[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7565181B2 - Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same - Google Patents

Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same Download PDF

Info

Publication number
JP7565181B2
JP7565181B2 JP2020162884A JP2020162884A JP7565181B2 JP 7565181 B2 JP7565181 B2 JP 7565181B2 JP 2020162884 A JP2020162884 A JP 2020162884A JP 2020162884 A JP2020162884 A JP 2020162884A JP 7565181 B2 JP7565181 B2 JP 7565181B2
Authority
JP
Japan
Prior art keywords
chloride resin
polyvinyl chloride
vinyl chloride
weight
expandable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020162884A
Other languages
Japanese (ja)
Other versions
JP2022055452A (en
Inventor
祐貴 根岩
竜太 沓水
克幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2020162884A priority Critical patent/JP7565181B2/en
Publication of JP2022055452A publication Critical patent/JP2022055452A/en
Application granted granted Critical
Publication of JP7565181B2 publication Critical patent/JP7565181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、発泡性塩化ビニル系樹脂粒子、その発泡粒子、及びこれを用いた塩化ビニル系樹脂発泡成形体に関する。 The present invention relates to expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded articles using the same.

樹脂発泡成形体(発泡体)は、軽量性、断熱性、緩衝性等を有し、住宅等の断熱材や配管等の保温材として従来より広く使用されている。その中でも、発泡剤を含有した発泡性スチレン系樹脂粒子を用いて得られるスチレン系樹脂発泡成形体は、形状の自由度が高く、押出発泡法等で得られるボード形状の様な単純形状の発泡体では施工困難な部位にも適用できる断熱材として、広く活用されている。スチレン系樹脂は燃えやすい樹脂であるが、スチレン系樹脂発泡成形体には難燃剤が添加され、ある程度の難燃性能は確保されている。しかし、近年の工事現場での火災事故や、高層マンションでの火災事例などから、建築用の断熱材には、従来よりも高い難燃性能が求められつつある。 Resin foam molded products (foams) are lightweight, insulating, and shock-absorbing, and have been widely used as insulation materials for houses and heat-retaining materials for pipes. Among them, styrene resin foam molded products obtained using expandable styrene resin particles containing a foaming agent have a high degree of freedom in shape and are widely used as insulation materials that can be applied to areas where simple foam shapes such as board shapes obtained by extrusion foaming methods are difficult to apply. Although styrene resin is a flammable resin, flame retardants are added to styrene resin foam molded products to ensure a certain degree of flame retardancy. However, due to recent fire accidents at construction sites and fires in high-rise apartment buildings, there is a growing demand for higher flame retardancy than before for insulation materials for construction.

難燃性能に優れる発泡体としては、難燃性能に優れる塩化ビニル系樹脂あるいは塩素化塩化ビニル系樹脂を基材樹脂とした樹脂発泡成形体が挙げられる。 Examples of foams with excellent flame retardant properties include resin foam molded products that use vinyl chloride resin or chlorinated vinyl chloride resin, both of which have excellent flame retardant properties, as the base resin.

例えば、特許文献1及び特許文献2には、塩素化塩化ビニル樹脂と相溶性を呈する溶剤と発泡剤とを含有してなる塩素化塩化ビニル樹脂予備発泡粒子を型内発泡成形して得られた発泡体が記載されている。 For example, Patent Documents 1 and 2 describe foams obtained by in-mold expansion molding of pre-expanded chlorinated polyvinyl chloride resin particles that contain a solvent compatible with chlorinated polyvinyl chloride resin and a blowing agent.

特開昭64―132号JP 64-132 A 特開平2-182735号JP2-182735A

本発明の目的は、高発泡倍率の塩化ビニル系樹脂発泡成形体を与えうる発泡効率に優れた発泡性塩化ビニル系樹脂粒子を提供することにある。 The object of the present invention is to provide expandable polyvinyl chloride resin particles with excellent expansion efficiency that can produce polyvinyl chloride resin foamed molded articles with a high expansion ratio.

本願の発明者らは、上述した課題を解決すべく鋭意検討を重ねた結果、発泡性塩化ビニル系樹脂粒子に可塑剤の添加量を特定量とすることによって、軽量性(高い発泡倍率)に優れる塩化ビニル系樹脂発泡成形体を与え得る新規の発泡性塩化ビニル系樹脂粒子を製造することを成功させ、本発明を完成するに至った。 As a result of intensive research conducted by the inventors of the present application to solve the above-mentioned problems, they have succeeded in producing novel expandable polyvinyl chloride resin particles that can give polyvinyl chloride resin foamed molded articles with excellent light weight (high expansion ratio) by adding a specific amount of plasticizer to the expandable polyvinyl chloride resin particles, thereby completing the present invention.

即ち、本発明は、
[1]塩化ビニル系樹脂と、可塑剤と、発泡剤とを含み、前記塩化ビニル系樹脂100重量部に対する、前記可塑剤の含有量は1重量部以上10重量部未満である、発泡性塩化ビニル系樹脂粒子。
[2]前記可塑剤がフタル酸系可塑剤、リン酸系可塑剤、トリメリット酸系可塑剤、エポキシ系可塑剤からなる群から選択されるの少なくとも1種を含む、上記[1]に記載の発泡性塩化ビニル系樹脂粒子。
[3]前記塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を含み、前記塩素化塩化ビニル系樹脂の塩素含有量が60重量%以上75重量%以下である、上記[1]又は[2]に記載の発泡性塩化ビニル系樹脂粒子。
[4]前記塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を含み、前記塩素化塩化ビニル系樹脂の平均重合度が400以上1500以下である、上記[1]~[3]に記載の発泡性塩化ビニル系樹脂粒子。
[5]物理発泡剤を含有する、上記[1]~[4]のいずれかに記載の発泡性塩化ビニル系樹脂粒子。
[6]前記物理発泡剤が炭素数4~6の飽和炭化水素を含む、上記[5]に記載の発泡性塩化ビニル系樹脂粒子。
[7]前記物理発泡剤がケトンを含む、上記[5]または[6]に記載の発泡性塩化ビニル系樹脂粒子。
[8]上記[1]~[7]のいずれかに記載の発泡性塩化ビニル系樹脂粒子を予備発泡してなる、塩化ビニル系樹脂発泡粒子。
[9]上記[8]の塩化ビニル系樹脂発泡粒子を発泡成形してなる、塩化ビニル系樹脂発泡成形体。
That is, the present invention provides:
[1] Expandable polyvinyl chloride resin particles comprising a polyvinyl chloride resin, a plasticizer, and a foaming agent, the content of the plasticizer being 1 part by weight or more and less than 10 parts by weight per 100 parts by weight of the polyvinyl chloride resin.
[2] The expandable polyvinyl chloride resin particles according to the above [1], wherein the plasticizer comprises at least one selected from the group consisting of a phthalic acid plasticizer, a phosphoric acid plasticizer, a trimellitic acid plasticizer, and an epoxy plasticizer.
[3] The expandable polyvinyl chloride resin particles according to the above [1] or [2], wherein the polyvinyl chloride resin contains a chlorinated polyvinyl chloride resin, and the chlorine content of the chlorinated polyvinyl chloride resin is 60% by weight or more and 75% by weight or less.
[4] The expandable polyvinyl chloride resin particles according to any one of [1] to [3] above, wherein the polyvinyl chloride resin comprises a chlorinated polyvinyl chloride resin, and the average polymerization degree of the chlorinated polyvinyl chloride resin is 400 or more and 1,500 or less.
[5] The expandable vinyl chloride resin particles according to any one of the above [1] to [4], which contain a physical foaming agent.
[6] The expandable polyvinyl chloride resin particles according to the above [5], wherein the physical foaming agent contains a saturated hydrocarbon having 4 to 6 carbon atoms.
[7] The expandable polyvinyl chloride resin particles according to the above [5] or [6], wherein the physical foaming agent contains a ketone.
[8] Expanded polyvinyl chloride resin particles obtained by pre-expanding the expandable polyvinyl chloride resin particles according to any one of [1] to [7] above.
[9] A polyvinyl chloride resin foamed article obtained by foaming the polyvinyl chloride resin foam particles according to [8] above.

本発明の発泡効率に優れる発泡性塩化ビニル系樹脂粒子によれば、高発泡倍率の塩化ビニル系樹脂発泡成形体が得られる。 The expandable vinyl chloride resin particles of the present invention, which have excellent expansion efficiency, can produce vinyl chloride resin foamed molded articles with a high expansion ratio.

本明細書において特記しない限り、数値範囲を表す「A~B」は「A以上B以下」を意味する。また、「Aおよび/またはB」は、「A、B、ならびに、AおよびB」を意味する。 Unless otherwise specified in this specification, "A to B" representing a numerical range means "A or more and B or less." Also, "A and/or B" means "A, B, and A and B."

(発泡性塩化ビニル系樹脂粒子)
上記特許文献1および2記載の発明は、基材樹脂が塩化ビニル樹脂よりも難燃性能に優れる塩素化塩化ビニル樹脂を使用することによって、難燃性能に優れ、かつ、形状自由度のある発泡成形体を提案している。しかし、当該発泡成形体を得るには、多数の工程が必要であり生産性が悪く、さらに多量の溶剤および温暖化係数の高い発泡剤を使用する方法となっており、環境負荷が非常に大きく、かつコスト面でも課題がある製法となっている。さらに、得られた発泡体の発泡効率は詳細は示されていないが、0.6~1.9程度であり、さらなる発泡効率向上に課題がある。
(Expandable polyvinyl chloride resin particles)
The inventions described in the above Patent Documents 1 and 2 propose foamed molded articles that are excellent in flame retardancy and have a degree of freedom in shape by using a chlorinated polyvinyl chloride resin, which has better flame retardancy than polyvinyl chloride resin, as a base resin. However, in order to obtain the foamed molded article, many steps are required, resulting in poor productivity, and the method also requires the use of a large amount of solvent and a blowing agent with a high global warming potential, resulting in a manufacturing method that has a very large environmental load and is also problematic in terms of cost. Furthermore, although the details of the foaming efficiency of the obtained foam are not disclosed, it is about 0.6 to 1.9, and there is a problem in further improving the foaming efficiency.

このように上記発泡成形体は環境適合性および及びコスト面では改善の必要性が高いため、塩化ビニル系樹脂等の難燃性能を生かしつつ、軽量性および形状付与性を有する新規な発泡成形体を提供することが望まれている。 As such, there is a strong need to improve the environmental compatibility and cost of the above foam molded products, so there is a need to provide new foam molded products that are lightweight and have shape-imparting properties while still taking advantage of the flame retardant properties of polyvinyl chloride resins and the like.

そこで、本発明者らが鋭意検討したところ、特定量の可塑剤を添加することによって、発泡性塩化ビニル系樹脂粒子の発泡効率が改善することを見出し、本発明を成功するに至った。 As a result of extensive research, the inventors discovered that the foaming efficiency of expandable polyvinyl chloride resin particles can be improved by adding a specific amount of plasticizer, which led to the successful development of the present invention.

すなわち、本発明の発泡性塩化ビニル系樹脂粒子は、塩化ビニル系樹脂100重量部に対して可塑剤を1重量部以上10重量部未満含有することを特徴とする。本発明の発泡性塩化ビニル系樹脂粒子によれば、優れた発泡効率を有するため、高発泡倍率の塩化ビニル系樹脂発泡成形体を得ることができる。 That is, the expandable vinyl chloride resin particles of the present invention are characterized by containing 1 part by weight or more and less than 10 parts by weight of a plasticizer per 100 parts by weight of vinyl chloride resin. The expandable vinyl chloride resin particles of the present invention have excellent expansion efficiency, so that vinyl chloride resin foamed molded articles with a high expansion ratio can be obtained.


塩化ビニル系樹脂は双極子相互作用によって、ガラス転移温度よりも高温となった場合においても、非常に高粘度を保つことが知られている。この時の粘度は発泡時の発泡力に抵抗する力となる。発泡効率を高め、高発泡倍率とするためには、この双極子相互作用をコントロールし、発泡剤を含有する塩化ビニル系樹脂組成物を発泡に適した粘度とする必要がある。本発明者らが鋭意検討したところ、発泡剤を含有する塩化ビニル系樹脂粒子において、塩化ビニル系樹脂100重量部に対して可塑剤を1重量部以上10重量部未満添加することによって、発泡剤を含有した塩化ビニル系樹脂を発泡に適した粘度とすることが可能となり、発泡効率に優れた塩化ビニル系樹脂発泡体を得ることができることを見出した。

It is known that vinyl chloride resins maintain a very high viscosity due to dipole interactions even when the temperature is higher than the glass transition temperature. The viscosity at this time acts as a force resisting the foaming force during foaming. In order to increase the foaming efficiency and achieve a high foaming ratio, it is necessary to control this dipole interaction and make the vinyl chloride resin composition containing a foaming agent have a viscosity suitable for foaming. The present inventors have conducted extensive research and found that by adding 1 part by weight or more and less than 10 parts by weight of a plasticizer to 100 parts by weight of vinyl chloride resin in vinyl chloride resin particles containing a foaming agent, it is possible to make the vinyl chloride resin containing the foaming agent have a viscosity suitable for foaming, and a vinyl chloride resin foam with excellent foaming efficiency can be obtained.

可塑剤の添加量は、好ましくは2以上9.5重量部以下であり、さらに好ましくは3以上9重量部以下である。可塑剤の添加量を前記範囲とすることで、発泡時の樹脂粘度の抵抗を小さくすることができるため高い発泡効率となり、かつ樹脂粘度が下がりすぎないことで、高倍発泡となり気泡膜が薄くなった場合においても気泡膜が破れることが防止でき、高倍発泡が可能となる。樹脂粘度が低下しすぎると、発泡過程で気泡膜が破れ、発泡剤が揮散することで所望の発泡倍率がでない問題が生じる。 The amount of plasticizer added is preferably 2 to 9.5 parts by weight, and more preferably 3 to 9 parts by weight. By setting the amount of plasticizer added within this range, the resistance of the resin viscosity during foaming can be reduced, resulting in high foaming efficiency, and by preventing the resin viscosity from dropping too low, it is possible to prevent the bubble film from breaking even when the bubble film becomes thin due to high-fold foaming, making high-fold foaming possible. If the resin viscosity drops too low, the bubble film will break during the foaming process, and the foaming agent will volatilize, causing the problem of not achieving the desired foaming ratio.

本発明で用いられる可塑剤は、公知の可塑剤を使用でき、特に限定されないが、例えば下記の可塑剤が挙げられる。例えば、フタル酸ビス(2-エチルヘキシル)(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、テレフタル酸ビス(2-エチルヘキシル)等のフタル酸系可塑剤、アジピン酸系可塑剤、トリメチルホスフェート(TMP)、トリエチルホスフェート(TEP)、トリブチルホスフェート(TBP)、トリクレジルホスフェート(TCP)、トリフェニルホスフェート等のリン酸系可塑剤、トリメリット酸トリス(2-エチルヘキシル)(TOTM)等のトリメリット酸系可塑剤、エポキシ化大豆油等のエポキシ系可塑剤、アジピン酸系ポリエステル等のポリエステル系可塑剤、脂肪酸系可塑剤、塩素化パラフィン等その他塩化ビニル系樹脂に可塑化効果のある化合物を用いることができる。これらの可塑剤は単独で用いてもよいし、2種以上を混合して用いてもよい。 The plasticizer used in the present invention may be any known plasticizer, and is not particularly limited, but examples thereof include the following plasticizers. For example, phthalic acid plasticizers such as bis(2-ethylhexyl)phthalate (DOP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), and bis(2-ethylhexyl) terephthalate, adipic acid plasticizers, phosphoric acid plasticizers such as trimethyl phosphate (TMP), triethyl phosphate (TEP), tributyl phosphate (TBP), tricresyl phosphate (TCP), and triphenyl phosphate, trimellitic acid plasticizers such as tris(2-ethylhexyl) trimellitate (TOTM), epoxy plasticizers such as epoxidized soybean oil, polyester plasticizers such as adipic acid polyester, fatty acid plasticizers, and compounds that have a plasticizing effect on vinyl chloride resins, such as chlorinated paraffin, may be used. These plasticizers may be used alone or in combination of two or more.

本発明の一実施形態としては、可塑剤として、塩化ビニル系樹脂のゲル化性の観点から、フタル酸系可塑剤、リン酸系可塑剤、トリメリット酸系可塑剤、エポキシ系可塑剤が好ましく、さらに好ましくはフタル酸系可塑剤、リン酸系可塑剤である。塩化ビニル系樹脂のゲル化性が良好な可塑剤を用いることで、発泡剤の保持性が向上し易い傾向があり、高発泡倍率の発泡体が得られ易くなる傾向がある。 In one embodiment of the present invention, from the viewpoint of the gelling property of the vinyl chloride resin, the plasticizer is preferably a phthalic acid plasticizer, a phosphoric acid plasticizer, a trimellitic acid plasticizer, or an epoxy plasticizer, and more preferably a phthalic acid plasticizer or a phosphoric acid plasticizer. By using a plasticizer that has good gelling property of the vinyl chloride resin, the retention of the blowing agent tends to be improved, and a foam with a high expansion ratio tends to be easily obtained.

本発明の一実施形態としては、可塑剤はエステル基を含有することが好ましい。エステル基を含有することによって塩化ビニル系樹脂への相溶性が良好となり、発泡に適した粘度とし易い傾向がある。また、沸点が210℃以上であることが好ましい。沸点が210℃以上であることで、発泡温度においても揮散せずに樹脂中に残存することで、発泡時に発泡に適した粘度を保つことが可能となる。さらにエステル基当量は97以上が好ましい。エステル基当量が97以上となることで発泡剤との親和性が良好となり、高発泡率とし易い傾向がある。 In one embodiment of the present invention, the plasticizer preferably contains an ester group. By containing an ester group, compatibility with vinyl chloride resins becomes good, and it tends to be easy to achieve a viscosity suitable for foaming. In addition, it is preferable that the boiling point is 210°C or higher. By having a boiling point of 210°C or higher, it remains in the resin without volatilizing even at the foaming temperature, making it possible to maintain a viscosity suitable for foaming during foaming. Furthermore, the ester group equivalent is preferably 97 or higher. By having an ester group equivalent of 97 or higher, affinity with the foaming agent becomes good, and it tends to be easy to achieve a high foaming rate.

本発明の発泡性塩化ビニル系樹脂粒子は発泡効率に優れる。本発明の一実施形態として、発泡性塩化ビニル系樹脂粒子の最大発泡倍率(倍)/発泡時揮発分(重量%)が2.0以上であることが好ましく、より好ましくは2.3以上であり、更に好ましくは2.6以上である。最大発泡倍率(倍)/発泡時揮発分(重量%)が前記範囲であれば、少ない発泡剤量において高発泡が可能であり、発泡効率に優れる。ここでいう最大発泡倍率は加熱空気雰囲気下で発泡評価を行った際の最も高い倍率であり、発泡時揮発分は加熱空気雰囲気下での発泡評価時に用いた発泡性塩化ビニル系樹脂粒子を150℃で30分間加熱した際の重量変化率のことであり、具体的には後述する測定方法で求めることができる。なお、発泡性塩化ビニル系樹脂粒子中の揮発分は経時的に変化することから、最大発泡倍率および発泡時揮発分は同日に測定された値を使用する。 The expandable polyvinyl chloride resin particles of the present invention have excellent expansion efficiency. In one embodiment of the present invention, the maximum expansion ratio (times)/volatile content during expansion (weight %) of the expandable polyvinyl chloride resin particles is preferably 2.0 or more, more preferably 2.3 or more, and even more preferably 2.6 or more. If the maximum expansion ratio (times)/volatile content during expansion (weight %) is within the above range, high expansion is possible with a small amount of foaming agent, and the expansion efficiency is excellent. The maximum expansion ratio here is the highest expansion ratio when the expansion evaluation is performed in a heated air atmosphere, and the volatile content during expansion is the weight change rate when the expandable polyvinyl chloride resin particles used in the expansion evaluation in a heated air atmosphere are heated at 150°C for 30 minutes, and can be determined specifically by the measurement method described below. Note that the volatile content in the expandable polyvinyl chloride resin particles changes over time, so the maximum expansion ratio and the volatile content during expansion are values measured on the same day.

(塩化ビニル系樹脂)
本発明の発泡性塩化ビニル系樹脂粒子は、樹脂成分として塩化ビニル系樹脂が含まれ、公知の塩化ビニル系樹脂を使用できる。例えば、ポリ塩化ビニル(塩化ビニル単独重合体);塩化ビニル・酢酸ビニル共重合体、塩化ビニル・(メタ)アクリル酸共重合体、塩化ビニル・(メタ)アクリル酸メチル共重合体、塩化ビニル・(メタ)アクリル酸エチル共重合体、塩化ビニル・マレイン酸エステル共重合体、塩化ビニル・エチレン共重合体、塩化ビニル・プロピレン共重合体、塩化ビニル・スチレン共重合体、塩化ビニル・イソブチレン共重合体、塩化ビニル・塩化ビニリデン共重合体、塩化ビニル・スチレン・無水マレイン酸三元共重合体、塩化ビニル・スチレン・アクリロニトリル三元共重合体、塩化ビニル・ブタジエン共重合体、塩化ビニル・イソプレン共重合体、塩化ビニル・塩素化プロピレン共重合体、塩化ビニル・塩化ビニリデン・酢酸ビニル三元共重合体、塩化ビニル・アクリロニトリル共重合体、塩化ビニル・各種ビニルエーテル共重合体等の塩化ビニルと塩化ビニルと共重合可能な他のモノマーとの塩化ビニル系共重合体;後塩素化したビニル系重合体、後塩素化したポリ塩化ビニル、後塩素化した塩化ビニル系共重合体、後塩素化した塩素化オレフィン等のビニル系重合体を改質(塩素化等)したものなどを挙げることができる。更には塩素化度40重量%以上の塩素化ポリエチレン等の、化学構造がポリ塩化ビニルと類似する塩素化ポリオレフィンが含まれていても良い。塩化ビニル系樹脂としては、これらを1種又は2種以上の混合物を用いることができる。なお、本明細書において「塩化ビニル系重合体」は、ポリ塩化ビニルおよび/または塩化ビニル系共重合体を意味する。
(Vinyl chloride resin)
The expandable vinyl chloride resin particles of the present invention contain a vinyl chloride resin as a resin component, and any known vinyl chloride resin can be used. For example, polyvinyl chloride (vinyl chloride homopolymer); vinyl chloride-vinyl acetate copolymer, vinyl chloride-(meth)acrylic acid copolymer, vinyl chloride-methyl (meth)acrylate copolymer, vinyl chloride-ethyl (meth)acrylate copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-ethylene copolymer, vinyl chloride-propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride terpolymer, vinyl chloride-styrene-acrylonitrile terpolymer, vinyl chloride-butadiene copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylonitrile copolymer, vinyl chloride-various vinyl ether copolymer, vinyl chloride copolymers of vinyl chloride and other monomers copolymerizable with vinyl chloride; post-chlorinated vinyl polymer, post-chlorinated polyvinyl chloride, post-chlorinated vinyl chloride copolymer, post-chlorinated chlorinated olefin, and the like vinyl polymers modified (chlorinated, etc.) can be mentioned. Furthermore, chlorinated polyolefins having a chemical structure similar to that of polyvinyl chloride, such as chlorinated polyethylenes having a chlorination degree of 40% by weight or more, may be included. As the vinyl chloride resin, one or a mixture of two or more of these may be used. In this specification, the term "vinyl chloride polymer" refers to polyvinyl chloride and/or vinyl chloride copolymer.

塩素化塩化ビニル系重合体(以下、塩素化塩化ビニル系樹脂と表現する場合がある)は、通常、原料として塩化ビニル系重合体を用い、同塩化ビニル系重合体を水性媒体中に分散した状態で塩素を供給し、それに水銀灯を照射し光塩素化するか、あるいは加熱塩素化するなど水性媒体中で塩素化する方法、塩化ビニル系重合体を気層中、水銀灯の照射下で塩素化を行うなど気層中で塩素化する方法などにより製造される。 Chlorinated vinyl chloride polymers (hereinafter sometimes referred to as chlorinated vinyl chloride resins) are usually produced by using vinyl chloride polymers as raw materials, supplying chlorine to the vinyl chloride polymers dispersed in an aqueous medium, and chlorinating the polymers in an aqueous medium by irradiating them with a mercury lamp for photo-chlorination or by heating for chlorination, or by chlorinating vinyl chloride polymers in an air space by irradiating them with a mercury lamp.

塩化ビニル系樹脂の平均重合度は、特に限定されないが、下限は300以上が好ましく、400以上がより好ましい。一方、上限は3000以下であることが好ましく、より好ましくは1500以下である。平均重合度が前記範囲であれば、高い発泡倍率を得られる傾向にある。尚、塩素化塩化ビニル系樹脂の平均重合度は、実質的に塩素化前の塩化ビニル系樹脂の平均重合度とみなす。平均重合度はJIS K6720-2に準拠して測定される。 The average degree of polymerization of the vinyl chloride resin is not particularly limited, but the lower limit is preferably 300 or more, and more preferably 400 or more. On the other hand, the upper limit is preferably 3000 or less, and more preferably 1500 or less. If the average degree of polymerization is within the above range, a high expansion ratio tends to be obtained. The average degree of polymerization of the chlorinated vinyl chloride resin is regarded as the average degree of polymerization of the vinyl chloride resin before chlorination. The average degree of polymerization is measured in accordance with JIS K6720-2.

塩素化塩化ビニル系樹脂の重量平均分子量は、特に限定されないが、30,000以上400,000以下の範囲であることが好ましい。重量平均分子量が前記範囲であれば、高い発泡倍率を得られる傾向にある。重量平均分子量は、ゲルパーミエーションクロマトグラフィーによって、ポリスチレン換算分子量で評価される。 The weight average molecular weight of the chlorinated polyvinyl chloride resin is not particularly limited, but is preferably in the range of 30,000 to 400,000. If the weight average molecular weight is in this range, a high expansion ratio tends to be obtained. The weight average molecular weight is evaluated in terms of polystyrene by gel permeation chromatography.

塩素化塩化ビニル系樹脂の塩素含有量は、60重量%以上75重量%以下の範囲であることが発泡性を確保する観点から好ましい。より好ましくは、64重量%以上70重量%以下である。塩素含有量が高いほど高い発泡倍率を得られる傾向にあるが、一方で塩素含有量が高すぎると溶融粘度の上昇により、加工性が著しく損なわれる傾向にある。塩素化塩化ビニル系樹脂を含む塩化ビニル系樹脂の塩素含有量は、JIS K7385 B法に準拠して測定される。 From the viewpoint of ensuring foamability, the chlorine content of the chlorinated polyvinyl chloride resin is preferably in the range of 60% by weight to 75% by weight. More preferably, it is 64% by weight to 70% by weight. The higher the chlorine content, the higher the foaming ratio tends to be, but if the chlorine content is too high, the melt viscosity increases and the processability tends to be significantly impaired. The chlorine content of polyvinyl chloride resins, including chlorinated polyvinyl chloride resins, is measured in accordance with JIS K7385 B method.

本発明の一実施形態として、塩素化塩化ビニル系樹脂としては、その特性が同一の1種のみを使用してもよいし、その特性の異なる2種以上を組み合わせて使用してもよい。 As one embodiment of the present invention, a single type of chlorinated polyvinyl chloride resin with the same properties may be used, or two or more types with different properties may be used in combination.

本発明の一実施形態として、塩化ビニル系樹脂には、発泡性及び難燃性の観点から、塩素化塩化ビニル系重合体が含まれることが好ましく、塩素化塩化ビニル系重合体が主として含まれることがより好ましい。特に限定するわけではないが、塩化ビニル系樹脂100重量%において、塩素化塩化ビニル系重合体が50重量%以上含まれることが好ましく、より好ましくは60重量%以上であり、さらに好ましくは70重量%であり、もっと好ましくは80重量%以上である。一方、上限は塩化ビニル系樹脂100重量%において、塩素化塩化ビニル系重合体が100重量%であることが好ましい。 In one embodiment of the present invention, from the viewpoint of foaming property and flame retardancy, it is preferable that the vinyl chloride resin contains a chlorinated vinyl chloride polymer, and more preferably contains mainly a chlorinated vinyl chloride polymer. Although not particularly limited, it is preferable that the chlorinated vinyl chloride polymer is contained in 100% by weight of the vinyl chloride resin, more preferably 50% by weight or more, more preferably 60% by weight or more, even more preferably 70% by weight or more, and most preferably 80% by weight or more. On the other hand, the upper limit is preferably 100% by weight of the chlorinated vinyl chloride polymer in 100% by weight of the vinyl chloride resin.

(発泡剤)
本発明の発泡性塩化ビニル系樹脂粒子に含まれる発泡剤は、公知の発泡剤を使用でき、特に限定されないが、例えば下記の発泡剤が挙げられる。例えば、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサン等の炭化水素、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n-ブチルエーテル、ジイソプロピルエーテル、フラン、フルフラール、2-メチルフラン、テトラヒドロフラン、テトラヒドロピランなどのエーテル、ジメチルケトン(アセトン)、メチルエチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチル-n-ブチルケトン、メチル-i-ブチルケトン、メチル-n-ヘキシルケトン、エチル-n-プロピルケトン、エチル-n-ブチルケトンなどのケトン、メタノール、エタノール、プロピルアルコール、i-プロピルアルコール、ブチルアルコール、i-ブチルアルコール、t-ブチルアルコールなどの炭素数1~4の飽和アルコール、蟻酸メチルエステル、蟻酸エチルエステル、蟻酸プロピルエステル、蟻酸ブチルエステル、蟻酸アミルエステル、プロピオン酸メチルエステル、プロピオン酸エチルエステルなどのカルボン酸エステル、塩化メチル、塩化エチルなどのハロゲン化アルキル、トランス-1,3,3,3-テトラフルオロプロペン(トランス-HFO-1234e)、シス-1,3,3,3-テトラフルオロプロペン(シス-HFO-1234ze)、2,3,3,3-テトラフルオロプロペン(トランス-HFO-1234yf)、トランス-1-クロロ-3,3,3-トリフルオロプロペン(トランス-HCFO-1233zd)、シス-1-クロロ-3,3,3-トリフルオロプロペン(シス-HCFO-1233zd)などのハイドロフルオロオレフィンあるいは塩素化されたハイドロフルオロオレフィン、水、二酸化炭素、窒素などの無機系発泡剤などの物理発泡剤、アゾ化合物、テトラゾールなどの化学発泡剤を用いることができる。これら他の発泡剤は、単独で用いてもよいし、2種以上を混合して用いてもよい。
(Foaming Agent)
The blowing agent contained in the expandable vinyl chloride resin particles of the present invention may be any known blowing agent, and is not particularly limited, but examples thereof include the following blowing agents: hydrocarbons such as normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane; ethers such as dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n-butyl ether, diisopropyl ether, furan, furfural, 2-methylfuran, tetrahydrofuran, and tetrahydropyran; ketones such as dimethyl ketone (acetone), methyl ethyl ketone, diethyl ketone, methyl n-propyl ketone, methyl n-butyl ketone, methyl i-butyl ketone, methyl n-hexyl ketone, ethyl n-propyl ketone, and ethyl n-butyl ketone; saturated alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propyl alcohol, i-propyl alcohol, butyl alcohol, i-butyl alcohol, and t-butyl alcohol; methyl formate, ethyl formate Examples of the foaming agents that can be used include carboxylic acid esters such as ter, propyl formate, butyl formate, amyl formate, methyl propionate, and ethyl propionate; alkyl halides such as methyl chloride and ethyl chloride; hydrofluoroolefins or chlorinated hydrofluoroolefins such as trans-1,3,3,3-tetrafluoropropene (trans-HFO-1234e), cis-1,3,3,3-tetrafluoropropene (cis-HFO-1234ze), 2,3,3,3-tetrafluoropropene (trans-HFO-1234yf), trans-1-chloro-3,3,3-trifluoropropene (trans-HCFO-1233zd), and cis-1-chloro-3,3,3-trifluoropropene (cis-HCFO-1233zd); physical foaming agents such as inorganic foaming agents such as water, carbon dioxide, and nitrogen; and chemical foaming agents such as azo compounds and tetrazole. These other foaming agents may be used alone or in combination of two or more.

本発明の一実施形態としては、発泡剤として、高発泡倍率としやすいことから物理発泡剤が含有されることが好ましく、炭化水素がより好ましく、中でも炭素数4~6(炭素数4、5および6)の飽和炭化水素が含有されることがより好ましい。発泡剤の炭素数が4以上であると揮発性が低くなり、発泡性塩化ビニル系樹脂粒子から発泡剤が逸散しにくくなるため、実際に使用する際に発泡工程で発泡剤が十分に残り、十分な発泡力を得ることが可能となり、高倍率化が容易となるため好ましい。また、炭素数が6以下であると、発泡剤の沸点が高すぎないため、予備発泡時の加熱で十分な発泡力を得やすく、高発泡化が易しい傾向となる。炭素数4~6の飽和炭化水素としては、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、ノルマルヘキサン、又はシクロヘキサンが例示される。炭素数4~6の飽和炭化水素としては、発泡剤の樹脂への溶解性及び保持性の観点から、少なくともペンタンが含有されることが好ましい。 In one embodiment of the present invention, a physical foaming agent is preferably contained as the foaming agent because it is easy to achieve a high foaming ratio, and a hydrocarbon is more preferable, and among them, a saturated hydrocarbon having 4 to 6 carbon atoms (4, 5, and 6 carbon atoms) is more preferable. If the foaming agent has 4 or more carbon atoms, the volatility is low and the foaming agent is less likely to escape from the expandable vinyl chloride resin particles, so that when actually used, a sufficient amount of foaming agent remains in the foaming process, making it possible to obtain sufficient foaming power and facilitating high foaming ratios, which is preferable. In addition, if the foaming agent has 6 or less carbon atoms, the boiling point of the foaming agent is not too high, so it is easy to obtain sufficient foaming power by heating during pre-foaming, and there is a tendency for high foaming to be easy. Examples of saturated hydrocarbons having 4 to 6 carbon atoms include normal butane, isobutane, normal pentane, isopentane, neopentane, cyclopentane, normal hexane, and cyclohexane. From the viewpoint of the solubility and retention of the foaming agent in the resin, it is preferable that at least pentane is contained as a saturated hydrocarbon having 4 to 6 carbon atoms.

本発明の一実施形態として、発泡剤としてケトンが含まれることが発泡剤の溶解性向上の観点から好ましい。中でも、炭化水素と併用されることが好ましく、例えば、炭素数4~6の飽和炭化水素とケトンとを併用することにより、炭素数4~6の飽和炭化水素の樹脂への溶解性を更に向上しうる。 As one embodiment of the present invention, it is preferable that a ketone is included as a foaming agent from the viewpoint of improving the solubility of the foaming agent. In particular, it is preferable that it is used in combination with a hydrocarbon. For example, by using a saturated hydrocarbon having 4 to 6 carbon atoms in combination with a ketone, the solubility of the saturated hydrocarbon having 4 to 6 carbon atoms in the resin can be further improved.

本発明の一実施形態としては、発泡剤の含有量は、発泡性塩化ビニル系樹脂粒子100重量%において1~40重量%であることが好ましい。前記所定の範囲に発泡剤の含有量を制御することにより、高い発泡倍率を有する発泡粒子及び表面美麗性に優れた発泡成形体を得やすい、という効果を奏する。より好ましい範囲としては、3~25重量%であり、更に好ましくは5~20重量%である。 In one embodiment of the present invention, the content of the foaming agent is preferably 1 to 40% by weight based on 100% by weight of the expandable polyvinyl chloride resin particles. By controlling the content of the foaming agent within the above-mentioned range, it is possible to easily obtain foamed particles with a high expansion ratio and foamed molded products with excellent surface beauty. A more preferred range is 3 to 25% by weight, and even more preferably 5 to 20% by weight.

(加工助剤)
本発明の好ましい一実施形態として、加工助剤を含有してもよい。加工助剤としては、塩化ビニル系樹脂に一般的に使用される加工助剤で特に問われないが、例えば、スチレンーアクリロニトリル共重合体のような芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体、アクリル系樹脂、メタクリル酸メチル-ブタジエン-スチレン系重合体のような耐衝撃改良剤、塩素化ポリエチレンなどが挙げられる。高発泡倍率の発泡粒子並びに発泡成形体を得やすい点から、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体、アクリル系樹脂および塩素化ポリエチレンからなる群から選択される少なくとも1種が含有されることが好ましい。中でも、塩素化塩化ビニル系樹脂の流動性を改善し、成形加工性を改善する観点から、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体および/またはアクリル系樹脂と、塩素化ポリエチレンとを併用することがより好ましい。
(Processing aids)
As a preferred embodiment of the present invention, a processing aid may be contained. The processing aid may be any processing aid commonly used for vinyl chloride resins, and may include, for example, a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units, such as a styrene-acrylonitrile copolymer, an impact resistance improver such as a methyl methacrylate-butadiene-styrene polymer, and chlorinated polyethylene. In order to easily obtain expanded particles and foamed molded articles with a high expansion ratio, it is preferable to contain at least one selected from the group consisting of a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units, an acrylic resin, and a chlorinated polyethylene. Among them, from the viewpoint of improving the fluidity of the chlorinated vinyl chloride resin and improving the molding processability, it is more preferable to use a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units and/or an acrylic resin in combination with chlorinated polyethylene.

本発明の一実施形態では、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体を塩化ビニル系樹脂に用いることにより、水蒸気加熱条件での予備発泡や発泡成形において、高発泡倍率の発泡粒子並びに発泡成形体を得やすい効果に優れる。 In one embodiment of the present invention, a copolymer having structural units of an aromatic vinyl monomer and an unsaturated nitrile monomer is used in a vinyl chloride resin, which is excellent in the effect of easily obtaining foamed particles and foamed molded articles with high expansion ratios during pre-expansion and foam molding under steam heating conditions.

芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体の芳香族ビニル単量体としては、スチレン、α―メチルスチレン、エチルスチレン、ハロゲン化スチレン等のスチレン誘導体が挙げられる。不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリル等が挙げられる。 The aromatic vinyl monomer of the copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units includes styrene derivatives such as styrene, α-methylstyrene, ethylstyrene, and halogenated styrene. The unsaturated nitrile monomer includes acrylonitrile, methacrylonitrile, etc.

本発明の効果を損なわない範囲で、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体は、上記芳香族ビニル単量体及び不飽和ニトリル単量体以外の単量体由来の構造単位(その他共重合可能な単量体)を有していても良い。その他共重合可能な単量体としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸N-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸エステル、(メタ)アクリル酸、無水マレイン酸、N-置換マレイミドなどが挙げられる。 As long as the effect of the present invention is not impaired, the copolymer having structural units of an aromatic vinyl monomer and an unsaturated nitrile monomer may have structural units derived from monomers other than the aromatic vinyl monomer and the unsaturated nitrile monomer (other copolymerizable monomers). Examples of other copolymerizable monomers include (meth)acrylic acid esters such as methyl (meth)acrylate, ethyl (meth)acrylate, N-butyl (meth)acrylate, isobutyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate, (meth)acrylic acid, maleic anhydride, and N-substituted maleimide.

芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体中における不飽和二トリル単量体の好ましい範囲としては、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体全体を100重量%として、5~45重量%であり、より好ましくは、8~35重量%であり、更に好ましくは、10~30重量%である。前記範囲であることで、高発泡倍率の発泡粒子並びに発泡成形体を得られやすい。 The preferred range of the unsaturated nitrile monomer in the copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units is 5 to 45% by weight, more preferably 8 to 35% by weight, and even more preferably 10 to 30% by weight, based on 100% by weight of the entire copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units. By being in this range, it is easy to obtain expanded beads and expanded molded products with a high expansion ratio.

好ましい芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体としては、スチレンーアクリロニトリル共重合体が挙げられる。芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体は、1種のみを使用してもよいし2種以上を組み合わせて使用してもよい。好ましい実施形態としては、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体の少なくとも1種としてスチレンーアクリロニトリル共重合体が使用される。芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体は、その重量平均分子量が、使用される塩化ビニル系樹脂の重量平均分子量よりも高いのものを使用することが高発泡倍率を確保しやすい点から好ましい。尚、芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによって、ポリスチレン換算分子量で評価される。芳香族ビニル単量体及び不飽和ニトリル単量体を構造単位に有する共重合体として、例えばGalata製のBlendex869等が使用できる。 A preferred example of a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units is a styrene-acrylonitrile copolymer. The copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units may be used alone or in combination of two or more. In a preferred embodiment, a styrene-acrylonitrile copolymer is used as at least one of the copolymers having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units. It is preferable to use a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units whose weight average molecular weight is higher than the weight average molecular weight of the vinyl chloride resin used, since it is easy to ensure a high expansion ratio. The weight average molecular weight of the copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units is evaluated in terms of polystyrene molecular weight by gel permeation chromatography. As a copolymer having an aromatic vinyl monomer and an unsaturated nitrile monomer as structural units, for example, Blendex 869 manufactured by Galata can be used.

アクリル系樹脂の具体例としては、たとえばメタクリル酸メチルを重合させてえられるポリメタクリル酸メチル、メタクリル酸メチルと、メタクリル酸n-ブチルなどのアルキル基の炭素数が2~8のメタクリル酸アルキルエステル、アクリル酸エチルなどのアルキル基の炭素数が1~8のアクリル酸アルキルエステル、およびブチレン、置換スチレン、アクリロニトリルなどのこれらと共重合可能な単量体の少なくとも1種との共重合体などがあげられる。アクリル系樹脂は、その重量平均分子量が、使用される塩化ビニル系樹脂の重量平均分子量よりも高いのものを使用することが高発泡倍率を確保しやすい点から好ましい。尚、アクリル系樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによって、ポリスチレン換算分子量で評価される。アクリル系樹脂として、例えばカネカ製のカネエースPA-40等を使用することができる。 Specific examples of acrylic resins include polymethyl methacrylate obtained by polymerizing methyl methacrylate, methacrylic acid alkyl esters having 2 to 8 carbon atoms in the alkyl group such as n-butyl methacrylate, acrylic acid alkyl esters having 1 to 8 carbon atoms in the alkyl group such as ethyl acrylate, and copolymers of at least one monomer copolymerizable with these, such as butylene, substituted styrene, and acrylonitrile. It is preferable to use an acrylic resin whose weight average molecular weight is higher than that of the vinyl chloride resin used, since this makes it easier to ensure a high expansion ratio. The weight average molecular weight of the acrylic resin is evaluated in terms of polystyrene molecular weight by gel permeation chromatography. For example, Kane Ace PA-40 manufactured by Kaneka can be used as the acrylic resin.

塩素化ポリエチレンは、塩化ビニル系樹脂に使用される公知の塩素化ポリエチレンを同様に使用できる。は、尚、塩素化ポリエチレンの塩素含有量は、特に好ましい範囲を問わないが、JIS K7385 B法に準拠して測定される。 The chlorinated polyethylene may be any known chlorinated polyethylene used in polyvinyl chloride resins. The chlorine content of the chlorinated polyethylene is not limited to any particular range, but is measured in accordance with JIS K7385 B method.

加工助剤の含有量は、本発明の効果を損なわない範囲であれば特に限定されないが、塩化ビニル系樹脂100重量部に対して1~50重量部であることが好ましく、5~50重量部がより好ましく、8~30重量部が更に好ましい。1重量部以上であると、高い発泡倍率を有する発泡粒子および/または発泡成形体を得やすくなり、50重量部以下であると、難燃性能に優れた発泡粒子および/または発泡成形体を得ることができる。 The content of the processing aid is not particularly limited as long as it is within a range that does not impair the effects of the present invention, but is preferably 1 to 50 parts by weight, more preferably 5 to 50 parts by weight, and even more preferably 8 to 30 parts by weight, per 100 parts by weight of the vinyl chloride resin. If the content is 1 part by weight or more, it becomes easier to obtain expanded beads and/or expanded molded products with a high expansion ratio, and if it is 50 parts by weight or less, it becomes possible to obtain expanded beads and/or expanded molded products with excellent flame retardant performance.

(その他添加剤)
本発明の効果を損なわない範囲で、必要に応じて、難燃剤、安定剤、滑剤、造核剤、発泡助剤、帯電防止剤、輻射伝熱抑制剤、溶剤及び顔料・染料などの着色剤等を含有しても良い。
(Other additives)
As long as the effects of the present invention are not impaired, the composition may contain, as necessary, flame retardants, stabilizers, lubricants, nucleating agents, foaming assistants, antistatic agents, radiation heat transfer inhibitors, solvents, and colorants such as pigments and dyes.

難燃剤としては、公知の難燃剤を使用することができ、例えば、臭素系難燃剤、リン系難燃剤、ホウ素系難燃剤、ポリリン酸アンモニウム、メラミンシアヌレート等のイントメッセント系難燃剤、水酸化アルミニウム、水酸化マグネシウム等の水酸化化合物、酸化アンチモン、酸化亜鉛、ホウ酸亜鉛などの難燃助剤が挙げられる。 As the flame retardant, known flame retardants can be used, for example, bromine-based flame retardants, phosphorus-based flame retardants, boron-based flame retardants, intumescent flame retardants such as ammonium polyphosphate and melamine cyanurate, hydroxide compounds such as aluminum hydroxide and magnesium hydroxide, and flame retardant assistants such as antimony oxide, zinc oxide, and zinc borate.

安定剤としては、従来より塩化ビニル系樹脂に用いられるものを使用することができる。例えば、錫系安定剤、フェノール系化合物、リン系化合物、アミン系化合物などの酸化防止剤、エポキシ系安定剤、ゼオライト等が挙げられる。其々の安定剤の使用量は、本発明の効果を損なわない範囲であれば、特に限定されないが、化ビニル系樹脂100重量部に対して10重量部以下であることが好ましい。 As the stabilizer, those conventionally used for polyvinyl chloride resins can be used. Examples include tin-based stabilizers, antioxidants such as phenolic compounds, phosphorus-based compounds, and amine-based compounds, epoxy-based stabilizers, and zeolites. The amount of each stabilizer used is not particularly limited as long as it does not impair the effects of the present invention, but it is preferable that the amount is 10 parts by weight or less per 100 parts by weight of the polyvinyl chloride resin.

滑剤としては、エステルワックス、ポリエチレンワックス等のワックス、ステアリン酸カルシウム、ステアリン酸亜鉛等の脂肪酸金属塩などが挙げられる。 Examples of lubricants include waxes such as ester wax and polyethylene wax, and fatty acid metal salts such as calcium stearate and zinc stearate.

造核剤としては、シリカ、ケイ酸カルシウム、ワラストナイト、カオリン、クレイ、マイカ、酸化亜鉛、炭酸カルシウム、炭酸水素ナトリウム、ゼオライトもしくはタルク等の無機化合物が挙げられる。 Nucleating agents include inorganic compounds such as silica, calcium silicate, wollastonite, kaolin, clay, mica, zinc oxide, calcium carbonate, sodium bicarbonate, zeolite, or talc.

輻射伝熱抑制剤としては、近赤外又は赤外領域の光を反射、散乱又は吸収する特性を有する物質が挙げられ、例えば、グラファイト、グラフェン、カーボンブラック、膨張黒鉛、酸化チタン、アルミニウムなどがある。 Radiation heat transfer inhibitors include substances that have the property of reflecting, scattering, or absorbing light in the near-infrared or infrared region, such as graphite, graphene, carbon black, expanded graphite, titanium oxide, and aluminum.

本発明の効果を損なわない範囲で、塩化ビニル系樹脂に他の樹脂(熱可塑性樹脂や熱硬化性樹脂)を併用してもよい。他の樹脂を併用する場合、他の樹脂の配合量は、本発明の効果を損なわない範囲であれば特に限定されないが、塩化ビニル系樹脂100重量部に対して0~99重量部が好ましい。 Other resins (thermoplastic resins and thermosetting resins) may be used in combination with vinyl chloride resins as long as the effects of the present invention are not impaired. When using other resins in combination, the amount of the other resins is not particularly limited as long as the effects of the present invention are not impaired, but 0 to 99 parts by weight per 100 parts by weight of vinyl chloride resin is preferred.

本発明の発泡性塩化ビニル系樹脂粒子は、後述するような発泡性樹脂粒子を予備発泡・発泡成形できる形状の粒子であれば、粒子の形状は特に問わないが、一般的な粒状物(例えば、球状、略球状、凸レンズ状、凹レンズ状、紡錘状などの丸みを帯びた小さい粒子)だけでなく、凹みのある粒子も含まれるものとする。尚、本発明の発泡性塩化ビニル系樹脂粒子の粒重量は発泡粒子の成形金型への充填性、ひいては発泡成形体の表面美麗性などの成形性を確保する観点から、0.5~10mg/粒であることが好ましく、1~8mg/粒がより好ましく、2.5~7mg/粒が更に好ましい。 The shape of the expandable polyvinyl chloride resin particles of the present invention is not particularly important as long as the particles have a shape that allows the expandable resin particles to be pre-expanded and expanded as described below, but this includes not only general granular objects (for example, small rounded particles such as spherical, approximately spherical, convex lens-like, concave lens-like, and spindle-like), but also particles with indentations. The particle weight of the expandable polyvinyl chloride resin particles of the present invention is preferably 0.5 to 10 mg/particle, more preferably 1 to 8 mg/particle, and even more preferably 2.5 to 7 mg/particle, from the viewpoint of ensuring the fillability of the expanded particles into a molding die and thus the moldability such as the surface beauty of the expanded molded product.

本発明の発泡性塩化ビニル系樹脂粒子は、発泡性塩化ビニル系樹脂粒子からの発泡剤の逸散速度を小さくする、あるいはより発泡倍率を向上させる観点から、真密度が1100kg/m以上であることが好ましく、1150kg/m以上がより好ましく、1200kg/m以上が更に好ましく、1250kg/m以上が特に好ましい。ここでいう真密度は、後述する測定方法で求めることができる。 From the viewpoint of reducing the rate at which the foaming agent escapes from the foamable vinyl chloride resin particles of the present invention or further improving the expansion ratio, the true density of the foamable vinyl chloride resin particles of the present invention is preferably 1100 kg/m 3 or more, more preferably 1150 kg/m 3 or more, even more preferably 1200 kg/m 3 or more, and particularly preferably 1250 kg/m 3 or more. The true density here can be determined by the measurement method described below.

(発泡性塩化ビニル系樹脂粒子の製造方法)
本発明の発泡性塩化ビニル系樹脂粒子は、公知の製造方法で得ることができるが、例えば、以下の2つの製造方法が挙げられる。
(Method for producing expandable polyvinyl chloride resin particles)
The expandable vinyl chloride resin particles of the present invention can be obtained by a known production method, for example, the following two production methods.

第1の発泡性塩化ビニル系樹脂粒子の製造方法(以下、「第1の製造方法」と称することがある。)としては、塩化ビニル系樹脂、及び可塑剤、更に必要に応じて他の添加剤を押出機、ロール加工機、バンバリミキサーなどの公知の混練機にて加熱溶融混合した後、造粒し、得られた塩化ビニル系樹脂粒子をオートクレーブ中にて、発泡剤を含浸させることで、発泡性塩化ビニル系樹脂粒子を得る製造方法がある。 The first method for producing expandable polyvinyl chloride resin particles (hereinafter sometimes referred to as the "first production method") involves heating, melting and mixing polyvinyl chloride resin, a plasticizer, and, if necessary, other additives in a known kneading machine such as an extruder, a roll processing machine, or a Banbury mixer, followed by granulation, and impregnating the resulting polyvinyl chloride resin particles with a blowing agent in an autoclave to obtain expandable polyvinyl chloride resin particles.

第2の発泡性塩化ビニル系樹脂粒子の製造方法(以下、「第2の製造方法」と称することがある。)としては、塩化ビニル系樹脂、及び可塑剤、更に必要に応じて他の添加剤を押出機に供給して溶融混練し、発泡剤を前記押出機または押出機以降の分散設備によって溶融混練物に溶解・分散させ、押出機以降に取り付けた、小孔を多数有するダイスを通じて、加圧循環水で満たされたカッターチャンバー内に発泡剤含有塩化ビニル系樹脂組成物の溶融混練物を押し出し、押し出し直後から、ダイスと接する回転カッターにより前記溶融混練物を切断すると共に加圧循環水により冷却固化し、発泡性塩化ビニル系樹脂粒子を得る製造方法である。 The second method for producing expandable polyvinyl chloride resin particles (hereinafter sometimes referred to as the "second production method") involves feeding polyvinyl chloride resin, a plasticizer, and optionally other additives to an extruder and melt-kneading them, dissolving and dispersing the foaming agent in the molten mixture using the extruder or a dispersing device downstream of the extruder, extruding the molten mixture of the foaming agent-containing polyvinyl chloride resin composition through a die with many small holes attached downstream of the extruder into a cutter chamber filled with pressurized circulating water, and immediately after extrusion, cutting the molten mixture with a rotating cutter in contact with the die and cooling and solidifying it with pressurized circulating water to obtain expandable polyvinyl chloride resin particles.

尚、第1及び第2の製法方法に共通して、塩化ビニル系樹脂は十分にゲル化させることが好ましい。十分にゲル化が行われないと、発泡性樹脂粒子とした場合に、樹脂粒子からの発泡剤の散逸速度が大きくなる場合があり、発泡剤が発泡に寄与し難い傾向にあり、結果として高発泡倍率あるいは高独立気泡率を有する発泡粒子及び発泡成形体を得ることが困難となる場合がある。 In both the first and second manufacturing methods, it is preferable to gel the vinyl chloride resin sufficiently. If gelation is not sufficient, when the resin is made into expandable resin particles, the rate at which the blowing agent escapes from the resin particles may increase, and the blowing agent may tend not to contribute to expansion. As a result, it may be difficult to obtain expanded particles and foamed molded articles with a high expansion ratio or a high closed cell ratio.

第1および第2の製造方法において、塩化ビニル系樹脂等の溶融混練(混合)時の樹脂温度については、塩化ビニル系樹脂及び添加剤の分解に影響を及ぼす可能性があることから、150℃以上250℃未満であることが好ましく、更に好ましくは160℃以上240℃未満である。樹脂温度が250℃を超えると、塩化ビニル系樹脂及び添加剤の分解の虞があり、結果として発泡性塩化ビニル系樹脂粒子の劣化を誘発し、発泡性能の低下に繋がる虞がある。 In the first and second manufacturing methods, the resin temperature during melt kneading (mixing) of the vinyl chloride resin, etc. is preferably 150°C or higher and lower than 250°C, and more preferably 160°C or higher and lower than 240°C, since this may affect the decomposition of the vinyl chloride resin and additives. If the resin temperature exceeds 250°C, there is a risk of decomposition of the vinyl chloride resin and additives, which may result in deterioration of the expandable vinyl chloride resin particles and lead to a decrease in the expandability.

(造粒工程の各条件)
第1及び第2の製造方法における(発泡性)塩化ビニル系樹脂粒子の造粒工程の条件について説明する。
(Conditions of granulation process)
The conditions for the granulation step of the (expandable) vinyl chloride resin particles in the first and second production methods will be described below.

第1の製造方法においてロール加工機等でシート状の溶融混練物を得る実施形態については、得られたシートを冷却した後、カッターやシュレッダーなどの裁断設備でシート状の塩化ビニル系樹脂粒子を造粒する例が挙げられる。尚、この際のシート状の塩化ビニル系樹脂粒子の厚みは、混練設備であるロール加工機のクリアランスの調整や、得られたシートを更にプレスすることで調整できる。 In the first manufacturing method, an embodiment in which a sheet-shaped molten kneaded product is obtained using a roll processing machine or the like can be given, in which the obtained sheet is cooled and then granulated into sheet-shaped vinyl chloride resin particles using cutting equipment such as a cutter or shredder. The thickness of the sheet-shaped vinyl chloride resin particles can be adjusted by adjusting the clearance of the roll processing machine, which is the kneading equipment, or by further pressing the obtained sheet.

第2の製造方法において、ダイスより押出される直前の溶融樹脂の温度は、発泡剤を含まない状態での樹脂(複数樹脂のブレンド物の場合はブレンド後の樹脂)のガラス転移温度をTgとすると、Tg+20℃以上であることが好ましく、Tg+30℃~Tg+110℃であることがより好ましく、Tg+40℃~Tg+90℃であることがさらに好ましい。尚、塩化ビニル系樹脂については、塩素含有量の増加に伴い、ガラス転移温度が上昇するため、使用する塩化ビニル系樹脂の塩素含有量に伴い、適宜調整することが好ましい。Tg+20℃以上であれば、押出された溶融樹脂の粘度が低くなり、小孔詰まりが発生しにくく、実質小孔開口率の低下が起きないため、得られる発泡性塩化ビニル系樹脂粒子の形状が歪もしくは不揃いとなる事態を避けることができる。一方で、Tg+110℃以下であれば、押出された溶融樹脂が固化し易くなり、回転カッターに巻き付き難くなり、安定的に切断できる。 In the second manufacturing method, the temperature of the molten resin immediately before being extruded from the die is preferably Tg+20°C or higher, more preferably Tg+30°C to Tg+110°C, and even more preferably Tg+40°C to Tg+90°C, where Tg is the glass transition temperature of the resin (resin after blending in the case of a blend of multiple resins) without the foaming agent. Note that, for vinyl chloride resins, the glass transition temperature increases with an increase in the chlorine content, so it is preferable to adjust the temperature appropriately according to the chlorine content of the vinyl chloride resin used. If the temperature is Tg+20°C or higher, the viscosity of the extruded molten resin is low, small pore clogging is unlikely to occur, and there is no decrease in the actual small pore opening rate, so that it is possible to avoid a situation in which the shape of the resulting expandable vinyl chloride resin particles becomes distorted or irregular. On the other hand, if the temperature is Tg+110°C or lower, the extruded molten resin is easily solidified and is less likely to wrap around the rotary cutter, allowing for stable cutting.

第2の製造方法において使用されるダイスは、好ましくは直径0.3mm~2.0mm、より好ましくは0.4mm~1.5mmの小孔を多数有するものが挙げられる。 The die used in the second manufacturing method preferably has many small holes with a diameter of 0.3 mm to 2.0 mm, more preferably 0.4 mm to 1.5 mm.

第2の製造方法における循環加圧冷却水に押出された溶融樹脂を切断する切断装置としては、特に限定されないが、例えば、ダイスに接触する回転カッターで切断されて小球化され、加圧循環冷却水中で発泡することなく、遠心脱水機まで移送されて脱水・集約される装置、等が挙げられる。 The cutting device for cutting the molten resin extruded into the circulating pressurized cooling water in the second manufacturing method is not particularly limited, but examples include a device in which the resin is cut into small pellets by a rotating cutter that comes into contact with a die, and then transported to a centrifugal dehydrator to be dehydrated and aggregated without foaming in the circulating pressurized cooling water.

加圧循環冷却水の条件については、使用する樹脂、添加剤、発泡剤、含有量によって調整すべきであるが、ダイスより押し出される溶融樹脂の発泡が抑制され、安定的にカッターで切断される条件が好ましい。具体的には、加圧循環冷却水の温度条件としては、好ましくは40℃~99℃、より好ましくは60~90℃である。圧力条件としては、得られる発泡性塩化ビニル系樹脂粒子の発泡倍率が1.0~1.25倍となるよう、圧力を調整することが好ましい。尚、発泡性塩化ビニル系樹脂粒子の発泡倍率は、基材樹脂の真密度(kg/m3)を発泡性塩化ビニル系樹脂粒子の真密度(kg/m3)で除した値を指す。ここでいう基材樹脂及び発泡性塩化ビニル系樹脂粒子の真密度は、重量W(kg)の塩化ビニル系樹脂ペレットまたは発泡性塩化ビニル系樹脂粒子を、エタノールの入ったメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m3)を求め、算出される。具体的には後述する測定方法から求めることができる。 The conditions of the pressurized circulating cooling water should be adjusted according to the resin, additives, foaming agent, and content used, but it is preferable that the foaming of the molten resin extruded from the die is suppressed and the resin is stably cut by the cutter. Specifically, the temperature condition of the pressurized circulating cooling water is preferably 40°C to 99°C, more preferably 60°C to 90°C. As for the pressure condition, it is preferable to adjust the pressure so that the expansion ratio of the obtained expandable polyvinyl chloride resin particles is 1.0 to 1.25 times. The expansion ratio of the expandable polyvinyl chloride resin particles refers to the value obtained by dividing the true density (kg/m3) of the base resin by the true density (kg/m3) of the expandable polyvinyl chloride resin particles. The true density of the base resin and the expandable polyvinyl chloride resin particles referred to here is calculated by immersing a weight W (kg) of polyvinyl chloride resin pellets or expandable polyvinyl chloride resin particles in a measuring cylinder containing ethanol, and determining the volume V (m3) from the rise in the liquid level of the measuring cylinder (submersion method). Specifically, it can be determined by the measurement method described below.

使用する発泡剤の種類にも依存するが、圧力条件は、好ましくは0.6~2.0MPa、より好ましくは0.7~1.7MPa、更に好ましくは0.8~1.5MPaである。 Although it depends on the type of foaming agent used, the pressure conditions are preferably 0.6 to 2.0 MPa, more preferably 0.7 to 1.7 MPa, and even more preferably 0.8 to 1.5 MPa.

第1の製造方法における発泡剤の含浸条件等は、一般的に行なわれる条件と同様でよく、適宜設定すればよい。 The conditions for impregnation of the foaming agent in the first manufacturing method may be the same as those generally used and may be set appropriately.

(塩化ビニル系樹脂発泡粒子及びその製造方法)
本発明の発泡性塩化ビニル系樹脂粒子は、加熱空気や水蒸気などの加熱媒体により、2~110倍に予備発泡されて塩化ビニル系樹脂発泡粒子にされたのち、発泡成形体に使用されうる。使用できる水蒸気は、飽和水蒸気であってもよいし過熱水蒸気であってもよい。
(Polyvinyl chloride resin foam particles and their manufacturing method)
The expandable polyvinyl chloride resin particles of the present invention can be used for a foamed molded article after being pre-expanded 2 to 110 times by a heating medium such as heated air or steam to form expanded polyvinyl chloride resin particles. The steam that can be used may be saturated steam or superheated steam.

発泡時の加熱温度は、樹脂のガラス転移温度や融点、更には発泡剤の含有量によって適宜調整すべきであるが、90℃以上が好ましく、100℃以上がより好ましい。一方、発泡粒子間の発泡倍率バラつきの抑制や発泡粒子の収縮防止の観点から150℃以下が好ましく、130℃以下がより好ましい。 The heating temperature during foaming should be adjusted appropriately depending on the glass transition temperature and melting point of the resin, as well as the amount of foaming agent, but is preferably 90°C or higher, and more preferably 100°C or higher. On the other hand, from the viewpoint of suppressing the variation in the expansion ratio between the foamed beads and preventing the shrinkage of the foamed beads, it is preferably 150°C or lower, and more preferably 130°C or lower.

(塩化ビニル系樹脂発泡成形体及びその製造方法)
得られた塩化ビニル系樹脂発泡粒子は、従来公知の成形機を用い、例えば水蒸気によって成形(例えば型内成形)されて塩化ビニル系樹脂発泡成形体が作製される。使用される金型の形状により、複雑な形の型物成形体やブロック状の成形体を得ることができる。
(Polyvinyl chloride resin foam molded product and its manufacturing method)
The obtained polyvinyl chloride resin foamed particles are molded (e.g., molded in a mold) using a conventional molding machine, for example, with steam to produce a polyvinyl chloride resin foamed molded article. Depending on the shape of the mold used, a molded article with a complex shape or a block-like molded article can be obtained.

本発明の塩化ビニル系樹脂発泡粒子及びその塩化ビニル系樹脂発泡成形体は、平均セル径が好ましくは70~1000μm、より好ましくは90~800μm、さらに好ましくは100~600μmである。平均セル径が前述の範囲にあることによって、断熱性のより高い塩化ビニル系樹脂発泡成形体となる。平均セル径が70μm以上であると、発泡倍率の高倍化が容易となる傾向にあり、また、1000μm以下であると、熱伝導率が増加、即ち断熱性能が悪化するのを避けることができる。 The vinyl chloride resin foam particles and vinyl chloride resin foam molded products thereof of the present invention preferably have an average cell diameter of 70 to 1000 μm, more preferably 90 to 800 μm, and even more preferably 100 to 600 μm. By having an average cell diameter within the above range, a vinyl chloride resin foam molded product with higher thermal insulation properties is obtained. If the average cell diameter is 70 μm or more, it tends to be easier to increase the expansion ratio, and if it is 1000 μm or less, an increase in thermal conductivity, i.e., a deterioration in thermal insulation performance, can be avoided.

本発明の塩化ビニル系樹脂発泡粒子及びその塩化ビニル系樹脂発泡成形体は、独立気泡率が好ましくは70%以上、より好ましくは80%以上、更に好ましくは90%以上である。独立気泡率が前述の範囲にあることによって、成形時にも発泡粒子が2次発泡しやすく、発泡粒子の成形性が良くなり、得られる発泡成形体の表面性等が良化する等の効果を奏する。また、独立気泡率が前述の範囲にあることによって、発泡成形体の圧縮強度等の強度を高くできる傾向にある。 The vinyl chloride resin foamed beads and vinyl chloride resin foamed molded articles thereof of the present invention preferably have a closed cell ratio of 70% or more, more preferably 80% or more, and even more preferably 90% or more. When the closed cell ratio is within the above-mentioned range, the foamed beads are more likely to undergo secondary expansion during molding, improving the moldability of the foamed beads and improving the surface properties of the resulting foamed molded article. In addition, when the closed cell ratio is within the above-mentioned range, the strength of the foamed molded article, such as the compressive strength, tends to be increased.

(発泡成形体の用途)
本発明の発泡性塩化ビニル系樹脂粒子を用いて成形される発泡成形体は、高発泡倍率及び高独立気泡率であり、難燃性能に優れる。従って、難燃性や耐火性が求められる製品や部材の軽量化を図るのに好適である。例えば、建築用断熱材、天井材、金属サンドイッチパネルの芯材、食品容器箱、保冷箱、緩衝材、農水産箱、浴室用断熱材及び貯湯タンク断熱材のような各種用途に好適である。
(Applications of foamed molded products)
The foamed molded article formed using the expandable polyvinyl chloride resin particles of the present invention has a high expansion ratio and a high closed cell ratio, and is excellent in flame retardancy. Therefore, it is suitable for reducing the weight of products and components that require flame retardancy and fire resistance. For example, it is suitable for various applications such as building insulation materials, ceiling materials, core materials for metal sandwich panels, food container boxes, cold storage boxes, cushioning materials, agricultural and fishery boxes, bathroom insulation materials, and hot water tank insulation materials.

本発明の一実施形態は前述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の一実施形態の技術的範囲に含まれる。 One embodiment of the present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. An embodiment obtained by appropriately combining the technical means disclosed in different embodiments is also included in the technical scope of one embodiment of the present invention.

以下、実施例及び比較例に基づいて本発明の一実施形態を具体的に説明するが、本発明はこれらに限定されるものではない。 Below, an embodiment of the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited to these.

なお、以下の実施例及び比較例における測定方法及び評価方法は、以下のとおりである。 The measurement and evaluation methods used in the following examples and comparative examples are as follows:

<発泡性塩化ビニル系樹脂粒子に含まれる発泡剤量(揮発分)の測定>
発泡性塩化ビニル系樹脂粒子の重量W(g)を測定し、150℃のオーブンで30分加熱し、その後、デシケータ内にて室温で30分冷却し、再度重量W(g)を測定した。この加熱前後の重量差(W-W)を発泡性塩化ビニル系樹脂粒子中の発泡剤含有量とした。本明細書中では、この発泡剤含有量を揮発分と称することがある。前述の揮発分は以下の式で算出した。
揮発分(重量%)=(W-W)/W×100
後述する加熱空気雰囲気下での発泡評価時(発泡評価実施の同日)に、上述の条件で測定し上記式に基づき算出した値(揮発分)を、発泡時揮発分(重量%)と称する。
<Measurement of the amount of blowing agent (volatile matter) contained in expandable polyvinyl chloride resin particles>
The weight W 1 (g) of the expandable polyvinyl chloride resin particles was measured, heated in an oven at 150° C. for 30 minutes, then cooled at room temperature in a desiccator for 30 minutes, and the weight W 2 (g) was measured again. The weight difference (W 1 -W 2 ) before and after heating was taken as the foaming agent content in the expandable polyvinyl chloride resin particles. In this specification, this foaming agent content may be referred to as the volatile content. The volatile content was calculated using the following formula:
Volatile content (wt%)=(W 1 −W 2 )/W 1 ×100
The value (volatile content) measured under the above conditions during foaming evaluation in a heated air atmosphere (on the same day as foaming evaluation) and calculated based on the above formula is referred to as the volatile content during foaming (wt %).

<発泡性塩化ビニル系樹脂粒子の粒重量の測定>
0.01mgまで測定できる電子天秤を用いて、ランダムにサンプリングした発泡性塩化ビニル系樹脂粒子100粒の重量を測定し、以下の式で粒重量を算出した。
粒重量(mg)=[粒子100粒の重量(mg)]/100
<Measurement of particle weight of expandable polyvinyl chloride resin particles>
Using an electronic balance capable of measuring to the nearest 0.01 mg, the weight of 100 randomly sampled expandable polyvinyl chloride resin particles was measured, and the particle weight was calculated using the following formula.
Particle weight (mg) = [Weight of 100 particles (mg)]/100

<発泡性塩化ビニル系樹脂粒子の真密度測定>
重量W(kg)の発泡性塩化ビニル系樹脂粒子を、エタノールの入ったメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m)を求め、以下の式で算出した。
発泡性塩化ビニル系樹脂粒子の真密度(kg/m)=(W/V)
<Measurement of true density of expandable polyvinyl chloride resin particles>
The expandable polyvinyl chloride resin particles having a weight W (kg) were submerged in a measuring cylinder containing ethanol, and the volume V (m 3 ) was obtained from the rise in the liquid level of the measuring cylinder (submersion method) and calculated using the following formula.
True density of expandable polyvinyl chloride resin particles (kg/m 3 )=(W/V)

<塩化ビニル系樹脂ペレット(基材樹脂)の真密度測定>
塩化ビニル系樹脂と加工助剤、安定剤、滑剤等の副原料をブレンドし均一な配合物を得た後、押出機にて溶融混練し、得られた塩化ビニル系樹脂ペレット重量W(kg)を、エタノールの入ったメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m)を求め、以下の式で算出した。
塩化ビニル系樹脂ペレットの真密度(kg/m)=(W/V)
前述の方法に基づき、実施例および比較例で調製された塩化ビニル系樹脂ペレットの真密度は1430kg/mであり、この値を本実施例および比較例で用いる基材樹脂の密度とした。
<Measurement of true density of polyvinyl chloride resin pellets (base resin)>
After blending vinyl chloride resin with auxiliary materials such as processing aids, stabilizers, and lubricants to obtain a uniform mixture, the mixture was melt-kneaded in an extruder, and the weight W (kg) of the obtained vinyl chloride resin pellets was submerged in a measuring cylinder containing ethanol, and the volume V ( m3 ) was calculated from the rise in the liquid level in the measuring cylinder (submersion method) and calculated using the following formula.
True density of polyvinyl chloride resin pellets (kg/m 3 )=(W/V)
The true density of the vinyl chloride resin pellets prepared in the Examples and Comparative Examples based on the above-mentioned method was 1,430 kg/ m3 , and this value was taken as the density of the base resin used in the Examples and Comparative Examples.

<塩化ビニル系樹脂発泡粒子の発泡倍率測定>
重量W(kg)の塩化ビニル系樹脂発泡粒子を、エタノールの入ったメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から体積V(m)を求め、以下の式で算出した。前述の<塩化ビニル系樹脂ペレット(基材樹脂)の真密度測定>から、基材樹脂密度1430kg/mを用いた。
塩化ビニル系樹脂発泡粒子の発泡倍率(倍)=1430/(W/V)
<Measurement of expansion ratio of polyvinyl chloride resin expanded beads>
A polyvinyl chloride resin foamed particle having a weight W (kg) was submerged in a measuring cylinder containing ethanol, and the volume V ( m3 ) was obtained from the rise in the liquid level of the measuring cylinder (submersion method), and calculated using the following formula: The density of the base resin, 1430 kg/ m3, was used from the above-mentioned <Measurement of true density of polyvinyl chloride resin pellets (base resin)>.
Expansion ratio of polyvinyl chloride resin foam particles (times) = 1430 / (W / V)

<塩化ビニル系樹脂発泡粒子のかさ倍率測定>
塩化ビニル系樹脂発泡粒子を、内容積3250ccの容器に充填し、その際の重量W(g)を測定し、以下の式で算出した。基材樹脂密度は、前述の<塩化ビニル系樹脂ペレット(基材樹脂)の真密度測定>から、1.43g/ccを用いた。
塩化ビニル系樹脂発泡粒子のかさ倍率(倍)=1.43/(W/3250)
<Measurement of bulk magnification of polyvinyl chloride resin foam beads>
The polyvinyl chloride resin foamed particles were filled into a container having an internal volume of 3250 cc, and the weight W (g) was measured and calculated using the following formula: The density of the base resin was 1.43 g/cc, as determined in the above-mentioned <Measurement of true density of polyvinyl chloride resin pellets (base resin)>.
Bulk magnification of polyvinyl chloride resin foamed particles (times) = 1.43 / (W / 3250)

<加熱空気雰囲気下での発泡評価>
発泡性塩化ビニル系樹脂粒子を130℃に加熱したオーブン(アズワン株式会社製、強制対流定温乾燥器SOFW-600)に投入し、温度130℃の加熱空気雰囲気下で加熱時間を変更して発泡させ、各加熱時間毎の発泡粒子を得た。加熱時間はオーブン投入後30秒、60秒、90秒の様に30秒間隔で変更し、加熱過多による発泡粒子の収縮(発泡粒子倍率の低下)、もしくは発泡粒子内部に大きな空洞ができるような不均一な発泡が確認されるまで加熱した。加熱時間の最大は30分とした。得られた加熱時間毎の発泡粒子の発泡倍率を前述の<塩化ビニル系樹脂発泡粒子の発泡倍率測定>に基づき測定し、これらのうち内部に大きな空洞が発生していない状態で、最も高くなった倍率を塩化ビニル系樹脂発泡粒子の最大発泡倍率とした。また、前述の<発泡性塩化ビニル系樹脂粒子に含まれる発泡剤量(揮発分)の測定>の欄に記載した通り、加熱空気雰囲気下での発泡評価実施と同日に揮発分を測定し、発泡時揮発分(重量%)とした。
ここで測定された値を用いて、発泡時揮発分(重量%)に対する最高発泡倍率の比(最高発泡倍率/発泡時揮発分(重量%))を最大発泡効率として求めた。
<Evaluation of foaming under heated air atmosphere>
The expandable polyvinyl chloride resin particles were placed in an oven (forced convection constant temperature dryer SOFW-600, manufactured by AS ONE CORPORATION) heated to 130°C, and expanded under a heated air atmosphere at a temperature of 130°C while changing the heating time, to obtain expanded beads for each heating time. The heating time was changed at 30-second intervals, such as 30 seconds, 60 seconds, and 90 seconds after placing in the oven, and the particles were heated until shrinkage of the expanded beads due to overheating (decrease in the expanded bead magnification) or non-uniform expansion such as the formation of large cavities inside the expanded beads was confirmed. The maximum heating time was 30 minutes. The expansion ratio of the expanded beads obtained for each heating time was measured based on the above-mentioned <Expansion ratio measurement of polyvinyl chloride resin expanded beads>, and the highest expansion ratio in a state where no large cavities were generated inside was determined as the maximum expansion ratio of the polyvinyl chloride resin expanded beads. As described above in the section <Measurement of the amount of blowing agent (volatile content) contained in expandable polyvinyl chloride resin particles>, the volatile content was measured on the same day as the foaming evaluation in a heated air atmosphere, and this was recorded as the volatile content during foaming (% by weight).
Using the values measured here, the ratio of the maximum expansion ratio to the volatile matter during expansion (wt %) (maximum expansion ratio/volatile matter during expansion (wt %)) was calculated as the maximum expansion efficiency.

<水蒸気雰囲気下での発泡評価>
発泡性塩化ビニル系樹脂粒子を予備発泡機(大開工業株式会社製)に投入し、0.16MPaの水蒸気を予備発泡機に導入し、予備発泡機内部の温度90~110℃の条件で、発泡させ発泡粒子(塩化ビニル系樹脂発泡粒子)を得た。発泡性塩化ビニル系樹脂粒子の予備発泡機への投入量は、1000gとした。得られた発泡粒子の発泡倍率を前述の<塩化ビニル系樹脂発泡粒子のかさ倍率測定>に基づき測定した。
<Evaluation of foaming under water vapor atmosphere>
The expandable polyvinyl chloride resin particles were put into a pre-expansion machine (manufactured by Daikai Kogyo Co., Ltd.), 0.16 MPa water vapor was introduced into the pre-expansion machine, and the particles were expanded at a temperature of 90 to 110° C. inside the pre-expansion machine to obtain expanded particles (expanded polyvinyl chloride resin particles). The amount of the expandable polyvinyl chloride resin particles put into the pre-expansion machine was 1000 g. The expansion ratio of the obtained expanded particles was measured based on the above-mentioned <Bulk expansion ratio measurement of expanded polyvinyl chloride resin particles>.

<塩化ビニル系樹脂発泡粒子の成形評価>
得られた発泡粒子を、発泡スチロール用成形機に取り付けた縦400mm×横400mm×厚み25mmの型内成形用金型内に充填して、0.12MPaの水蒸気を金型内に30秒導入して型内発泡させた後、金型に水を20秒間噴霧して冷却した。塩化ビニル系樹脂発泡成形体が金型を押す圧力が0.05MPa(ゲージ圧力)となるまで塩化ビニル系樹脂発泡成形体を金型内に保持した後に、塩化ビニル系樹脂発泡成形体を取り出して、直方体状の塩化ビニル系樹脂発泡成形体を得た。
<Molding evaluation of polyvinyl chloride resin foam beads>
The obtained foamed beads were filled into a mold for in-mold molding having a length of 400 mm, a width of 400 mm, and a thickness of 25 mm attached to a polystyrene foam molding machine, and 0.12 MPa water vapor was introduced into the mold for 30 seconds to cause in-mold foaming, and then water was sprayed into the mold for 20 seconds to cool. The vinyl chloride resin foam molded body was held in the mold until the pressure of the vinyl chloride resin foam molded body pressing the mold reached 0.05 MPa (gauge pressure), and then the vinyl chloride resin foam molded body was taken out to obtain a rectangular parallelepiped vinyl chloride resin foam molded body.

<塩化ビニル系樹脂発泡成形体の倍率測定>
発泡成形体の縦寸法X(mm)、横寸法Y(mm)、及び厚み寸法Z(mm)をノギスで計測し、発泡成形体の重量W(g)を電子天秤にて測定し、下記式から発泡成形体の倍率を求めた。前述の<塩化ビニル系樹脂ペレット(基材樹脂)の真密度測定>から、基材樹脂密度1430kg/mを用いた。
発泡成形体の倍率(倍) = 1430/(W /(X×Y×Z)×10
<Measurement of magnification of polyvinyl chloride resin foam molded body>
The longitudinal dimension X (mm), lateral dimension Y (mm), and thickness dimension Z (mm) of the foamed molded article were measured with a vernier caliper, and the weight W (g) of the foamed molded article was measured with an electronic balance, and the magnification of the foamed molded article was calculated from the following formula: The density of the base resin, 1430 kg/ m3, was used from the above-mentioned <Measurement of true density of vinyl chloride resin pellets (base resin)>.
Magnification of foamed molded article (times) = 1430/(W/(X x Y x Z) x 106 )

以下に、実施例及び比較例で用いた原材料を示す。
(塩化ビニル系樹脂)
(A-1)塩素化塩化ビニル樹脂[(株)カネカ製、H716S、平均重合度600、塩素含有量67.6重量%]
(可塑剤)
(B-1)フタル酸ビス(2-エチルヘキシル)(DOP)(ジェイ・プラス製)
(B-2)トリメリット酸トリ(2-エチルヘキシル)(TOTM)(ジェイ・プラス製)
(B-3)エポキシ化大豆油(ADEKA製、商品名:O-130P)
(B-4)トリフェニルホスフェート(TPP)(大八化学工業製)
(発泡剤)
(C-1)ノルマルペンタン[富士フィルム和光純薬(株)製]
(C-2)アセトン[富士フィルム和光純薬(株)製]
The raw materials used in the examples and comparative examples are shown below.
(Vinyl chloride resin)
(A-1) Chlorinated polyvinyl chloride resin [Kaneka Corporation, H716S, average degree of polymerization 600, chlorine content 67.6% by weight]
(Plasticizer)
(B-1) Bis(2-ethylhexyl) phthalate (DOP) (manufactured by J-Plus)
(B-2) Tri(2-ethylhexyl) trimellitate (TOTM) (manufactured by J-Plus)
(B-3) Epoxidized soybean oil (manufactured by ADEKA, product name: O-130P)
(B-4) Triphenyl phosphate (TPP) (manufactured by Daihachi Chemical Industry Co., Ltd.)
(Foaming Agent)
(C-1) Normal pentane [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]
(C-2) Acetone [manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.]

(実施例1)
[発泡性塩化ビニル系樹脂粒子の作製]
塩素化塩化ビニル樹脂(A-1)100重量部に対し、可塑剤(B-1)を2重量部、更にスチレン-アクリロニトリル共重合体(Galata製Blendex869)13重量部、ブチル錫メルカプト系安定剤5重量部、滑剤(エステルワックス、ポリエチレンワックス)3重量部、塩素含有量35重量%の塩素化ポリエチレン5重量部を加え、この配合物をハンドブレンドにてブレンドし均一な配合物を得た。
Example 1
[Preparation of expandable polyvinyl chloride resin particles]
To 100 parts by weight of chlorinated polyvinyl chloride resin (A-1), 2 parts by weight of plasticizer (B-1), 13 parts by weight of styrene-acrylonitrile copolymer (Blendex 869 manufactured by Galata), 5 parts by weight of butyltin mercapto stabilizer, 3 parts by weight of lubricant (ester wax, polyethylene wax), and 5 parts by weight of chlorinated polyethylene having a chlorine content of 35% by weight were added, and the mixture was hand-blended to obtain a uniform mixture.

このブレンド配合物を、8インチのロールにより195℃で5分間混練し、得たシート状の組成物をカッターにて裁断し、粒重量6mgの塩化ビニル系樹脂粒子を得た。
[発泡性塩化ビニル系樹脂粒子の作製]
得られた塩化ビニル系樹脂粒子100重量部に対して、発泡剤(C-1)100重量部を容積100ccの耐圧容器に入れ密封した後、オイルバスにて120℃の条件で3時間加熱し、耐圧容器を冷却し、耐圧容器から発泡性塩化ビニル系樹脂粒子を取出した。発泡性塩化ビニル粒子の発泡剤含有量は9.1重量%であった。
[塩化ビニル系樹脂発泡粒子の作製]
得られた発泡性塩化ビニル系樹脂粒子を4℃で10日保管した後、上述の<加熱空気雰囲気下での発泡評価>にて発泡評価を実施した。結果を表1に示す。
This blend was kneaded with an 8-inch roll at 195° C. for 5 minutes, and the resulting sheet-like composition was cut with a cutter to obtain vinyl chloride resin particles with a particle weight of 6 mg.
[Preparation of expandable polyvinyl chloride resin particles]
100 parts by weight of the obtained vinyl chloride resin particles and 100 parts by weight of the foaming agent (C-1) were placed in a 100 cc pressure vessel and sealed, and then heated in an oil bath at 120°C for 3 hours, the pressure vessel was cooled, and the expandable vinyl chloride resin particles were taken out from the pressure vessel. The foaming agent content of the expandable vinyl chloride particles was 9.1% by weight.
[Preparation of polyvinyl chloride resin foam particles]
The resulting expandable polyvinyl chloride resin particles were stored at 4° C. for 10 days, and then the foaming evaluation was carried out according to the above-mentioned <Foaming evaluation in a heated air atmosphere>. The results are shown in Table 1.

(実施例2~6、比較例1~3)
表1記載の配合に変更した以外は、実施例1と同様の操作を行った。結果を表1に示す。
(Examples 2 to 6, Comparative Examples 1 to 3)
The same procedure as in Example 1 was carried out, except that the formulation was changed to that shown in Table 1. The results are shown in Table 1.

Figure 0007565181000001
Figure 0007565181000001

(実施例7)
塩素化塩化ビニル樹脂(A-1)100重量部に対し、可塑剤(B-1)を5重量部、更にスチレン-アクリロニトリル共重合体(Galata製Blendex869)13重量部、ブチル錫メルカプト系安定剤5重量部、滑剤(エステルワックス、ポリエチレンワックス)3重量部、塩素含有量35重量%の塩素化ポリエチレン5重量部を加え、この配合物をブレンドし均一な配合物を得た後、同方向噛み合い二軸押出機にて溶融混練し、上記配合比率のペレットを得た。得られたペレットを、φ40mm同方向噛み合い二軸押出機に40kg/hrのフィード量で溶融混練した。
φ40mm同方向噛み合い二軸押出機の途中から、前記ペレット100重量部に対して、ノルマルペンタン(C-1)8.7重量部とアセトン(C-2)3.8重量部を圧入した。その後、二軸押出機先端に取り付けられた継続管、単軸押出機、ギアポンプ、ダイバータバルブを経て、ダイバータバルブの下流に取り付けられた直径1.0mm、ランド長3.5mmの小孔を30個有する220℃に設定したダイから、吐出量45kg/hrで、温度65℃及び1.3MPaの加圧循環水中に押出した。この際の押出機先端圧力は15MPaであり、溶融物の樹脂温度(すなわち、押出機先端の樹脂溶融物の樹脂温度)は158℃であった。押出された溶融樹脂は、ダイに接触する回転カッターを用いて、切断・小粒化され、遠心脱水機に移送されて、粒重量5.7mgの発泡性塩化ビニル系樹脂粒子を得た。
得られた発泡性塩化ビニル系樹脂粒子を、前述の<発泡性塩化ビニル系樹脂粒子の真密度測定>にて真密度を測定した結果、1350kg/mであった。
(Example 7)
To 100 parts by weight of chlorinated vinyl chloride resin (A-1), 5 parts by weight of plasticizer (B-1), 13 parts by weight of styrene-acrylonitrile copolymer (Blendex 869 manufactured by Galata), 5 parts by weight of butyltin mercapto stabilizer, 3 parts by weight of lubricant (ester wax, polyethylene wax), and 5 parts by weight of chlorinated polyethylene with a chlorine content of 35% by weight were added, and the resulting mixture was blended to obtain a uniform mixture, which was then melt-kneaded in a co-rotating intermeshing twin screw extruder to obtain pellets with the above-mentioned blending ratio. The resulting pellets were melt-kneaded in a φ40 mm co-rotating intermeshing twin screw extruder at a feed rate of 40 kg/hr.
From the middle of the φ40 mm co-rotating intermeshing twin screw extruder, 8.7 parts by weight of normal pentane (C-1) and 3.8 parts by weight of acetone (C-2) were pressed into 100 parts by weight of the pellets. Thereafter, through a continuation pipe attached to the tip of the twin screw extruder, a single screw extruder, a gear pump, and a diverter valve, the pellets were extruded into pressurized circulating water at a temperature of 65° C. and 1.3 MPa at a discharge rate of 45 kg/hr from a die having 30 small holes with a diameter of 1.0 mm and a land length of 3.5 mm attached downstream of the diverter valve and set at 220° C. The extruder tip pressure at this time was 15 MPa, and the resin temperature of the melt (i.e., the resin temperature of the resin melt at the tip of the extruder) was 158° C. The extruded molten resin was cut and pelletized using a rotary cutter in contact with the die, and transferred to a centrifugal dehydrator to obtain foamable polyvinyl chloride resin particles with a particle weight of 5.7 mg.
The true density of the obtained expandable polyvinyl chloride resin particles was measured by the above-mentioned <Measurement of true density of expandable polyvinyl chloride resin particles>, and it was found to be 1350 kg/ m3 .

[塩化ビニル系樹脂発泡粒子の作製]
得られた発泡性塩化ビニル系樹脂粒子を23℃で1日保管した後、上述の<加熱空気雰囲気下での発泡評価>にて発泡評価を実施した。結果を表1に示す。さらに、得られた発泡性塩化ビニル系樹脂粒子を23℃で19日間保管した後、前述の<水蒸気雰囲気下での発泡評価>の方法にて成形用発泡粒子を得た。得られた発泡粒子のかさ倍率は31倍であった。
[Preparation of polyvinyl chloride resin foam particles]
The obtained expandable polyvinyl chloride resin particles were stored at 23°C for 1 day, and then the foaming evaluation was carried out by the above-mentioned <Foaming evaluation in a heated air atmosphere>. The results are shown in Table 1. Furthermore, the obtained expandable polyvinyl chloride resin particles were stored at 23°C for 19 days, and then the above-mentioned <Foaming evaluation in a water vapor atmosphere> method was used to obtain foamed particles for molding. The bulk ratio of the obtained expanded particles was 31 times.

[塩化ビニル系樹脂発泡成形体の作製]
前述の成形用発泡粒子を30℃雰囲気下で24時間保管した後に、前述の<塩化ビニル系樹脂の成形評価>にて発泡成形体を得た。得られた発泡成形体は発泡倍率が29倍であった。
[Preparation of polyvinyl chloride resin foam molded body]
The foamed beads for molding were stored in an atmosphere of 30° C. for 24 hours, and then a foamed molded product was obtained according to the above-mentioned <Molding evaluation of vinyl chloride resin>. The foamed molded product had an expansion ratio of 29 times.

Claims (8)

塩化ビニル系樹脂と、可塑剤と、発泡剤とを含み、
前記塩化ビニル系樹脂100重量部に対する、前記可塑剤の含有量は1重量部以上10重量部未満であ
前記塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を含み、
前記塩素化塩化ビニル系樹脂の塩素含有量が60重量%以上75重量%以下である、
発泡性塩化ビニル系樹脂粒子。
The composition includes a vinyl chloride resin, a plasticizer, and a foaming agent,
The content of the plasticizer is 1 part by weight or more and less than 10 parts by weight based on 100 parts by weight of the vinyl chloride resin,
The vinyl chloride resin includes a chlorinated vinyl chloride resin,
The chlorine content of the chlorinated vinyl chloride resin is 60% by weight or more and 75% by weight or less.
Expandable polyvinyl chloride resin particles.
塩化ビニル系樹脂と、可塑剤と、発泡剤とを含み、
前記塩化ビニル系樹脂100重量部に対する、前記可塑剤の含有量は1重量部以上10重量部未満であり
前記塩化ビニル系樹脂は、塩素化塩化ビニル系樹脂を含み、
前記塩素化塩化ビニル系樹脂の平均重合度が400以上1500以下である、
発泡性塩化ビニル系樹脂粒子。
The composition includes a vinyl chloride resin, a plasticizer, and a foaming agent,
The content of the plasticizer is 1 part by weight or more and less than 10 parts by weight based on 100 parts by weight of the vinyl chloride resin,
The vinyl chloride resin includes a chlorinated vinyl chloride resin,
The average polymerization degree of the chlorinated vinyl chloride resin is 400 or more and 1500 or less.
Expandable polyvinyl chloride resin particles.
前記可塑剤がフタル酸系可塑剤、リン酸系可塑剤、トリメリット酸系可塑剤、エポキシ系可塑剤からなる群から選択される少なくとも1種を含む、請求項1または2に記載の発泡性塩化ビニル系樹脂粒子。 3. The expandable polyvinyl chloride resin particles according to claim 1, wherein the plasticizer comprises at least one selected from the group consisting of a phthalic acid plasticizer, a phosphoric acid plasticizer, a trimellitic acid plasticizer, and an epoxy plasticizer. 物理発泡剤を含有する、請求項1~のいずれか一項に記載の発泡性塩化ビニル系樹脂粒子。 The expandable polyvinyl chloride resin particles according to any one of claims 1 to 3 , which contain a physical foaming agent. 前記物理発泡剤が炭素数4~6の飽和炭化水素を含む、請求項に記載の発泡性塩化ビニル系樹脂粒子。 5. The expandable polyvinyl chloride resin particles according to claim 4 , wherein the physical foaming agent contains a saturated hydrocarbon having 4 to 6 carbon atoms. 前記物理発泡剤がケトンを含む、請求項またはに記載の発泡性塩化ビニル系樹脂粒子。 The expandable polyvinyl chloride resin particles according to claim 4 or 5 , wherein the physical foaming agent comprises a ketone. 請求項1~のいずれか一項に記載の発泡性塩化ビニル系樹脂粒子を予備発泡してなる、塩化ビニル系樹脂発泡粒子。 7. A polyvinyl chloride resin foamed particle obtained by pre-expanding the expandable polyvinyl chloride resin particle according to claim 1. 請求項に記載の塩化ビニル系樹脂発泡粒子を発泡成形してなる、塩化ビニル系樹脂発泡成形体。 A polyvinyl chloride resin foamed article obtained by foam molding the polyvinyl chloride resin foamed particles according to claim 7 .
JP2020162884A 2020-09-29 2020-09-29 Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same Active JP7565181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020162884A JP7565181B2 (en) 2020-09-29 2020-09-29 Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020162884A JP7565181B2 (en) 2020-09-29 2020-09-29 Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same

Publications (2)

Publication Number Publication Date
JP2022055452A JP2022055452A (en) 2022-04-08
JP7565181B2 true JP7565181B2 (en) 2024-10-10

Family

ID=80998477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020162884A Active JP7565181B2 (en) 2020-09-29 2020-09-29 Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same

Country Status (1)

Country Link
JP (1) JP7565181B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096878A (en) 2007-10-17 2009-05-07 Nippon Zeon Co Ltd Expandable vinyl chloride-based resin composition
CN102358794A (en) 2011-08-31 2012-02-22 佛山佛塑科技集团股份有限公司 Cross-linked polyvinyl chloride (PVC) foaming material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096878A (en) 2007-10-17 2009-05-07 Nippon Zeon Co Ltd Expandable vinyl chloride-based resin composition
CN102358794A (en) 2011-08-31 2012-02-22 佛山佛塑科技集团股份有限公司 Cross-linked polyvinyl chloride (PVC) foaming material and preparation method thereof

Also Published As

Publication number Publication date
JP2022055452A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP2009138146A (en) Foamable resin particle, its producing method, and foamed molding
JP2024015417A (en) Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP6263987B2 (en) Method for producing expandable polystyrene resin particles
EA036425B1 (en) Combination of a mineral component with carbon black and its use for decreasing the thermal conductivity of vinyl aromatic polymer
JP2010229205A (en) Expandable thermoplastic resin particle, process for producing the same, prefoamed particle and foam molded product
JP3732418B2 (en) Expandable styrene resin particles
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP2024015416A (en) Foamable chlorinated vinyl chloride-based resin particle, foamed particle thereof, and chlorinated vinyl chloride-based resin foam molded body using the same
JP7565181B2 (en) Expandable polyvinyl chloride resin particles, expanded particles thereof, and polyvinyl chloride resin foam molded article using the same
JP2007246566A (en) Foamable thermoplastic resin particle and foamed molded article obtained from the same
KR100902786B1 (en) Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same
JP6349697B2 (en) Method for producing expandable polystyrene resin particles
JP7576422B2 (en) Expandable vinyl chloride resin particles, pre-expanded particles, foamed molded product, and method for producing expandable vinyl chloride resin particles
JP7572825B2 (en) Method for producing expandable polyvinyl chloride resin particles
JP7482740B2 (en) Expandable vinyl chloride resin particles, expanded particles thereof, and foamed molded article using the same
JP2022183835A (en) Expandable vinyl chloride resin particle for extrusion molding
JP5913990B2 (en) Method for producing pre-expanded particles and method for producing foam molded article
US20230024626A1 (en) Foamable chlorinated vinyl chloride-based resin particles, foamed particles thereof, chlorinated vinyl chloride-based resin foam molded article, and method for producing foamable chlorinated vinyl chloride resin particles
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP6512580B2 (en) Method for producing polystyrene resin foam board
JP2024128849A (en) Expandable chlorinated polyvinyl chloride resin particles and expanded chlorinated polyvinyl chloride resin particles
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
EP2742091B1 (en) The use of aluminium dibromosalicylate, a process for preparing non-flammable organic plastics, and a flame retardant composition for its preparation
JP7194535B2 (en) Expandable polystyrene resin particles, polystyrene resin pre-expanded particles, and polystyrene resin foam molding
JP2019218469A (en) Method for producing expandable styrenic resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240930

R150 Certificate of patent or registration of utility model

Ref document number: 7565181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150