film containing a lithium salt, the film and GBL were placed in a sealed container and heated in an oven at normal pressure and 120°C for 1 hour. In addition, when the pressure was reduced, the PPS film containing the lithium salt and GBL were placed in an open container and heated in a vacuum oven at 120°C for 1 hour while evacuating.

(吸湿度の測定)
本発明における吸湿度は、ポリマー電解質の吸湿能力をいう。具体的に、ポリマー電解質を露点-40℃以下の乾燥室から取り出し、25℃、相対湿度80%状態1時間処理した。処理前後の重量増加を処理前のポリマー電解質の重量で割った値を吸湿度とした。
(Measurement of moisture absorption)
In the present invention, the moisture absorption refers to the moisture absorption ability of the polymer electrolyte. Specifically, the polymer electrolyte was taken out of a drying chamber with a dew point of -40°C or less, and was treated for 1 hour at 25°C and a relative humidity of 80%. The moisture absorption was calculated by dividing the weight increase before and after the treatment by the weight of the polymer electrolyte before the treatment.

(ポリマー1)
全-(Ar-S)-の繰り返し単位100モル%に対して、Arが(A)で表されるパラフェニレンスルファイド構成単位を85モル%と、Arが(C)で表される、且つR1,R2がともに水素であるメタフェニレンスルファイド構成単位15モル%とからなる共重合ポリマー。
(Polymer 1)
A copolymer consisting of 85 mol % of paraphenylene sulfide structural units in which Ar is represented by (A) and 15 mol % of metaphenylene sulfide structural units in which Ar is represented by (C) and R1 and R2 are both hydrogen, relative to 100 mol % of all -(Ar-S)- repeating units.

(ポリマー2)
全-(Ar-S)-の繰り返し単位100モル%に対して、Arが(A)で表されるパラフェニレンスルファイド構成単位を90モル%と、Arが(C)で表される、且つR1,R2がともに水素であるメタフェニレンスルファイド構成単位10モル%とからなる共重合ポリマー。
(Polymer 2)
A copolymer consisting of 90 mol % of paraphenylene sulfide structural units in which Ar is represented by (A) and 10 mol % of metaphenylene sulfide structural units in which Ar is represented by (C) and R1 and R2 are both hydrogen, relative to 100 mol % of all -(Ar-S)- repeating units.

(ポリマー3)
-(Ar-S)-の繰り返し単位100モル%に対して、Arが(A)で表されるパラフェニレンスルファイド構成単位のみからなるポリマー(東レ社製ポリフェニレンスルファイド“トレリナ“(登録商標)E2080)。
(Polymer 3)
A polymer consisting of only paraphenylene sulfide structural units in which Ar is represented by (A) relative to 100 mol % of the repeating units of -(Ar-S)- (Toray Industries, Inc., polyphenylene sulfide "TORELINA" (registered trademark) E2080).

(ポリマー4)
-(Ar-S)-の繰り返し単位100モル%に対して、Arが(A)で表されるパラフェニレンスルファイド構成単位84モル%と、Arが(C)で表される、且つR1,R2がともに水素であるメタフェニレンスルファイド構成単位15モル%(H)で表される分岐単位を1モル%とからなる共重合ポリマー。
(Polymer 4)
A copolymer consisting of 100 mol % of repeating units of -(Ar-S)-, 84 mol % of paraphenylene sulfide structural units in which Ar is represented by (A), 15 mol % of metaphenylene sulfide structural units in which Ar is represented by (C) and R1 and R2 are both hydrogen, and 1 mol % of a branching unit represented by (H).

(ポリマー5)
ポリマー1とポリマー3を構成換算したモル比1:1で混合したもの。
(Polymer 5)
Polymer 1 and polymer 3 were mixed in a molar ratio of 1:1 calculated as the constituents.

(ポリマー6)
ポリエチレン(PE)。
(Polymer 6)
Polyethylene (PE).

(ポリマー7)
ポリエチレンテレフタラート(PET)。
(Polymer 7)
Polyethylene terephthalate (PET).

(ポリマー8)
ポリスチレン(PS)。
(Polymer 8)
Polystyrene (PS).

(ポリマー9)
ポリピロメリトイミド(PI)(デュポン株式会社製“カプトン”(登録商標))。
(Polymer 9)
Polypyromellitimide (PI) ("Kapton" (registered trademark) manufactured by DuPont Co., Ltd.).

(アルカリ金属塩1)
リチウムビス(トリフルオロメタンスルホニル)イミド(東京化成工業社製)。
(Alkali metal salt 1)
Lithium bis(trifluoromethanesulfonyl)imide (Tokyo Chemical Industry Co., Ltd.).

(アルカリ金属塩2)
リチウムビス(フルオロスルホニル)イミド(東京化成工業社製)。
(Alkali metal salt 2)
Lithium bis(fluorosulfonyl)imide (Tokyo Chemical Industry Co., Ltd.).

(アルカリ金属塩3)
水酸化リチウム(Alfa Aesar社製)。
(Alkali metal salt 3)
Lithium hydroxide (Alfa Aesar).

(実施例1)
ポリマー1を平均粒子径が20マイクロメーター以下になるように粉砕した。その後、粉砕した粉末をアルカリ金属塩1と混合した。この際、ポリマー1に含まれる構成単位の数と、アルカリ金属塩1とのモル比が100:45.4になるように調合した。具体的には、ポリマー1の粉末100gに対し、アルカリ金属塩1を121gの比率にて調合した。
Example 1
Polymer 1 was pulverized to an average particle size of 20 micrometers or less. The pulverized powder was then mixed with alkali metal salt 1. At this time, the mixture was prepared so that the molar ratio of the number of structural units contained in polymer 1 to alkali metal salt 1 was 100:45.4. Specifically, 121 g of alkali metal salt 1 was mixed with 100 g of polymer 1 powder.

混合物粉末を露点-40℃のドライルーム条件で溶融混錬機に投入し、260℃混錬した。その後、空冷で25℃に冷却した。得たサンプルを再度平均粒子径が20マイクロメーター以下になるように粉砕した。得た粉末を公知の方法で成膜し、延伸を行わなかった。前記方法で30マイクロメーターのフィルムを得た。得たフィルムを少量サンプリングし、クライオミルでポリマー電解質を直径が0.5mm以下となるまで粉砕し、結晶化度と融点を測定した。 The powder mixture was placed in a melt kneader under dry room conditions with a dew point of -40°C and kneaded at 260°C. It was then cooled to 25°C by air cooling. The obtained sample was again pulverized to an average particle size of 20 micrometers or less. The obtained powder was formed into a film by a known method without stretching. A 30 micrometer film was obtained by the above method. A small amount of the obtained film was sampled and the polymer electrolyte was pulverized in a cryomill until the diameter was 0.5 mm or less, and the crystallinity and melting point were measured.

得たフィルムとγブチロラクトン(GBL)を容器に入れて、圧力を0.5atmに調整するよう真空オーブンに120℃、1時間含浸させた。冷却した後、表面に残存する導電助剤を拭き取った。得たポリマー電解質フィルムのイオン伝導度及び吸湿度を25℃で測定した。測定結果を表2に示す。実施例1はポリマーの融点が低いため、260℃の比較的低温で混錬でき、原料の分解や劣化が発生せず、生産性に優れていた。すなわち、実施例1のポリマー電解質は、室温での良好なイオン伝導度及び生産性に優れたものであった。 The obtained film and gamma-butyrolactone (GBL) were placed in a container and immersed in a vacuum oven at 120°C for 1 hour while adjusting the pressure to 0.5 atm. After cooling, the conductive assistant remaining on the surface was wiped off. The ionic conductivity and moisture absorption of the obtained polymer electrolyte film were measured at 25°C. The measurement results are shown in Table 2. In Example 1, since the melting point of the polymer is low, kneading was possible at a relatively low temperature of 260°C, and decomposition or deterioration of the raw materials did not occur, resulting in excellent productivity. In other words, the polymer electrolyte of Example 1 had good ionic conductivity at room temperature and excellent productivity.

(実施例2~17、比較例1~5)
ポリマー種類、アルカリ金属塩種類、混錬温度、延伸倍率、圧力及びポリマーとアルカリ金属塩のモル比を表1のとおりとした以外は実施例1と同様にサンプルを作製し、評価を実施した。評価結果を表2に示す。実施例10に示した混合電離助剤の各成分の質量比はEC(30):PC(30):EMC(40)であった。
(Examples 2 to 17, Comparative Examples 1 to 5)
Samples were prepared and evaluated in the same manner as in Example 1, except that the polymer type, alkali metal salt type, kneading temperature, stretch ratio, pressure, and molar ratio of polymer to alkali metal salt were as shown in Table 1. The evaluation results are shown in Table 2. The mass ratio of each component of the mixed ionization assistant shown in Example 10 was EC (30): PC (30): EMC (40).

実施例2~17は実施例1と同様、低温で成型でき、生産性及びイオン伝導度に優れている。すなわち、これらの実施例のポリマー電解質は、実施例1のポリマー電解質と同様に、室温での良好なイオン伝導度を示し、且つ成形性、生産性、及び品質安定性に優れたものであった。実施例18は、ポリマーとアルカリ金属塩を成膜した後に二軸延伸し、結晶化度が延伸により増加した。結晶化度の増加により、電離助剤の含浸量が低下し、イオン伝導度に少し劣っていた。なお、比較例1は、Arが(B)~(G)から選ばれる少なくとも一つの構造である構成単位を有しない。よって、高温で成型しなければならない。アルカリ金属塩が高温より劣化が発生し、イオン伝導度に劣っていた。比較例2~4は、PAS以外のポリマーを使用し、アルカリ金属塩及び電離助剤との親和性がPASより低いため、イオン伝導度が劣っている。比較例5は、電離助剤を含有しないため、アルカリ金属塩の解離と伝導が不十分であり、イオン伝導度が劣る。 As with Example 1, Examples 2 to 17 can be molded at low temperatures and are excellent in productivity and ion conductivity. That is, the polymer electrolytes of these Examples, like the polymer electrolyte of Example 1, exhibit good ion conductivity at room temperature and are excellent in moldability, productivity, and quality stability. In Example 18, the polymer and alkali metal salt were formed into a film and then biaxially stretched, and the crystallinity increased by stretching. Due to the increase in crystallinity, the amount of impregnation of the ionization assistant decreased, and the ion conductivity was slightly inferior. In addition, Comparative Example 1 does not have a structural unit in which Ar is at least one structure selected from (B) to (G). Therefore, molding must be performed at high temperatures. The alkali metal salt deteriorates at high temperatures, and the ion conductivity was inferior. Comparative Examples 2 to 4 use polymers other than PAS and have lower affinity with the alkali metal salt and the ionization assistant than PAS, so the ion conductivity is inferior. Comparative Example 5 does not contain an ionization assistant, so the dissociation and conduction of the alkali metal salt are insufficient, and the ion conductivity is inferior.

(実施例18)
ポリマー1を平均粒子径が20マイクロメーター以下になるように粉砕した。その後、粉砕した粉末をアルカリ金属塩1と混合した。この際、ポリマー1に含まれる構成単位の数と、アルカリ金属塩1とのモル比が100:5.1になるように調合した。具体的には、ポリマー1の粉末100gに対し、アルカリ金属塩1を13.53gの比率にて調合した。
(Example 18)
Polymer 1 was pulverized to an average particle size of 20 micrometers or less. The pulverized powder was then mixed with alkali metal salt 1. At this time, the mixture was prepared so that the molar ratio of the number of structural units contained in polymer 1 to alkali metal salt 1 was 100:5.1. Specifically, 13.53 g of alkali metal salt 1 was mixed with 100 g of polymer 1 powder.

混合物粉末を露点-40℃のドライルーム条件で溶融混錬る機に投入し、260℃混錬した。得られたサンプルを再度平均粒子径が20マイクロメーター以下になるように粉砕した。得られた粉末を260℃に加熱したプレス機でプレスしたのち、温度15℃のステンレス板で挟んで急冷することで、厚み30マイクロメーターのフィルムを得た。得られたフィルムを少量サンプリングし、結晶化度と融点を測定した。 The mixed powder was placed in a melt kneader under dry room conditions with a dew point of -40°C and kneaded at 260°C. The obtained sample was again pulverized so that the average particle size was 20 micrometers or less. The obtained powder was pressed in a press heated to 260°C, and then sandwiched between stainless steel plates at a temperature of 15°C and quenched to obtain a film with a thickness of 30 micrometers. A small sample of the obtained film was taken to measure the crystallinity and melting point.

ついで、得られたフィルムと電気抵抗率が0.5MΩ(メガオーム)の純水を容器に入れて、恒温恒湿槽で1.0atm下、60℃、1時間処理し、純水を含浸させた。フィルムは、含浸前の重量を測定しておき、含浸処理後に表面を拭き取ったのち、含浸後の重量を測定した。含浸前と含浸後の重量変化から、アルカリ金属塩1:純水のモル比で、5.1:71.7の比率で含浸されていることが分かった。 Next, the obtained film and pure water with an electrical resistivity of 0.5 MΩ (megohms) were placed in a container and treated in a thermo-hygrostat at 1.0 atm and 60°C for 1 hour to impregnate the film with the pure water. The weight of the film before impregnation was measured, and after the impregnation process, the surface was wiped and the weight after impregnation was measured. From the change in weight before and after impregnation, it was found that the film was impregnated at a molar ratio of 5.1:71.7 for alkali metal salt:pure water.

得られたポリマー電解質フィルムのイオン伝導度を25℃で測定した。測定結果を表2に示す。 The ionic conductivity of the resulting polymer electrolyte film was measured at 25°C. The measurement results are shown in Table 2.

(実施例19)
恒温恒湿槽での含浸処理条件を、70℃とした以外は、実施例18と同様にして固体電解質を得た。含浸前と含浸後の重量変化から、アルカリ金属塩1:純水のモル比で、5.1:90.5の比率で含浸されていることが分かった。
(Example 19)
A solid electrolyte was obtained in the same manner as in Example 18, except that the impregnation treatment condition in the thermo-hygrostat was set to 70° C. From the change in weight before and after impregnation, it was found that the impregnation was carried out at a molar ratio of 1 alkali metal salt:pure water of 5.1:90.5.

得られたポリマー電解質フィルムのイオン伝導度を25℃で測定した。結果を表2に示す。 The ionic conductivity of the resulting polymer electrolyte film was measured at 25°C. The results are shown in Table 2.

(実施例20)
恒温恒湿槽での含浸処理条件を、80℃とした以外は、実施例18と同様にして固体電解質を得た。含浸前と含浸後の重量変化から、アルカリ金属塩1:純水のモル比で、5.1:136.7の比率で含浸されていることが分かった。
(Example 20)
A solid electrolyte was obtained in the same manner as in Example 18, except that the impregnation treatment condition in the thermo-hygrostat was set to 80° C. From the change in weight before and after impregnation, it was found that the impregnation was carried out at a molar ratio of 1 alkali metal salt:pure water of 5.1:136.7.

得られたポリマー電解質フィルムのイオン伝導度を25℃で測定した。結果を表2に示す。 The ionic conductivity of the resulting polymer electrolyte film was measured at 25°C. The results are shown in Table 2.

(比較例6)
比較例6は、ポリマーをPI(ポリマー9)としたが、溶融温度が400℃以上となった。一方で、リチウム塩(Li塩)の分解温度が380℃以下のため、Li塩と混合する際、Li塩の気化分解が発生し、溶融混合することができなかった。
(Comparative Example 6)
In Comparative Example 6, the polymer was PI (Polymer 9), but the melting temperature was 400° C. or higher. On the other hand, since the decomposition temperature of the lithium salt (Li salt) was 380° C. or lower, vaporization and decomposition of the Li salt occurred when the Li salt was mixed with the PI, and melt mixing was not possible.

(比較例7)
比較例7は、LiTFSIとPI(ポリマー9)をモル比1:2になるよう、NMP溶液に溶解した。その後、LiTFSIとPIの溶液をPET基板上にキャストし、120℃の真空オーブンで3時間乾燥した。残留のNMPが4wt%であった。得た電解質フィルムのイオン伝導度及び吸湿度を測定した。本比較例につき、実施例と同等なレベルな初期イオン伝導度を達したが、吸湿度が高いため、水分の電気分解が起こりやすいことがあった。
(Comparative Example 7)
In Comparative Example 7, LiTFSI and PI (Polymer 9) were dissolved in an NMP solution so that the molar ratio was 1:2. The LiTFSI and PI solution was then cast onto a PET substrate and dried in a vacuum oven at 120°C for 3 hours. The residual NMP was 4 wt%. The ionic conductivity and moisture absorption of the obtained electrolyte film were measured. Although this comparative example achieved an initial ionic conductivity at the same level as the examples, the moisture absorption was high, and therefore electrolysis of moisture was likely to occur.

(ポリマーの製造方法)
[参考例1]
攪拌機付きのオートクレーブに硫化ナトリウム9水和物6.005kg(25モル)、酢酸ナトリウム0.787kg(9.6モル)およびNMP(N-メチルピロリドン)5kgを仕込み、窒素を通じながら徐々に205℃まで昇温し、水3.6リットルを留出した。次に反応容器を180℃に冷却後、1,4-ジクロロベンゼン3.712kg(25.25モル)ならびにNMP2.4kgを加えて、窒素下に密閉し、270℃まで昇温後、270℃で2.5時間反応した。次に100℃に加熱されたNMP10kg中に投入して、約1時間攪拌し続けたのち、濾過し、さらに80℃の熱水で30分の洗浄を3回繰り返した。これを濾過し、酢酸カルシウムを10.4g入れた水溶液25リットル中に投入し、密閉されたオートクレーブ中で192℃、約1時間攪拌し続けたのち、濾過し、濾液のpHが7になるまで約90℃のイオン交換水で洗浄後、80℃で24時間減圧乾燥し、ポリマー3を得た。
(Method of Producing Polymer)
[Reference Example 1]
An autoclave equipped with a stirrer was charged with 6.005 kg (25 mol) of sodium sulfide nonahydrate, 0.787 kg (9.6 mol) of sodium acetate, and 5 kg of NMP (N-methylpyrrolidone), and the temperature was gradually raised to 205°C while passing nitrogen, and 3.6 liters of water was distilled off. Next, the reaction vessel was cooled to 180°C, and then 3.712 kg (25.25 mol) of 1,4-dichlorobenzene and 2.4 kg of NMP were added, sealed under nitrogen, and the temperature was raised to 270°C, and then reacted at 270°C for 2.5 hours. Next, the mixture was poured into 10 kg of NMP heated to 100°C, and stirred for about 1 hour, and then filtered, and further washed with hot water at 80°C for 30 minutes three times. The resulting solution was filtered and poured into 25 L of an aqueous solution containing 10.4 g of calcium acetate, and the mixture was stirred at 192° C. for about 1 hour in a sealed autoclave. The mixture was then filtered and washed with ion-exchanged water at about 90° C. until the pH of the filtrate reached 7. The mixture was then dried under reduced pressure at 80° C. for 24 hours to obtain Polymer 3.

[参考例2]
参考例1を参考としながら、1,4-ジクロロベンゼン3.155kg(21.46モル)及び1,3-ジクロロベンゼン0.557kg(3.79モル)を同時に加えることで、ポリマー1を得た。
[Reference Example 2]
With reference to Reference Example 1, 3.155 kg (21.46 mol) of 1,4-dichlorobenzene and 0.557 kg (3.79 mol) of 1,3-dichlorobenzene were added simultaneously to obtain Polymer 1.

[参考例3]
参考例1を参考としながら、1,4-ジクロロベンゼン3.341kg(22.72モル)及び1,3-ジクロロベンゼン0.371kg(2.53モル)も同時に添加することで、ポリマー2を得た。
[Reference Example 3]
With reference to Reference Example 1, 3.341 kg (22.72 mol) of 1,4-dichlorobenzene and 0.371 kg (2.53 mol) of 1,3-dichlorobenzene were also added at the same time to obtain Polymer 2.

[参考例4]
参考例1を参考としながら、1,4-ジクロロベンゼン3.155kg(21.46モル)、1,3-ジクロロベンゼン0.557kg(3.79モル)及び1,2,4-トリクロロベンゼン0.048kg(0.26モル)も同時に添加することで、ポリマー4を得た。
[Reference Example 4]
With reference to Reference Example 1, 3.155 kg (21.46 mol) of 1,4-dichlorobenzene, 0.557 kg (3.79 mol) of 1,3-dichlorobenzene and 0.048 kg (0.26 mol) of 1,2,4-trichlorobenzene were also added at the same time to obtain Polymer 4.

Figure 0007571547000010
Figure 0007571547000010

Figure 0007571547000011
Figure 0007571547000011

Claims (5)

アルカリ金属塩、電離助剤およびポリアリーレンスルフィドを含有するポリマー電解質であって、
上記ポリアリーレンスルフィドが式-(Ar-S)-を構成単位とするポリアリーレンスルフィド共重合体であって、
Arが化学式(1)の(A)で表される構成単位および、化学式(1)の(B)~(G)からなる群より選ばれる少なくとも1つの構成単位を有する、ポリマー電解質。
Figure 0007571547000012
(R1,R2はアルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。R3、R4は、水素、アルキル基、アルコキシ基、アミノ基、カルボキシル基、および水酸基から選ばれた置換基であり、R3とR4は同一でも異なっていてもよい。Yはアルキレン基、O、CO、SOおよびSOから選ばれる。)
A polymer electrolyte comprising an alkali metal salt, an ionization assistant, and a polyarylene sulfide,
The polyarylene sulfide is a polyarylene sulfide copolymer having a structural unit represented by the formula -(Ar-S)-,
A polymer electrolyte, wherein Ar has a constitutional unit represented by (A) in chemical formula (1) and at least one constitutional unit selected from the group consisting of (B) to (G) in chemical formula (1).
Figure 0007571547000012
(R1 and R2 are substituents selected from an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R1 and R2 may be the same or different. R3 and R4 are substituents selected from a hydrogen atom, an alkyl group, an alkoxy group, an amino group, a carboxyl group, and a hydroxyl group, and R3 and R4 may be the same or different. Y is selected from an alkylene group, O, CO, SO, and SO2 .)
前記電離助剤が、溶媒を有し、
前記溶媒は、25℃における式(1)で得られたイオン解離度(1-ξ)が0.1以上であり、かつ、式(2)で得られる溶媒拡散係数が15以下である、請求項1に記載のポリマー電解質。
Figure 0007571547000013
Figure 0007571547000014
The ionization assistant agent has a solvent,
2. The polymer electrolyte according to claim 1, wherein the solvent has a degree of ionic dissociation (1-ξ) at 25° C. obtained by the formula (1) of 0.1 or more and a solvent diffusion coefficient obtained by the formula (2) of 15 or less.
Figure 0007571547000013
Figure 0007571547000014
前記電離助剤が、水、γブチロラクトン、N-メチルピロリドン、ブチレンカーボネート(BC)、エチレンカーボネート(EC)プロピレンカーボネート(PC)、メチル-γ-ブチロラクトン(GVL)、トリグリム(TG)、ダイグリム(DG)、炭酸エチルメチル(EMC)、および炭酸ジメチル(DMC)からなる群より選ばれる1つ以上を含む、請求項1または2に記載のポリマー電解質。 The polymer electrolyte according to claim 1 or 2, wherein the ionization assistant comprises one or more selected from the group consisting of water, gamma-butyrolactone, N-methylpyrrolidone, butylene carbonate (BC), ethylene carbonate (EC), propylene carbonate (PC), methyl-gamma-butyrolactone (GVL), triglyme (TG), diglyme (DG), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC). 上記アルカリ金属塩が、リチウムビス(フルオロスルホニル)イミド及びリチウムビス(トリフルオロメタン)スルホンイミドの少なくとも一方を含む、請求項1~3のいずれかに記載のポリマー電解質。 The polymer electrolyte according to any one of claims 1 to 3, wherein the alkali metal salt includes at least one of lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethane)sulfonimide. 請求項1~4のいずれかに記載のポリマー電解質を含む、電池。
A battery comprising the polymer electrolyte according to any one of claims 1 to 4.
JP2021001900A 2020-08-05 2021-01-08 Polymer Electrolytes Active JP7571547B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020132837 2020-08-05
JP2020132837 2020-08-05

Publications (2)

Publication Number Publication Date
JP2022031092A JP2022031092A (en) 2022-02-18
JP7571547B2 true JP7571547B2 (en) 2024-10-23

Family

ID=80325142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001900A Active JP7571547B2 (en) 2020-08-05 2021-01-08 Polymer Electrolytes

Country Status (1)

Country Link
JP (1) JP7571547B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517712A (en) 2016-05-27 2019-06-24 イオニツク・マテリアルズ・インコーポレーテツド Electrochemical cell with solid ion conducting polymeric material
JP2019530166A (en) 2017-04-14 2019-10-17 エルジー・ケム・リミテッド Polymer solid electrolyte and lithium secondary battery including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019517712A (en) 2016-05-27 2019-06-24 イオニツク・マテリアルズ・インコーポレーテツド Electrochemical cell with solid ion conducting polymeric material
JP2019530166A (en) 2017-04-14 2019-10-17 エルジー・ケム・リミテッド Polymer solid electrolyte and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP2022031092A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
Didwal et al. An advanced solid polymer electrolyte composed of poly (propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries
JP5168989B2 (en) Lithium ion secondary battery
KR100754421B1 (en) Paste electrolyte and rechargeable lithium battery containing the same
CN111164818B (en) Electrolyte composition for lithium secondary battery and lithium secondary battery comprising the same
KR102224022B1 (en) Composition for preparing porous insulating layer, electrode for non-aqueous rechargeable lithium battery, non-aqueous rechargeable lithium battery, method of preparing electrrode for non-aqueous rechargeable lithium battery
KR100695569B1 (en) Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
US11848417B2 (en) Gel polymer electrolyte including crosslinked network of poss and peg, ionic liquid, and lithium salt, lithium battery including the same, and process of preparing the same
Tian et al. A crosslinked polyethyleneglycol solid electrolyte dissolving lithium bis (trifluoromethylsulfonyl) imide for rechargeable lithium batteries
JP6187506B2 (en) Lithium ion secondary battery
CN111602269A (en) Electrode and electrochemical device
Xie et al. Novel quasi solid-state succinonitrile-based electrolyte with low-flammability for lithium-ion battery
Grewal et al. Solvated Ionic‐Liquid Incorporated Soft Flexible Cross‐Linked Network Polymer Electrolytes for Safer Lithium Ion Secondary Batteries
JP7571547B2 (en) Polymer Electrolytes
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
Aravindan et al. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)
EP3786992A1 (en) Positive electrode for electricity storage devices, and electricity storage device
Swiderska‐Mocek et al. Gel Polymer Electrolytes with Talc as a Natural Mineral Filler and a Biodegradable Polymer Matrix in Sodium‐Ion Batteries
JP2021111632A (en) Solid electrolyte and method for producing solid electrolyte
JP2018077939A (en) Lithium ion secondary battery
CN114868207B (en) Solid electrolyte, electrode, battery, capacitor, and method for producing solid electrolyte
JP2004006237A (en) Polymer electrolyte and polymer lithium battery
WO2019021810A1 (en) Separation membrane for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
Li et al. Towards Efficient Polymeric Binders for Transition Metal Oxides‐based Li‐ion Battery Cathodes
US11431026B1 (en) Polymer-based hybrid solid electrolyte that exhibits high room temperature ionic conductivity
JPH03236171A (en) Chemical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240923

R150 Certificate of patent or registration of utility model

Ref document number: 7571547

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150