JP7561207B2 - Power conversion device and method for controlling power conversion device - Google Patents
Power conversion device and method for controlling power conversion device Download PDFInfo
- Publication number
- JP7561207B2 JP7561207B2 JP2022561300A JP2022561300A JP7561207B2 JP 7561207 B2 JP7561207 B2 JP 7561207B2 JP 2022561300 A JP2022561300 A JP 2022561300A JP 2022561300 A JP2022561300 A JP 2022561300A JP 7561207 B2 JP7561207 B2 JP 7561207B2
- Authority
- JP
- Japan
- Prior art keywords
- current
- sense
- igbt
- main
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 46
- 238000004364 calculation method Methods 0.000 claims description 54
- 238000005259 measurement Methods 0.000 claims description 30
- 239000004065 semiconductor Substances 0.000 claims description 28
- 230000002093 peripheral effect Effects 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 14
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012887 quadratic function Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7393—Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
- H01L29/7395—Vertical transistors, e.g. vertical IGBT
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0826—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0828—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K2017/0806—Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0027—Measuring means of, e.g. currents through or voltages across the switch
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
Description
本発明は、電力変換装置の構成とその制御に係り、特に、電流センス素子を内蔵するIGBTパワーモジュールを備えた電力変換装置に適用して有効な技術に関する。The present invention relates to the configuration and control of a power conversion device, and in particular to technology that is effective when applied to a power conversion device equipped with an IGBT power module incorporating a current sensing element.
車載インバーターでは、Si-IGBT(Insulated Gate Bipolar Transistor)、SiC-MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などの高耐圧半導体素子を用いたパワーモジュールを電流駆動し、モーター制御が行われる。自動車の走行速度を安定して制御するためには、モーターを駆動するインバーターの出力電流値を正確に検出する必要がある。 In vehicle inverters, motor control is performed by current driving a power module that uses high-voltage semiconductor elements such as Si-IGBTs (Insulated Gate Bipolar Transistors) and SiC-MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). In order to stably control the vehicle's driving speed, it is necessary to accurately detect the output current value of the inverter that drives the motor.
インバーター電流制御は、出力電流値を、電流センサを用いて検出し、フィードバック制御が行われる。インバーターの電流を検出する手段として、バスバーにホールセンサなどを取り付け、出力電流による磁場を測定することにより、電流測定する方法などがある。Inverter current control uses a current sensor to detect the output current value and performs feedback control. One method of detecting inverter current is to attach a Hall sensor to the busbar and measure the magnetic field caused by the output current.
また、他の方法として、インバーターの電流制御を行うスイッチング素子であるSi-IGBTと同一半導体チップ内にゲート端子とコレクタ端子を共通としたセンス用IGBT素子を設け、このセンス用IGBT素子のエミッタ電流を測定することにより、インバーターの出力電流を検出する方法がある。この方法ではホールセンサなどの部品が不要になるため、インバーターの小型化、低コスト化に有効である。 Another method is to install a sense IGBT element with a common gate terminal and collector terminal on the same semiconductor chip as the Si-IGBT, which is the switching element that controls the inverter's current, and detect the output current of the inverter by measuring the emitter current of this sense IGBT element. This method does not require components such as hall sensors, and is therefore effective in making inverters smaller and less expensive.
本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には、IGBTの電流検出を行う方法として、主電流を流す主IGBTと、前記主IGBTとコレクタ端子とゲート端子を共通としたセンスIGBTと、温度測定手段とを同一半導体基板に備え、前記センスIGBTのエミッタ電流値と前記温度測定手段による温度測定値から主電流を推定する方法が開示されている。 As background technology in this technical field, there is, for example, technology such as Patent Document 1. Patent Document 1 discloses a method for detecting current in an IGBT, in which a main IGBT through which a main current flows, a sense IGBT having a collector terminal and a gate terminal in common with the main IGBT, and a temperature measuring means are provided on the same semiconductor substrate, and the main current is estimated from the emitter current value of the sense IGBT and the temperature measured by the temperature measuring means.
上記特許文献1では、主電流を流す主IGBTとセンス電流を流すセンスIGBTは、それぞれのエミッタ電流が比例するとして、センス電流から主電流を推定する。In the above-mentioned Patent Document 1, the emitter currents of the main IGBT that passes the main current and the sense IGBT that passes the sense current are assumed to be proportional to each other, and the main current is estimated from the sense current.
しかし、主電流が数100Aであるのに対し、センス電流は数mA程度である。主電流とセンス電流の比は、主IGBTとセンスIGBTの面積に関係する。IGBTは、ゲート端子及びエミッタ端子をSi表面に複数個配列し、電流はSi裏面のコレクタから表面のエミッタへ縦方向に流れる。このとき、配列の周辺にあるエミッタに流れる電流はチップの周辺へ広がる。主IGBTと比較しサイズが小さいセンスIGBTでは、電流成分の内、素子周辺部の電流成分の割合が大きく、電流周辺成分が相対的に大きくなる低電流領域と電流内側成分が相対的に大きい領域では、主IGBTとセンスIGBTのエミッタ電流の比が変化する。 However, while the main current is several hundred amps, the sense current is only a few milliamps. The ratio of main current to sense current is related to the area of the main IGBT and the sense IGBT. The IGBT has multiple gate terminals and emitter terminals arranged on the silicon surface, and current flows vertically from the collector on the back surface of the silicon to the emitter on the front surface. At this time, the current flowing through the emitters on the periphery of the arrangement spreads to the periphery of the chip. In the sense IGBT, which is smaller in size than the main IGBT, a large proportion of the current components come from the periphery of the element, and the ratio of the emitter current of the main IGBT to that of the sense IGBT changes in the low current region where the peripheral component of the current is relatively large, and in the region where the inner component of the current is relatively large.
また、IGBTをパワーモジュールに実装した状態では、素子の特性に加え、配線抵抗による電圧降下の影響を考慮する必要がある。主IGBTとセンスIGBTのエミッタ端子の配線は異なるため、配線抵抗の影響が大きい高電流領域においても、主電流とセンス電流のセンス比が変化する。 When an IGBT is mounted in a power module, the effect of voltage drop due to wiring resistance must be considered in addition to the element characteristics. Because the emitter terminal wiring of the main IGBT and sense IGBT are different, the sense ratio of the main current to the sense current changes even in the high current region where the effect of wiring resistance is large.
従って、主電流とセンス電流の比は一定ではなく、主電流の大きさにより変化する。主電流とセンス電流の比が一定と仮定してセンス電流から主電流を計算すると、実際の電流値との誤差が大きくなり、インバーター電流制御が不正確となり、自動車の加速制御が安定しないという課題があった。Therefore, the ratio of the main current to the sense current is not constant, but changes depending on the magnitude of the main current. If the main current is calculated from the sense current on the assumption that the ratio of the main current to the sense current is constant, the error from the actual current value will be large, making inverter current control inaccurate and resulting in unstable acceleration control of the vehicle.
そこで、本発明の目的は、同一半導体チップ内に主IGBTと電流センス用IGBTを備えたIGBTパワーモジュールを搭載する電力変換装置において、電力変換装置の全動作領域で、センス電流を用いて主IGBTに流れるメイン電流を精度よく推定可能な高性能かつ高信頼な電力変換装置及びその制御方法を提供することにある。 Therefore, the object of the present invention is to provide a high-performance, highly reliable power conversion device and a control method thereof that can accurately estimate the main current flowing through the main IGBT using a sense current in the entire operating range of the power conversion device, in a power conversion device equipped with an IGBT power module having a main IGBT and a current sensing IGBT on the same semiconductor chip.
上記課題を解決するために、本発明は、メイン電流を流す第1のIGBTと、前記第1のIGBTと同一半導体基板上に配置され、センス電流を流す第2のIGBTと、前記センス電流から前記メイン電流を算出する計測装置と、を備え、前記計測装置は、前記センス電流の電流値に応じて前記メイン電流の算出方法を選択する電力変換装置であって、前記計測装置は、前記センス電流および前記半導体基板の温度を計測するセンス部と、前記センス部で計測した前記センス電流および前記半導体基板の温度情報に基づき前記メイン電流を算出する主電流算出部と、前記センス電流の複数の電流範囲情報を保存する第1の記憶装置と、前記センス電流から前記メイン電流を算出する複数の算出方法を保存する第2の記憶装置と、を有し、前記センス部で計測した前記センス電流の電流値に基づき、前記第1の記憶装置の前記複数の電流範囲情報から対応する電流範囲を選択し、当該選択した電流範囲に対応する前記メイン電流の算出方法を前記第2の記憶装置の複数の算出方法から選択することを特徴とする。 In order to solve the above problem, the present invention provides a power conversion apparatus comprising a first IGBT that passes a main current, a second IGBT that is arranged on the same semiconductor substrate as the first IGBT and passes a sense current, and a measurement device that calculates the main current from the sense current, wherein the measurement device selects a calculation method of the main current in accordance with a current value of the sense current , the measurement device having a sense unit that measures the sense current and a temperature of the semiconductor substrate, a main current calculation unit that calculates the main current based on the sense current measured by the sense unit and temperature information of the semiconductor substrate, a first memory device that stores a plurality of current range information of the sense current, and a second memory device that stores a plurality of calculation methods for calculating the main current from the sense current, and is characterized in that, based on the current value of the sense current measured by the sense unit, a corresponding current range is selected from the plurality of current range information of the first memory device, and a calculation method of the main current corresponding to the selected current range is selected from the plurality of calculation methods of the second memory device .
また、本発明は、同一半導体チップ内に主IGBTと電流センス用IGBTを備えたIGBTパワーモジュールを搭載する電力変換装置の制御方法において、前記電流センス用IGBTを流れるセンス電流の電流値に応じて前記主IGBTを流れるメイン電流の算出方法を選択し、当該選択した算出方法により、前記センス電流から前記メイン電流を算出する電力変換装置の制御方法であって、前記センス電流および前記半導体チップの温度を計測し、当該計測したセンス電流の電流値に基づいて、複数の電流範囲情報から対応する電流範囲を選択し、当該選択した電流範囲に対応する前記メイン電流の算出方法を複数の算出方法から選択し、当該選択した算出方法により、前記センス電流および前記半導体チップの温度情報から前記メイン電流を算出することを特徴とする。 The present invention also relates to a control method for a power conversion device equipped with an IGBT power module having a main IGBT and a current sense IGBT within the same semiconductor chip, which selects a calculation method for a main current flowing through the main IGBT in accordance with a current value of a sense current flowing through the current sense IGBT, and calculates the main current from the sense current by the selected calculation method, characterized in that the sense current and the temperature of the semiconductor chip are measured, a corresponding current range is selected from a plurality of current range information based on the current value of the measured sense current, a calculation method for the main current corresponding to the selected current range is selected from a plurality of calculation methods, and the main current is calculated from the sense current and temperature information of the semiconductor chip by the selected calculation method .
本発明によれば、同一半導体チップ内に主IGBTと電流センス用IGBTを備えたIGBTパワーモジュールを搭載する電力変換装置において、電力変換装置の全動作領域で、センス電流を用いて主IGBTに流れるメイン電流を精度よく推定可能な高性能かつ高信頼な電力変換装置及びその制御方法を実現することができる。 According to the present invention, in a power conversion device equipped with an IGBT power module having a main IGBT and a current sensing IGBT on the same semiconductor chip, it is possible to realize a high-performance, highly reliable power conversion device and a control method thereof that can accurately estimate the main current flowing through the main IGBT using the sense current in all operating ranges of the power conversion device.
これにより、電力変換装置の出力電流のフィードバック制御を出力電流の大きさによらず安定して行うことができるため、モーターが正しく動作し、自動車の加速制御性が安定する。This allows stable feedback control of the output current of the power conversion device regardless of the magnitude of the output current, allowing the motor to operate correctly and stabilizing the acceleration controllability of the vehicle.
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will become clear from the description of the embodiments below.
以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Note that the same components in each drawing are given the same reference numerals, and detailed descriptions of overlapping parts will be omitted.
図1から図3を参照して、本発明の実施例1に係る電力変換装置とその制御方法について説明する。図1は、本実施例の電力変換装置の概略構成を示すブロック図である。図2は、図1の電力変換装置に搭載された電流センス素子内蔵IGBTの一部断面図である。図3は、図2の電流センス素子内蔵IGBTの主IGBT及びセンスIGBTの各オン抵抗とコレクタ電流の関係を示すグラフである。 A power conversion device and a control method thereof according to a first embodiment of the present invention will be described with reference to Figures 1 to 3. Figure 1 is a block diagram showing a schematic configuration of the power conversion device of this embodiment. Figure 2 is a partial cross-sectional view of an IGBT with a built-in current sense element mounted on the power conversion device of Figure 1. Figure 3 is a graph showing the relationship between the on-resistance and the collector current of the main IGBT and sense IGBT of the IGBT with a built-in current sense element of Figure 2.
先ず、図1を用いて、本実施例の電力変換装置の構成とその動作について説明する。図1は、本発明を電力変換装置の接地側に適用した例である。First, the configuration and operation of the power conversion device of this embodiment will be described with reference to Figure 1. Figure 1 shows an example in which the present invention is applied to the ground side of a power conversion device.
図1に示すように、本実施例の電力変換装置は、主要な構成として、マイクロコンピュータ3と、ゲートドライバー6と、センス付IGBTチップ10と、センス部20を備えている。As shown in FIG. 1, the main components of the power conversion device of this embodiment include a
電流を出力するセンス付IGBTチップ10は、主電流を流す主IGBT11と、主IGBT11と比較して半導体基板上における素子面積が数千分の1から数万分の1と小さいセンスIGBT12から構成される。センスIGBT12のコレクタ端子とゲート端子は、それぞれ主IGBT11のコレクタ端子とゲート端子に接続されている。The
センス部20は、温度センサ4と、電流検出器21と、電流検出器22から構成される。
The
電流検出器21は、センスIGBT12から出力されるエミッタ電流の電流センス回路である。センスIGBT12のエミッタ端子から流れるセンス電流は、センス部20の電流検出器21で測定され、ADコンバータによりデジタル値に変換される。電流検出器21の出力値は、主電流計算用のマイクロコンピュータ3へ入力される。The
電流検出器22は、温度センサ4の電流センス回路である。センス付IGBTチップ10の温度を計測する温度センサ4は、ダイオードや抵抗などで構成され、IGBTの温度を電流値として出力し、電流検出器22を介して、マイクロコンピュータ3へ入力される。The
ここで、センス付IGBTチップ10における主IGBT11の一部とセンスIGBT12の断面構造を図2に示す。図2の矢印は電流の流れを模式的に示している。
Figure 2 shows the cross-sectional structure of a part of the
主IGBT11では、多くの素子がマトリクス状に配置されている。センスIGBT12では、主IGBT11と比較して少ない数の素子が配置される。In the
主IGBT11のコレクタ端子に流れる電流b1に対する周辺電流成分a1の電流比率R1=a1/b1とし、センスIGBT12のコレクタ端子から流れる電流b2に対する周辺から流れる電流a2の電流比率R2=a2/b2とすると、電流比率R2はR1と比較し大きい。このため、コレクタ電流において周辺電流成分の影響が大きくなる電流動作範囲では、図3のD1に示すように、センスIGBT12のオン抵抗(Ron_sense)は主IGBT11のオン抵抗(Ron_main)と比較して、相対的に低くなる。If the current ratio R1 = a1/b1 of the peripheral current component a1 to the current b1 flowing through the collector terminal of the
このため、上記特許文献1のように、図3のコレクタ電流とオン抵抗の関係において周辺電流成分の影響が大きい電流範囲(D1)と周辺電流成分の影響が小さい電流範囲(D2及びD3)のすべての動作範囲において主電流とセンス電流を1つの一次式で関係付けると、センス電流から計算した主電流値と実際の主電流値との誤差が大きくなる。そのため、インバーターによるモーター制御では、センス電流から求めた主電流値の誤差が大きくなり、モーターが正しく制御できない。For this reason, if the main current and sense current are related by a single linear equation in the entire operating range of the current range (D1) where the influence of the peripheral current component is large and the current range (D2 and D3) where the influence of the peripheral current component is small in the relationship between the collector current and on-resistance in Figure 3, as in Patent Document 1, the error between the main current value calculated from the sense current and the actual main current value will be large. As a result, in motor control using an inverter, the error in the main current value calculated from the sense current will be large, and the motor cannot be controlled correctly.
一方、本実施例では、センス電流値から主電流値を計算する際、図3のコレクタ電流とオン抵抗の関係において、周辺電流成分の影響が大きい電流範囲(D1)と周辺電流成分の影響が小さい電流範囲(D2及びD3)とに分け、それぞれの範囲で主電流の計算方法を最適化することにより、全動作範囲で計算によって求めた主電流値の精度が向上される。On the other hand, in this embodiment, when calculating the main current value from the sense current value, the relationship between the collector current and on-resistance in Figure 3 is divided into a current range (D1) where the influence of peripheral current components is large and a current range (D2 and D3) where the influence of peripheral current components is small, and the method of calculating the main current is optimized in each range, thereby improving the accuracy of the main current value calculated over the entire operating range.
以上説明したように、本実施例の電力変換装置は、メイン電流を流す主IGBT11(第1のIGBT)と、主IGBT11(第1のIGBT)と同一半導体基板上に配置され、センス電流を流すセンスIGBT12(第2のIGBT)と、センス電流からメイン電流を算出する計測装置(マイクロコンピュータ3及びセンス部20)を備えており、計測装置(マイクロコンピュータ3及びセンス部20)は、センス電流の電流値に応じてメイン電流の算出方法を選択する。As described above, the power conversion device of this embodiment includes a main IGBT 11 (first IGBT) that passes a main current, a sense IGBT 12 (second IGBT) that is arranged on the same semiconductor substrate as the main IGBT 11 (first IGBT) and passes a sense current, and a measurement device (
また、計測装置(マイクロコンピュータ3及びセンス部20)は、メイン電流の計測データとセンス電流の計測データから主IGBT11(第1のIGBT)の第1オン抵抗またはセンスIGBT12(第2のIGBT)の第2オン抵抗を算出し、第1オン抵抗または第2オン抵抗のセンス電流依存に基づき、センス電流の電流範囲を決定する。
In addition, the measuring device (
また、計測装置(マイクロコンピュータ3及びセンス部20)は、メイン電流の計測データとセンス電流の計測データから、メイン電流のセンス電流依存に基づき、センス電流の電流範囲を決定する。
In addition, the measurement device (
本技術を車載インバーターによるモーター制御に適用した場合、モーター動作を安定して制御することができる。 When this technology is applied to motor control using an on-board inverter, motor operation can be stably controlled.
さらに、電流範囲D1または電流範囲D2及びD3に分割したそれぞれの電流範囲においては、主電流とセンス電流の関係は2次関数などの簡単な多項式を用いて精度良く近似可能になるため、主電流の計算に必要なパラメータの増加を抑えることができる。 Furthermore, in current range D1 or in each of the current ranges divided into current ranges D2 and D3, the relationship between the main current and the sense current can be accurately approximated using a simple polynomial such as a quadratic function, thereby suppressing the increase in parameters required to calculate the main current.
図5を参照して、本発明の実施例2に係るIGBTパワーモジュールについて説明する。本実施例では、電力変換装置の出力電流において配線抵抗の影響が小さい電流範囲と配線抵抗の影響が大きくなる電流範囲とに分けて、主IGBTとセンスIGBTの関係式を最適化する場合を説明する。 With reference to Figure 5, an IGBT power module according to a second embodiment of the present invention will be described. In this embodiment, a case will be described in which the output current of the power conversion device is divided into a current range in which the influence of wiring resistance is small and a current range in which the influence of wiring resistance is large, and the relational equation between the main IGBT and the sense IGBT is optimized.
図5は、実施例1(図1)で説明した電力変換装置に搭載されるIGBTパワーモジュールの概略構成を示すブロック図である。なお、図1では電力変換装置の低電位側のみを示しているが、図5では高電位側と低電位側の両方のIGBTで構成されたIGBTパワーモジュール100のブロック図(配線図)を示す。
Figure 5 is a block diagram showing a schematic configuration of an IGBT power module mounted on the power conversion device described in Example 1 (Figure 1). Note that while Figure 1 shows only the low-potential side of the power conversion device, Figure 5 shows a block diagram (wiring diagram) of an
センス付IGBTチップ10aは高電位側の電流スイッチであり、主電流を流す主IGBT11aとセンスIBGBT12aを搭載する。同様に、センス付IGBTチップ10bは低電位側の電流スイッチであり、主電流を流す主IGBT11bとセンスIBGBT12bを搭載する。The
センス付IGBTチップ10aと10bはIGBTパワーモジュール100内で金属配線により接続さる。それぞれの金属配線抵抗を13a~13gで示す。
The
特に、IGBTのコレクタ-エミッタ間に高電流が流れる場合、配線抵抗を考慮する必要がある。主IGBT11a,11bの各エミッタ端子に接続される配線抵抗13a,13cと、センスIGBT12a,12bの各エミッタ端子に接続される配線抵抗13d,13eは異なるため、配線抵抗の影響が大きい電流範囲と影響が小さい電流範囲では、IGBTパワーモジュール100の端子からみた電圧-電流特性が主IGBT11a,11bとセンスIGBT12a,12bで異なる。In particular, when a high current flows between the collector and emitter of an IGBT, the wiring resistance must be taken into consideration. Since the
そこで、実施例1と同様に、図3のコレクタ電流とオン抵抗の関係において、配線抵抗の影響が大きい電流範囲(D3)と配線抵抗の影響が小さい電流範囲(D1及びD2)とに分け、それぞれの範囲で主電流の計算方法を最適化することにより、全動作範囲で計算によって求めた主電流値の精度が向上する。 Therefore, similarly to Example 1, in the relationship between collector current and on-resistance in Figure 3, the current range is divided into one in which the wiring resistance has a large effect (D3) and one in which the wiring resistance has a small effect (D1 and D2), and the method of calculating the main current is optimized in each range, thereby improving the accuracy of the main current value calculated over the entire operating range.
本技術を車載インバーターによるモーター制御に適用した場合、モーター動作を安定して制御することができる。 When this technology is applied to motor control using an on-board inverter, motor operation can be stably controlled.
本実施例では、IGBTの周辺電流成分とパワーモジュールの配線抵抗成分の両方が無視できない場合を説明する。In this embodiment, we explain the case where both the peripheral current component of the IGBT and the wiring resistance component of the power module can be ignored.
IGBTの周辺電流成分とパワーモジュールの配線抵抗成分の両方が無視できない場合、図3の電流範囲をD1,D2,D3の3つの範囲に分け、それぞれの範囲において、主電流とセンス電流の関係式を最適化することにより、全動作範囲で主電流値の精度が向上する。 When both the peripheral current component of the IGBT and the wiring resistance component of the power module cannot be ignored, the current range in Figure 3 is divided into three ranges, D1, D2, and D3, and the relationship between the main current and the sense current is optimized in each range, thereby improving the accuracy of the main current value over the entire operating range.
本技術を車載インバーターによるモーター制御に適用した場合、モーター動作を安定して制御することができる。 When this technology is applied to motor control using an on-board inverter, motor operation can be stably controlled.
図1及び図4,図9を参照して、本発明の実施例4に係る電力変換装置及びその制御方法について説明する。図4は、本発明の構成を分かり易くするために比較例として示す従来の電力変換装置のブロック図である。また、図9は、本発明の代表的な電力変換装置の制御方法を示すフローチャートである。A power conversion device and a control method thereof according to a fourth embodiment of the present invention will be described with reference to Figures 1, 4, and 9. Figure 4 is a block diagram of a conventional power conversion device shown as a comparative example to make the configuration of the present invention easier to understand. Also, Figure 9 is a flowchart showing a representative control method of the power conversion device of the present invention.
図1の電力変換装置において、マイクロコンピュータ3は、記憶装置(メモリー)31と、温度とセンス電流から主電流を計算する主電流算出回路32と、主電流を制御するパワーモジュール制御回路5を備えている。また、記憶装置(メモリー)31は、電流範囲の情報を保存する記憶装置(メモリー)31aと、各電流範囲においてセンス電流から主電流を計算するために必要な情報を保存する記憶装置(メモリー)31bを備えている。1, the
電力変換装置出荷前のテスト工程において、主IGBT11とセンスIGBT12のそれぞれのコレクタ電流とオン抵抗を測定し、図3に相当するデータを取得する。IGBTの電流-電圧特性は温度に依存性があるため、図3に相当する特性を複数の温度で測定する。During the testing process before shipping the power conversion device, the collector current and on-resistance of each of the
各温度において、図3のD1とD2の境界となるコレクタ電流C1、D2とD3の境界となるコレクタ電流C2のそれぞれに対応するセンス電流値C1s、C2sを記憶装置31aに記憶させる。At each temperature, sense current values C1s and C2s corresponding to collector current C1, which is the boundary between D1 and D2 in Figure 3, and collector current C2, which is the boundary between D2 and D3, are stored in
次に、電流範囲D1と電流範囲D2と電流範囲D3のそれぞれにおいて、各温度での主電流とセンス電流との関係を最小二乗法などにより求め、主電流の計算に必要なパラメータを記憶装置31bに記憶させる。Next, for each of current ranges D1, D2, and D3, the relationship between the main current and the sense current at each temperature is determined using the least squares method or the like, and the parameters necessary for calculating the main current are stored in the
実際の電力変換装置の動作時は、主電流算出回路32において、電流検出器21の出力値と、温度センサ4で検出したIGBTの温度情報を検出器22で処理した出力値を入力値として、電流検出器21の値を記憶装置31aのC1sと比較し、電流値がD1,D2,D3のどの範囲にあるかを判断し、その範囲に対応した計算式のパラメータを記憶装置32bから読み込み、主電流を計算する。During actual operation of the power conversion device, the main
一方、図4に示す上記特許文献1で説明されている電力変換装置では、図1の構成と比較して、記憶装置(メモリー)31は主電流とセンス電流の関係式の情報を保存するメモリー31bのみであり、電流範囲を複数に分ける情報がない。このため、低電流から高電流のいずれかの範囲において、誤差が大きくなる。On the other hand, in the power conversion device described in the above-mentioned Patent Document 1 and shown in Figure 4, compared to the configuration in Figure 1, the storage device (memory) 31 only has
なお、上記では、電力変換装置のテスト工程での測定値からセンス電流値C1s,C2s、及び各電流範囲での主電流とセンス電流の関係を示すパラメータを求めたが、IGBTパワーモジュールのテスト工程でこれらのデータを取得し、電力変換装置組立後にマイクロコンピュータ3の記憶装置31aに記憶させても良い。In the above, the sense current values C1s, C2s and parameters indicating the relationship between the main current and the sense current in each current range were obtained from the measured values during the test process of the power conversion device, but these data may also be obtained during the test process of the IGBT power module and stored in the
本実施例の電力変換装置の制御方法における主要なフローを図9のフローチャートに示す。The main flow of the control method for the power conversion device of this embodiment is shown in the flowchart of Figure 9.
先ず、IGBT動作電流範囲を、IGBT周辺電流成分が大きい領域(D1)と、IGBTパワーモジュールの配線抵抗の影響が大きくなる領域(D3)と、それらの間の領域(D2)と、に分割する情報をメモリーに保存する。(ステップS1)
次に、D1~D3の各領域それぞれにおいて、センス電流からメイン電流を算出する算出手段を最適化し、算出に必要な情報をメモリーに保存する。(ステップS2)
続いて、電力変換装置の実動作時に、計測したセンス電流値より、分割した電流領域のどこの領域にあるかを判断し、その領域のメイン電流算出手段(メイン電流計算用パラメータ)を用いてメイン電流を算出する。(ステップS3)
最後に、算出したメイン電流に基づき、IGBTパワーモジュールの主電流が所望の電流値となるように、ゲートドライバーを駆動開始し、主IGBTのフィードバック制御を行う。(ステップS4)
以上説明したように、本実施例の電力変換装置では、計測装置(マイクロコンピュータ3及びセンス部20)は、センス電流および半導体基板の温度を計測するセンス部20と、センス部20で計測したセンス電流および半導体基板の温度情報に基づきメイン電流を算出する主電流算出回路32と、センス電流の複数の電流範囲情報を保存するメモリー31a(第1の記憶装置)と、センス電流からメイン電流を算出する複数の算出方法を保存するメモリー31b(第2の記憶装置)を有しており、センス部20で計測したセンス電流の電流値に基づき、メモリー31a(第1の記憶装置)の複数の電流範囲情報から対応する電流範囲を選択し、当該選択した電流範囲に対応するメイン電流の算出方法をメモリー31b(第2の記憶装置)の複数の算出方法から選択する。
First, information dividing the IGBT operating current range into a region (D1) where the IGBT peripheral current component is large, a region (D3) where the influence of the wiring resistance of the IGBT power module is large, and a region (D2) between them is stored in memory (step S1).
Next, in each of the regions D1 to D3, the calculation means for calculating the main current from the sense current is optimized, and information required for the calculation is stored in memory (step S2).
Next, during actual operation of the power conversion device, it is determined which of the divided current regions the measured sense current value is in, and the main current is calculated using the main current calculation means (parameters for calculating the main current) of that region (step S3).
Finally, based on the calculated main current, the gate driver is started to drive so that the main current of the IGBT power module becomes a desired current value, and feedback control of the main IGBT is performed (step S4).
As described above, in the power conversion device of this embodiment, the measurement device (
また、計測装置(マイクロコンピュータ3及びセンス部20)は、センス電流の電流値が複数の電流範囲情報のいずれの電流範囲に対応するかを判定し、当該判定した電流範囲に対応するメイン電流の算出方法を記憶装置31から読み出し、メイン電流を算出する。
In addition, the measuring device (
なお、メイン電流の算出方法には、例えばメイン電流がセンス電流の2次近似式となるような算出方法を用いる。 The method for calculating the main current is, for example, a method in which the main current is a quadratic approximation of the sense current.
本実施例では、実施例1~4において、各電流範囲における主電流とセンス電流の関係を求める方法について説明する。 In this embodiment, a method for determining the relationship between the main current and the sense current in each current range is described in Examples 1 to 4.
各電流範囲D1,D2,D3または、複数の電流範囲を合わせた電流範囲における主電流とセンス電流の関係は、電力変換装置のテスト工程またはIGBTパワーモジュールのテスト工程において複数の温度で測定したデータを元に、主電流をセンス電流の2次式として最小二乗法などにより計算する。The relationship between the main current and the sense current in each current range D1, D2, D3 or in a current range combining multiple current ranges is calculated by using the least squares method or the like to calculate the main current as a quadratic equation of the sense current based on data measured at multiple temperatures in the test process of the power conversion device or the test process of the IGBT power module.
但し、センス電流と主電流の関係を求める計算は、最小二乗法に限らず、別の方法を用いても良い。また、主電流をセンス電流と温度の両方の関数として、1つの式としても良い。However, the calculation for determining the relationship between the sense current and the main current is not limited to the least squares method, and other methods may be used. Also, the main current may be a function of both the sense current and temperature, and may be expressed as a single equation.
図6を参照して、センス電流値C1sとC2sの決め方の例について説明する。主電流をセンス電流の2次式で計算する場合、2次の項が大きく変化する前後で、電流範囲を分ける必要がある。図6は主IGBT11のオン抵抗をセンスIGBT12のオン抵抗の関数としたときの2次係数[式(1)]とセンス電流との関係を示したものである。太線は、移動平均である。例えば式(1)の値が0.1%,-0.1%を超える時のセンス電流値をそれぞれC1s,C2sとする。
With reference to Figure 6, an example of how to determine the sense current values C1s and C2s will be described. When calculating the main current using a quadratic equation for the sense current, it is necessary to separate the current range before and after the quadratic term changes significantly. Figure 6 shows the relationship between the quadratic coefficient [Equation (1)] and the sense current when the on-resistance of the
図7を参照して、センス電流値C1sについて、主電流をセンス電流の関数としたときの2次係数[式(2)]とセンス電流との関係から決める例を説明する。 Referring to Figure 7, an example is described in which the sense current value C1s is determined from the relationship between the second-order coefficient [Equation (2)] when the main current is a function of the sense current and the sense current.
主電流をセンス電流の2次式で計算する場合、2次の項が大きく変化する前後で、電流範囲を分ける必要がある。式(2)の値とセンス電流値との関係を図7に示す。例えば式(2)の値が0.1%を超える時のセンス電流値をC1sとする。When calculating the main current using a quadratic equation for the sense current, it is necessary to separate the current range before and after the quadratic term changes significantly. Figure 7 shows the relationship between the value of equation (2) and the sense current value. For example, the sense current value when the value of equation (2) exceeds 0.1% is C1s.
図8を参照して、本発明の実施例8に係る車載インバーター制御システムについて説明する。図8は、本実施例の車載インバーター制御システムの概略構成を示すブロック図であり、本発明を3相インバーターに適用した例を示している。An on-board inverter control system according to an eighth embodiment of the present invention will be described with reference to Fig. 8. Fig. 8 is a block diagram showing a schematic configuration of the on-board inverter control system according to the present embodiment, and shows an example in which the present invention is applied to a three-phase inverter.
図8において、モーター50は、3組のセンス付IGBTチップ10a,10bからなるIGBTパワーモジュールにより駆動される。各主IGBTからモーター50に流れる主電流は、各センス部20においてセンスIGBTの電流値と温度の計測値より、制御回路(マイクロコンピュータ)3において、実施例1~7のいずれかに示した方法を用いて、主電流が所望の電流値となるようにゲートドライバー6を駆動開始し、各IGBT10a,10bのフィードバック制御を行う。In Figure 8, the
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記の実施例は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modified examples. For example, the above-described embodiments have been described in detail to aid in understanding the present invention, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.
3…マイクロコンピュータ(制御回路)、4…温度センサ、5…パワーモジュール制御回路、6…ゲートドライバー、10,10a,10b…センス付IGBTチップ、11,11a,11b…主IGBT、12,12a,12b…センスIGBT、13a~13g…IGBTパワーモジュール100内の配線抵抗、20…センス部、21…電流検出器(センスIGBT12の電流センス回路)、22…電流検出器(温度センサ4の電流センス回路)、31…記憶装置(メモリー)、31a…電流範囲の情報を保存する記憶装置(メモリー)、31b…各電流範囲においてセンス電流から主電流を計算するために必要な情報を保存する記憶装置(メモリー)、32…主電流算出回路、50…モーター、100…IGBTパワーモジュール、a1…主IGBT11の周辺領域の電流成分、a2…センスIGBT12の周辺領域の電流成分、b1…主IGBT11の全電流成分、b2…センスIGBT12の全電流成分、D1…IGBTの動作電流範囲の内、周辺領域の電流成分の影響が大きいコレクタ電流の範囲、D2…D1とD3の間のコレクタ電流の範囲、D3…IGBTの動作電流範囲の内、IGBTパワーモジュールの配線抵抗の影響が大きいコレクタ電流の範囲、C1…D1とD2の境界のコレクタ電流、C1s…コレクタ電流がC1の時のセンス電流値、C2…D2とD3の境界のコレクタ電流、C2s…コレクタ電流がC2の時のセンス電流値3...Microcomputer (control circuit), 4...Temperature sensor, 5...Power module control circuit, 6...Gate driver, 10, 10a, 10b...Sense IGBT chip, 11, 11a, 11b...Main IGBT, 12, 12a, 12b...Sense IGBT, 13a to 13g...Wiring resistance in IGBT power module 100, 20...Sense section, 21...Current detector (current sense circuit of sense IGBT 12), 22...Current detector (current sense circuit of temperature sensor 4), 31...Storage device (memory), 31a...Storage device (memory) that stores information on current ranges, 31b...Storage device (memory) that stores information necessary to calculate the main current from the sense current in each current range, 32...Main current calculation circuit circuit, 50...motor, 100...IGBT power module, a1...current component in the peripheral region of the main IGBT 11, a2...current component in the peripheral region of the sense IGBT 12, b1...total current component of the main IGBT 11, b2...total current component of the sense IGBT 12, D1...range of collector current within the operating current range of the IGBT where the current component in the peripheral region is greatly affected, D2...range of collector current between D1 and D3, D3...range of collector current within the operating current range of the IGBT where the wiring resistance of the IGBT power module is greatly affected, C1...collector current at the boundary between D1 and D2, C1s...sense current value when collector current is C1, C2...collector current at the boundary between D2 and D3, C2s...sense current value when collector current is C2
Claims (13)
前記第1のIGBTと同一半導体基板上に配置され、センス電流を流す第2のIGBTと、
前記センス電流から前記メイン電流を算出する計測装置と、を備え、
前記計測装置は、前記センス電流の電流値に応じて前記メイン電流の算出方法を選択する電力変換装置であって、
前記計測装置は、前記センス電流および前記半導体基板の温度を計測するセンス部と、
前記センス部で計測した前記センス電流および前記半導体基板の温度情報に基づき前記メイン電流を算出する主電流算出部と、
前記センス電流の複数の電流範囲情報を保存する第1の記憶装置と、
前記センス電流から前記メイン電流を算出する複数の算出方法を保存する第2の記憶装置と、を有し、
前記センス部で計測した前記センス電流の電流値に基づき、前記第1の記憶装置の前記複数の電流範囲情報から対応する電流範囲を選択し、
当該選択した電流範囲に対応する前記メイン電流の算出方法を前記第2の記憶装置の複数の算出方法から選択する電力変換装置。 a first IGBT for passing a main current;
a second IGBT arranged on the same semiconductor substrate as the first IGBT and passing a sense current;
a measurement device that calculates the main current from the sense current,
The measurement device is a power conversion device that selects a calculation method of the main current depending on a current value of the sense current ,
the measurement device includes a sense unit that measures the sense current and the temperature of the semiconductor substrate;
a main current calculation unit that calculates the main current based on the sense current measured by the sense unit and temperature information of the semiconductor substrate;
a first storage device that stores a plurality of current range information of the sense current;
a second storage device that stores a plurality of calculation methods for calculating the main current from the sense current;
selecting a corresponding current range from the plurality of pieces of current range information of the first storage device based on a current value of the sense current measured by the sense unit;
the power conversion device selecting a calculation method of the main current corresponding to the selected current range from a plurality of calculation methods in the second storage device.
前記第1のIGBTと同一半導体基板上に配置され、センス電流を流す第2のIGBTと、
前記センス電流から前記メイン電流を算出する計測装置と、を備え、
前記計測装置は、前記センス電流の電流値に応じて前記メイン電流の算出方法を選択する電力変換装置であって、
前記計測装置は、前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記第1の範囲は、前記第1のIGBTおよび前記第2のIGBTの各々の中央領域の電流成分に対して前記第1のIGBTおよび前記第2のIGBTの各々の周辺領域の電流成分の影響が相対的に大きくなる電流範囲である電力変換装置。 a first IGBT for passing a main current;
a second IGBT arranged on the same semiconductor substrate as the first IGBT and passing a sense current;
a measurement device that calculates the main current from the sense current,
The measurement device is a power conversion device that selects a calculation method of the main current depending on a current value of the sense current ,
the measurement device calculates the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
A power conversion device, wherein the first range is a current range in which the influence of the current components in the peripheral regions of each of the first IGBT and the second IGBT is relatively large compared to the current components in the central regions of each of the first IGBT and the second IGBT.
前記第1のIGBTと同一半導体基板上に配置され、センス電流を流す第2のIGBTと、
前記センス電流から前記メイン電流を算出する計測装置と、を備え、
前記計測装置は、前記センス電流の電流値に応じて前記メイン電流の算出方法を選択する電力変換装置であって、
前記計測装置は、前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記第2の範囲は、電流-電圧依存性に配線抵抗成分の影響が大きくなる電流範囲である電力変換装置。 a first IGBT for passing a main current;
a second IGBT arranged on the same semiconductor substrate as the first IGBT and passing a sense current;
a measurement device that calculates the main current from the sense current,
The measurement device is a power conversion device that selects a calculation method of the main current depending on a current value of the sense current ,
the measurement device calculates the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
The second range is a current range in which the influence of wiring resistance components on the current-voltage dependency becomes large.
前記第1のIGBTと同一半導体基板上に配置され、センス電流を流す第2のIGBTと、
前記センス電流から前記メイン電流を算出する計測装置と、を備え、
前記計測装置は、前記センス電流の電流値に応じて前記メイン電流の算出方法を選択する電力変換装置であって、
前記計測装置は、前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲および前記第2の範囲の間の第3の範囲内の場合には第3の算出方法で前記メイン電流を算出し、
前記第1の範囲は、前記第1のIGBTおよび前記第2のIGBTの各々の中央領域の電流成分に対して前記第1のIGBTおよび前記第2のIGBTの各々の周辺領域の電流成分の影響が相対的に大きくなる電流範囲であり、
前記第2の範囲は、電流-電圧依存性に配線抵抗成分の影響が大きくなる電流範囲である電力変換装置。 a first IGBT for passing a main current;
a second IGBT arranged on the same semiconductor substrate as the first IGBT and passing a sense current;
a measurement device that calculates the main current from the sense current,
The measurement device is a power conversion device that selects a calculation method of the main current depending on a current value of the sense current ,
the measurement device calculates the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
calculating the main current by a third calculation method when the sense current is within a third range between the first range and the second range;
the first range is a current range in which an influence of a current component in a peripheral region of each of the first IGBT and the second IGBT is relatively large compared to an influence of a current component in a central region of each of the first IGBT and the second IGBT;
The second range is a current range in which the influence of wiring resistance components on the current-voltage dependency becomes large.
前記センス電流の複数の電流範囲情報と、前記センス電流から前記メイン電流を算出する複数の算出方法を保存する記憶装置を備え、
前記計測装置は、前記センス電流の電流値が前記複数の電流範囲情報のいずれの電流範囲に対応するかを判定し、
当該判定した電流範囲に対応する前記メイン電流の算出方法を前記記憶装置から読み出し、前記メイン電流を算出する電力変換装置。 The power conversion device according to any one of claims 2 to 4 ,
a storage device for storing a plurality of pieces of current range information of the sense current and a plurality of calculation methods for calculating the main current from the sense current;
the measurement device determines which current range of the plurality of pieces of current range information the current value of the sense current corresponds to;
The power conversion device reads out from the storage device a calculation method for the main current that corresponds to the determined current range, and calculates the main current.
前記メイン電流の算出方法は、前記メイン電流が前記センス電流の2次近似式となる算出方法である電力変換装置。 The power conversion device according to any one of claims 1 to 5 ,
A power conversion device, wherein the method for calculating the main current is a calculation method in which the main current is a quadratic approximation of the sense current.
前記計測装置は、前記メイン電流の計測データと前記センス電流の計測データから前記第1のIGBTの第1オン抵抗または前記第2のIGBTの第2オン抵抗を算出し、
前記第1オン抵抗または前記第2オン抵抗の前記センス電流依存に基づき、前記センス電流の電流範囲を決定する電力変換装置。 The power conversion device according to any one of claims 2 to 4 ,
the measurement device calculates a first on-resistance of the first IGBT or a second on-resistance of the second IGBT from the measurement data of the main current and the measurement data of the sense current;
A power conversion device that determines a current range of the sense current based on a dependency of the first on-resistance or the second on-resistance on the sense current.
前記計測装置は、前記メイン電流の計測データと前記センス電流の計測データから、前記メイン電流の前記センス電流依存に基づき、前記センス電流の電流範囲を決定する電力変換装置。 The power conversion device according to any one of claims 2 to 4 ,
The measurement device determines a current range of the sense current based on the dependency of the main current on the sense current from the measurement data of the main current and the measurement data of the sense current.
車載インバーター制御システムに搭載される電力変換装置。 The power conversion device according to any one of claims 1 to 8 ,
A power conversion device installed in an on-board inverter control system.
前記電流センス用IGBTを流れるセンス電流の電流値に応じて前記主IGBTを流れるメイン電流の算出方法を選択し、
当該選択した算出方法により、前記センス電流から前記メイン電流を算出する電力変換装置の制御方法であって、
前記センス電流および前記半導体チップの温度を計測し、
当該計測したセンス電流の電流値に基づいて、複数の電流範囲情報から対応する電流範囲を選択し、
当該選択した電流範囲に対応する前記メイン電流の算出方法を複数の算出方法から選択し、
当該選択した算出方法により、前記センス電流および前記半導体チップの温度情報から前記メイン電流を算出する電力変換装置の制御方法。 A method for controlling a power conversion device having an IGBT power module including a main IGBT and a current sensing IGBT on a single semiconductor chip, comprising:
selecting a method for calculating a main current flowing through the main IGBT in accordance with a current value of a sense current flowing through the current sense IGBT;
A control method for a power conversion device, which calculates the main current from the sense current by the selected calculation method ,
measuring the sense current and the temperature of the semiconductor chip;
selecting a corresponding current range from a plurality of pieces of current range information based on the current value of the measured sense current;
selecting a method for calculating the main current corresponding to the selected current range from a plurality of calculation methods;
A control method for a power conversion device, the control method calculating the main current from the sense current and temperature information of the semiconductor chip by the selected calculation method.
前記電流センス用IGBTを流れるセンス電流の電流値に応じて前記主IGBTを流れるメイン電流の算出方法を選択し、
当該選択した算出方法により、前記センス電流から前記メイン電流を算出する電力変換装置の制御方法であって、
前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記第1の範囲は、前記主IGBTおよび前記電流センス用IGBTの各々の中央領域の電流成分に対して前記主IGBTおよび前記電流センス用IGBTの各々の周辺領域の電流成分の影響が相対的に大きくなる電流範囲である電力変換装置の制御方法。 A method for controlling a power conversion device having an IGBT power module including a main IGBT and a current sensing IGBT on a single semiconductor chip, comprising:
selecting a method for calculating a main current flowing through the main IGBT in accordance with a current value of a sense current flowing through the current sense IGBT;
A control method for a power conversion device, which calculates the main current from the sense current by the selected calculation method ,
calculating the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
A control method for a power conversion device, wherein the first range is a current range in which the influence of the current components in the peripheral regions of the main IGBT and the current sense IGBT is relatively greater than the influence of the current components in the central regions of the main IGBT and the current sense IGBT.
前記電流センス用IGBTを流れるセンス電流の電流値に応じて前記主IGBTを流れるメイン電流の算出方法を選択し、
当該選択した算出方法により、前記センス電流から前記メイン電流を算出する電力変換装置の制御方法であって、
前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記第2の範囲は、電流-電圧依存性に配線抵抗成分の影響が大きくなる電流範囲である電力変換装置の制御方法。 A method for controlling a power conversion device having an IGBT power module including a main IGBT and a current sensing IGBT on a single semiconductor chip, comprising:
selecting a method for calculating a main current flowing through the main IGBT in accordance with a current value of a sense current flowing through the current sense IGBT;
A control method for a power conversion device, which calculates the main current from the sense current by the selected calculation method ,
calculating the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
The second range is a current range in which the influence of wiring resistance components on current-voltage dependency becomes large.
前記電流センス用IGBTを流れるセンス電流の電流値に応じて前記主IGBTを流れるメイン電流の算出方法を選択し、
当該選択した算出方法により、前記センス電流から前記メイン電流を算出する電力変換装置の制御方法であって、
前記センス電流が第1の範囲内の場合には第1の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲よりも高電流側の第2の範囲内の場合には第2の算出方法で前記メイン電流を算出し、
前記センス電流が前記第1の範囲および前記第2の範囲の間の第3の範囲内の場合には第3の算出方法で前記メイン電流を算出し、
前記第1の範囲は、前記主IGBTおよび前記電流センス用IGBTの各々の中央領域の電流成分に対して前記主IGBTおよび前記電流センス用IGBTの各々の周辺領域の電流成分の影響が相対的に大きくなる電流範囲であり、
前記第2の範囲は、電流-電圧依存性に配線抵抗成分の影響が大きくなる電流範囲である電力変換装置の制御方法。 A method for controlling a power conversion device having an IGBT power module including a main IGBT and a current sensing IGBT on a single semiconductor chip, comprising:
selecting a method for calculating a main current flowing through the main IGBT in accordance with a current value of a sense current flowing through the current sense IGBT;
A control method for a power conversion device, which calculates the main current from the sense current by the selected calculation method ,
calculating the main current by a first calculation method when the sense current is within a first range;
calculating the main current by a second calculation method when the sense current is within a second range that is higher than the first range;
calculating the main current by a third calculation method when the sense current is within a third range between the first range and the second range;
the first range is a current range in which the influence of a current component in a peripheral region of each of the main IGBT and the current sense IGBT is relatively large compared to a current component in a central region of each of the main IGBT and the current sense IGBT;
The second range is a current range in which the influence of wiring resistance components on current-voltage dependency becomes large.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020189220 | 2020-11-13 | ||
JP2020189220 | 2020-11-13 | ||
PCT/JP2021/033349 WO2022102233A1 (en) | 2020-11-13 | 2021-09-10 | Power conversion apparatus and method for controlling power conversion apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2022102233A1 JPWO2022102233A1 (en) | 2022-05-19 |
JP7561207B2 true JP7561207B2 (en) | 2024-10-03 |
Family
ID=81601878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022561300A Active JP7561207B2 (en) | 2020-11-13 | 2021-09-10 | Power conversion device and method for controlling power conversion device |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240006975A1 (en) |
JP (1) | JP7561207B2 (en) |
CN (1) | CN116457949A (en) |
DE (1) | DE112021004796T5 (en) |
WO (1) | WO2022102233A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006271098A (en) | 2005-03-24 | 2006-10-05 | Hitachi Ltd | Power converter |
JP2011149926A (en) | 2009-12-24 | 2011-08-04 | Fuji Electric Co Ltd | Current detection circuit of power semiconductor device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011125101A (en) * | 2009-12-09 | 2011-06-23 | Furukawa Electric Co Ltd:The | Current detector, power supply device and current detection method |
JP5170208B2 (en) * | 2010-10-22 | 2013-03-27 | 富士電機株式会社 | Current detection circuit for power semiconductor devices |
US11417452B2 (en) * | 2017-07-11 | 2022-08-16 | Hitachi Astemo, Ltd. | Electronic control unit |
-
2021
- 2021-09-10 US US18/252,562 patent/US20240006975A1/en active Pending
- 2021-09-10 JP JP2022561300A patent/JP7561207B2/en active Active
- 2021-09-10 DE DE112021004796.5T patent/DE112021004796T5/en active Pending
- 2021-09-10 CN CN202180076501.6A patent/CN116457949A/en active Pending
- 2021-09-10 WO PCT/JP2021/033349 patent/WO2022102233A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006271098A (en) | 2005-03-24 | 2006-10-05 | Hitachi Ltd | Power converter |
JP2011149926A (en) | 2009-12-24 | 2011-08-04 | Fuji Electric Co Ltd | Current detection circuit of power semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
US20240006975A1 (en) | 2024-01-04 |
CN116457949A (en) | 2023-07-18 |
JPWO2022102233A1 (en) | 2022-05-19 |
WO2022102233A1 (en) | 2022-05-19 |
DE112021004796T5 (en) | 2023-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9683898B2 (en) | Method and apparatus for determining an actual junction temperature of an IGBT device | |
JP5448706B2 (en) | Current detection device and current detection method | |
KR101921765B1 (en) | Current sensor | |
JP3861613B2 (en) | On-chip temperature detector | |
US8598942B2 (en) | Current correction circuit for power semiconductor device and current correction method | |
US10116296B2 (en) | Semiconductor integrated circuit device and electronic device | |
JP2006271098A (en) | Power converter | |
US20130257329A1 (en) | Junction temperature measurement of a power mosfet | |
JP4736668B2 (en) | Signal detection device for load driving device | |
US11277124B2 (en) | Overcurrent detection reference compensation system of switching element for inverter and overcurrent detection system using the same | |
WO2021240891A1 (en) | Power conversion device | |
JP7561207B2 (en) | Power conversion device and method for controlling power conversion device | |
US9719860B2 (en) | Power device temperature monitor | |
CN107223296B (en) | Method and apparatus for determining load current | |
JP2012109659A (en) | Load drive circuit | |
CN106533322B (en) | The calculating of switch mosfet temperature in motor control | |
CN113949327A (en) | Power module for operating an electric vehicle drive | |
CN108291843B (en) | Semiconductor component having a first temperature measuring element and method for determining a current flowing through a semiconductor component | |
JP2020191707A (en) | Estimation device and analysis device | |
JP7478559B2 (en) | Anomaly detection device and anomaly detection method | |
US11469750B2 (en) | Switching apparatus and determination apparatus | |
JP2014155267A (en) | Switch driving device | |
Barón et al. | Accounting for Acquisition Circuit Temperature in Accurate Online Junction Temperature Estimation | |
US20130334531A1 (en) | Systems and methods for measuring temperature and current in integrated circuit devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240509 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240827 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7561207 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |