[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7559864B2 - Fluororesin particles and method for producing same - Google Patents

Fluororesin particles and method for producing same Download PDF

Info

Publication number
JP7559864B2
JP7559864B2 JP2023073965A JP2023073965A JP7559864B2 JP 7559864 B2 JP7559864 B2 JP 7559864B2 JP 2023073965 A JP2023073965 A JP 2023073965A JP 2023073965 A JP2023073965 A JP 2023073965A JP 7559864 B2 JP7559864 B2 JP 7559864B2
Authority
JP
Japan
Prior art keywords
resin
resin particles
general formula
organic solvent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023073965A
Other languages
Japanese (ja)
Other versions
JP2023099114A (en
Inventor
翔平 弓野
智弥 下野
正雄 田靡
亨 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019171553A external-priority patent/JP7339830B2/en
Application filed by Tosoh Corp filed Critical Tosoh Corp
Publication of JP2023099114A publication Critical patent/JP2023099114A/en
Application granted granted Critical
Publication of JP7559864B2 publication Critical patent/JP7559864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、流動性および充填性に優れるフッ素樹脂粒子およびその製造方法に関する。 The present invention relates to fluororesin particles with excellent fluidity and filling properties and a method for producing the same.

フッ素系樹脂は、電気特性、耐薬品性、防水性および撥液發油性に優れるため半導体をはじめとする電子部品の保護膜、インクジェットプリンタヘッドの撥水膜、フィルタの水防油コートなどに用いられている。 Fluorine-based resins have excellent electrical properties, chemical resistance, waterproofing, and liquid and oil repellency, so they are used in protective films for semiconductors and other electronic components, water-repellent films for inkjet printer heads, and waterproof and oil-resistant coatings for filters.

なかでもオキソラン環を含むフッ素樹脂は嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素、酸素からのみ構成されることで高い電気特性、耐薬品性、防水性および撥液發油性を有する。さらに非晶性であることから溶融成形加工が可能である。 In particular, fluororesins containing oxolane rings have a bulky ring structure, making them amorphous and highly transparent and heat resistant. In addition, because they are composed only of carbon, fluorine, and oxygen, they have excellent electrical properties, chemical resistance, waterproofness, and liquid and oil repellency. Furthermore, because they are amorphous, they can be melt molded.

特許文献1にはオキソラン環を含むフッ素樹脂としてパーフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン(PFMMD)のポリマーおよびその製造方法に関する記載がある。特許文献1の実施例2には、ガラス製封管内でフッ化窒素(N22)の共存下でパーフルオロ(2-メチレン-4-メチル-1,3-ジオキソランのポリマーを重合した例の記載がある。この実施例では溶媒は用いられておらず、得られたポリマーの具体的な形態については記述はない。非特許文献1にはオキソラン環を含むフッ素樹脂としてPFMMDをバルク重合又は溶液重合してそのポリマーを得ることが記載されている。尚、本明細書において、特に断らない限り、樹脂とポリマーとは同義として記載する。 Patent Document 1 describes a polymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane (PFMMD) as a fluororesin containing an oxolane ring and a method for producing the same. Example 2 of Patent Document 1 describes an example in which a polymer of perfluoro(2-methylene-4-methyl-1,3-dioxolane) was polymerized in the presence of nitrogen fluoride (N 2 F 2 ) in a sealed glass tube. In this example, no solvent was used, and no description was given of the specific form of the obtained polymer. Non-Patent Document 1 describes the bulk polymerization or solution polymerization of PFMMD as a fluororesin containing an oxolane ring to obtain the polymer. In this specification, unless otherwise specified, resin and polymer are described as having the same meaning.

米国特許第3308107号U.S. Pat. No. 3,308,107

Macromolecules 2005, 38, 4237Macromolecules 2005, 38, 4237

非特許文献1には、バルク重合の場合は重合後に精製を行わないと、本樹脂の光学特性および耐熱性が低下するが、精製することでこれらの低下は低減することが記載されている。溶液重合では、フッ素系の2種類の溶媒のいずれかを用いて重合した後にクロロホルムを添加して沈殿させている。バルク重合の精製後の本樹脂およびクロロホルムを添加して沈殿させて得られた樹脂の具体的な形態についての記載はない。 Non-Patent Document 1 describes that in the case of bulk polymerization, if purification is not performed after polymerization, the optical properties and heat resistance of the resin will decrease, but that these decreases can be reduced by purification. In solution polymerization, polymerization is performed using one of two types of fluorine-based solvents, and then chloroform is added to cause precipitation. There is no description of the specific form of the resin after purification from bulk polymerization, or the resin obtained by precipitation by adding chloroform.

本発明者らによる検討の結果、特許文献1および非特許文献1に記載の方法で得られた樹脂は、不定形の非粒子状の形態を有していた。そのため、樹脂の流動性に課題があった。たとえば樹脂を溶融成形する際、成形加工機内部への樹脂の連続した供給が困難になるなどの取り扱いに問題が生じることが分かった。さらに、特許文献1および非特許文献1に記載の樹脂は、上記形態を有するため、たとえば樹脂を成形加工機内に充填する際、所定の体積に対して所望の重量の樹脂が充填できない、すなわち充填性が低いという問題があることも判明した。この点は、樹脂重量に対して体積の大きな容器を要するため、当該物品を輸送する際の経済性が低くなる問題もあった。 As a result of the study by the present inventors, the resin obtained by the method described in Patent Document 1 and Non-Patent Document 1 had an amorphous, non-particulate form. Therefore, there was a problem with the flowability of the resin. For example, it was found that when melt molding the resin, problems with handling arise, such as difficulty in continuously supplying the resin into the inside of a molding machine. Furthermore, since the resin described in Patent Document 1 and Non-Patent Document 1 has the above form, it was also found that, for example, when filling the resin into a molding machine, it is not possible to fill a desired weight of resin for a given volume, i.e., the filling ability is low. This point also poses the problem that a container with a large volume relative to the weight of the resin is required, which reduces the economic efficiency of transporting the item.

そこで本発明は、上記課題を解決するために、流動性および充填性に優れた、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することを目的とする。 Therefore, in order to solve the above problems, the present invention aims to provide resin particles containing residue units represented by general formula (1) that have excellent fluidity and filling properties, and a method for producing the same.

また、本発明者らのさらなる検討の結果、特許文献1および非特許文献に記載された方法で製造された樹脂は、不定形の非粒子状の形態を有しているため、樹脂の内部に取り込まれた溶媒を除去することが困難である。樹脂中に溶媒が残存すると加熱時の重量減少量が大きく、成形加工時に発泡等が生じたり、成形加工時の作業環境を悪化させるという問題もあった。 Furthermore, as a result of further investigations by the present inventors, the resins produced by the methods described in Patent Document 1 and Non-Patent Document 1 have an amorphous, non-particulate form, making it difficult to remove the solvent that has been incorporated into the resin. If the solvent remains in the resin, the amount of weight loss during heating is large, and there are problems such as foaming occurring during molding processing and a worsening of the working environment during molding processing.

そこで本発明は、流動性および充填性に優れるばかりでなく、加熱重量減少量が小さい、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することも目的とする。 The present invention therefore aims to provide resin particles containing residue units represented by general formula (1), which not only have excellent fluidity and filling properties, but also have a small amount of weight loss upon heating, and a method for producing the same.

加えて、フッ素樹脂の製造においては、一般に、乳化重合、懸濁重合等の手段により樹脂粒子を得ることが可能である。しかしこれらの方法においては、重合助剤として乳化剤または分散剤が用いられる。しかし、用いた乳化剤または分散剤は、樹脂粒子の内部に残存することで、異物となり、さらには樹脂を加熱した際の着色の原因となり、透明性および耐熱性を損なう可能性がある。近年の半導体周辺部材に求められる厳しいクリーン性を満足できない可能性があった。 In addition, in the manufacture of fluororesins, resin particles can generally be obtained by means of emulsion polymerization, suspension polymerization, or the like. However, in these methods, an emulsifier or dispersant is used as a polymerization aid. However, the emulsifier or dispersant used can remain inside the resin particles and become a foreign matter, and can even cause coloring when the resin is heated, impairing transparency and heat resistance. There is a possibility that such methods will not be able to satisfy the strict cleanliness required for semiconductor peripheral parts in recent years.

そこで、本発明は、流動性および充填性に優れる、一般式(1)で表される残基単位を含む樹脂粒子を乳化剤および/または分散剤を用いることなく製造する方法、並びに乳化剤および/または分散剤を含有しない、一般式(1)で表される残基単位を含む樹脂粒子を提供することも目的とする。 Therefore, the present invention also aims to provide a method for producing resin particles having excellent fluidity and filling properties and containing a residue unit represented by general formula (1) without using an emulsifier and/or dispersant, and to provide resin particles having a residue unit represented by general formula (1) that do not contain an emulsifier and/or dispersant.

さらに、本発明は、流動性および充填性に優れるばかりでなく、熱重量減少量が小さく、乳化剤および/または分散剤を含有しない、一般式(1)で表される残基単位を含む樹脂粒子およびその製造方法を提供することを目的とする。 Furthermore, the present invention aims to provide resin particles containing residue units represented by general formula (1), which not only have excellent fluidity and filling properties, but also have a small amount of thermal weight loss and do not contain an emulsifier and/or a dispersant, and a method for producing the same.

本発明者らは、下記一般式(1)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下であることを特徴とする新規な樹脂粒子が流動性および充填性に優れることを見出し、本発明の完成に至った。 The inventors discovered that novel resin particles containing a residue unit represented by the following general formula (1) and having a volume average particle diameter of 5 μm or more and 2000 μm or less have excellent fluidity and packing properties, leading to the completion of the present invention.

式(1)中、Rf1、Rf2、Rf3およびRf4はそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または、炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3およびRf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。 In formula (1), Rf 1 , Rf 2 , Rf 3 and Rf 4 each independently represent one of the group consisting of a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 1 , Rf 2 , Rf 3 and Rf 4 may be bonded to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.

さらに、本発明者らは、特定の有機溶媒を用いた沈殿重合法を用いることで、乳化剤または分散剤を用いることなく樹脂粒子を得ることができ、乳化剤および分散剤を用いることなく得られた樹脂粒子は乳化剤および分散剤を含有せず、樹脂本来の透明性および耐熱性を保持した樹脂粒子であること、さらには、樹脂粒子内部に溶媒が残存することなく、加熱重量減少量が小さい樹脂粒子を得られることを見いだし、本発明の好ましい態様に至った。 Furthermore, the inventors discovered that by using a precipitation polymerization method using a specific organic solvent, resin particles can be obtained without using an emulsifier or dispersant, that the resin particles obtained without using an emulsifier or dispersant do not contain emulsifiers or dispersants and are resin particles that retain the inherent transparency and heat resistance of the resin, and further that resin particles can be obtained that have a small amount of weight loss on heating without any solvent remaining inside the resin particles, thus arriving at a preferred embodiment of the present invention.

本発明は、以下の通りである。
[1]
下記一般式(1)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下であることを特徴とする樹脂粒子。
(式(1)中、Rf1、Rf2、Rf3、Rf4はそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3、Rf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
[2]
前記体積平均粒子径が5μm以上500μm以下である、[1]に記載の樹脂粒子。
[3]
安息角が5°以上60°以下である、[1]または[2]に記載の樹脂粒子。
[4]
前記樹脂粒子は、沈殿重合物である、[1]乃至[3]のいずれか一項に記載の樹脂粒子。
[5]
嵩密度が0.2g/mL以上1.5g/mL以下である、[1]乃至[4]のいずれか一項に記載の樹脂粒子。
[6]
250℃加熱時の重量減少量が1重量%以下である、[1]乃至[5]のいずれか一項に記載の樹脂粒子。
[7]
前記樹脂粒子は、乳化剤および/または分散剤を含有しない、[1]乃至[6]のいずれか一項に記載の樹脂粒子。
[8]
一般式(1)で表される残基単位が一般式(2)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位である、[1]乃至[7]いずれか一項に記載の粒子。
[9]
ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(4)で表される残基単位を含む樹脂を得る工程を有し、
前記有機溶媒は、少なくとも前記単量体は溶解し、かつ重合により生じた樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であり、
前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する、[1]乃至[7]いずれか一項に記載の樹脂粒子の製造方法。
(式(3)中、Rf5、Rf6、Rf6、およびRf7はそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf5、Rf6、Rf6、およびRf7は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
(式(4)中のRf5、Rf6、Rf6、およびRf7の定義は、それぞれ式(3)中のRf5、Rf6、Rf6、およびRf7の定義と同じである。)
[10]
前記有機溶媒は、一般式(3)で表される単量体を溶解し、かつ一般式(4)で表される残基単位を含む樹脂を溶解しない有機溶媒である、[9]に記載の製造方法。
[11]
前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104~70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる有機溶媒である、[10]に記載の製造方法。
[12]
前記有機溶媒は、一般式(4)で表される残基単位を含む量平均分子量Mwが5×104~70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒である、[10]または[11]に記載の製造方法。
[13]
分子内にフッ素原子と水素原子を含む有機溶媒を用いることを特徴とする[9]乃至[12]のいずれか一項に記載の製造方法。
[14]
溶媒分子内の水素原子の含有量が1重量%以上である有機溶媒を用いることを特徴とする請求項13に記載の製造方法。
[15]
一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位である、[9]乃至[13]いずれか一項に記載の製造方法。
The present invention is as follows.
[1]
A resin particle comprising a residue unit represented by the following general formula (1) and having a volume average particle size of 5 μm or more and 2000 μm or less:
(In formula (1), Rf 1 , Rf 2 , Rf 3 , and Rf 4 each independently represent one of the group consisting of a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 1 , Rf 2 , Rf 3 , and Rf 4 may be bonded to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)
[2]
The resin particles according to [1], wherein the volume average particle diameter is 5 μm or more and 500 μm or less.
[3]
The resin particles according to [1] or [2], having an angle of repose of 5° or more and 60° or less.
[4]
The resin particles according to any one of [1] to [3], which are a precipitation polymerization product.
[5]
The resin particles according to any one of [1] to [4], having a bulk density of 0.2 g/mL or more and 1.5 g/mL or less.
[6]
The resin particles according to any one of [1] to [5], which have a weight loss of 1% by weight or less when heated at 250° C.
[7]
The resin particles according to any one of [1] to [6], which do not contain an emulsifier and/or a dispersant.
[8]
The particle according to any one of [1] to [7], wherein the residue unit represented by the general formula (1) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (2).
[9]
The method includes a step of subjecting a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3), and an organic solvent under polymerization conditions to obtain a resin containing a residue unit represented by general formula (4),
the organic solvent is a solvent in which at least the monomer is dissolved, but at least a part of the resin produced by polymerization is not dissolved, and the resin precipitates,
The method for producing resin particles according to any one of [1] to [7], wherein the resin produced by the polymerization is precipitated as particles in an organic solvent.
(In formula (3), Rf 5 , Rf 6 , Rf 6 and Rf 7 each independently represent one of the group consisting of a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 5 , Rf 6 , Rf 6 and Rf 7 may be bonded to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)
(The definitions of Rf 5 , Rf 6 , Rf 6 , and Rf 7 in formula (4) are the same as those of Rf 5 , Rf 6 , Rf 6 , and Rf 7 in formula (3), respectively.)
[10]
The method according to [9], wherein the organic solvent dissolves the monomer represented by general formula (3) but does not dissolve the resin containing the residue unit represented by general formula (4).
[11]
The method according to [10], wherein the organic solvent is an organic solvent in which residual resin particles can be confirmed with the naked eye after resin particles having a weight average molecular weight Mw of 5 x 10 to 70 x 10 , which contain a residue unit represented by general formula (4), are immersed in an organic solvent in an amount 10 times (w/w) the amount of the resin particles at 50°C for 5 hours or more.
[12]
The method according to [10] or [11], wherein the organic solvent is an organic solvent in which resin particles having a weight average molecular weight Mw of 5 x 10 to 70 x 10, which contains a residue unit represented by general formula (4), are immersed in an organic solvent in an amount 10 times (w/w) the amount of the resin particles at 50°C for 5 hours or more, and then the solution is cooled to 25°C. After that, a resin sample remaining in a solid state is recovered, and the weight loss rate of the resin sample is less than 20% by weight.
[13]
The method according to any one of [9] to [12], characterized in that an organic solvent containing a fluorine atom and a hydrogen atom in the molecule is used.
[14]
14. The method according to claim 13, wherein an organic solvent having a hydrogen atom content of 1% by weight or more in the solvent molecule is used.
[15]
The method according to any one of [9] to [13], wherein the monomer represented by the general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by the general formula (5), and the residue unit represented by the general formula (4) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by the general formula (6).

本発明によれば、流動性および充填性に優れるフッ素樹脂粒子およびフッ素樹脂粒子の製造方法を提供することができる。 The present invention provides fluororesin particles with excellent fluidity and filling properties, and a method for producing fluororesin particles.

さらに本発明によれば、流動性および充填性に優れるばかりでなく、乳化剤および分散剤を含有しない樹脂粒子およびその製造方法、並びに流動性および充填性に優れるばかりでなく、加熱重量減少量が小さい樹脂粒子およびその製造方法をそれぞれ提供するができる。 Furthermore, according to the present invention, it is possible to provide resin particles that not only have excellent fluidity and filling properties but also do not contain emulsifiers or dispersants, and a method for producing the same, as well as resin particles that not only have excellent fluidity and filling properties but also have a small amount of weight loss on heating, and a method for producing the same.

;実施例1で製造した樹脂粒子の粒度分布を示す図である。FIG. 2 is a graph showing the particle size distribution of the resin particles produced in Example 1. ;実施例4で製造した樹脂粒子の粒度分布を示す図である。FIG. 3 is a graph showing the particle size distribution of the resin particles produced in Example 4.

以下に本発明を詳細に説明する。 The present invention is described in detail below.

本発明は、一般式(1)で表される残基単位を含む樹脂粒子である。そして、本発明のフッ素樹脂粒子は一般式(1)に含まれる嵩高い環構造を有するため非晶質で高い透明性および高い耐熱性を有する。また炭素、フッ素および酸素からのみ構成されることで高い電気特性、耐薬品性、防水性および撥液發油性を有する。 The present invention relates to resin particles containing a residue unit represented by general formula (1). The fluororesin particles of the present invention are amorphous and have high transparency and high heat resistance because they have a bulky ring structure contained in general formula (1). In addition, because they are composed only of carbon, fluorine and oxygen, they have high electrical properties, chemical resistance, waterproofness, and liquid and oil repellency.

本発明における一般式(1)で表される残基単位中のRf1、Rf2、Rf3およびRf4基はそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基、または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf1、Rf2、Rf3およびRf4は互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。 In the present invention, Rf 1 , Rf 2 , Rf 3 and Rf 4 groups in the residue unit represented by general formula (1) each independently represent one of the group consisting of a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 1 , Rf 2 , Rf 3 and Rf 4 may be linked together to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.

炭素数1~7の直鎖状パーフルオロアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基、ウンデカフルオロペンチル基、トリデカフルオロヘキシル基、ペンタデカフルオロヘプチル基等が挙げられ、炭素数3~7の分岐状パーフルオロアルキル基としては、例えば、ヘプタフルオロイソプロピル基、ノナフルオロイソブチル基、ノナフルオロsec-ブチル基、ノナフルオロtert-ブチル基等が挙げられ、炭素数3~7の環状パーフルオロアルキル基としては、例えば、ヘプタフルオロシクロプロピル基、ノナフルオロシクロブチル基、トリデカフルオロシクロヘキシル基等が挙げられる。炭素数1~7のエーテル性酸素原子を有していてもよい直鎖状パーフルオロアルキル基としては、例えば、-CF2OCF3基、-(CF22OCF3基、-(CF22OCF2CF3基、炭素数3~7のエーテル性酸素原子を有していてもよい環状パーフルオロアルキル基としては、例えば、2-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、4-(2,3,3,4,4,5,5,6,6-デカフルオロ)-ピリニル基、2-(2,3,3,4,4,5,5-ヘプタフルオロ)-フラニル基等が挙げられる。 Examples of linear perfluoroalkyl groups having 1 to 7 carbon atoms include a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, a nonafluorobutyl group, an undecafluoropentyl group, a tridecafluorohexyl group, and a pentadecafluoroheptyl group. Examples of branched perfluoroalkyl groups having 3 to 7 carbon atoms include a heptafluoroisopropyl group, a nonafluoroisobutyl group, a nonafluorosec-butyl group, and a nonafluorotert-butyl group. Examples of cyclic perfluoroalkyl groups having 3 to 7 carbon atoms include a heptafluorocyclopropyl group, a nonafluorocyclobutyl group, and a tridecafluorocyclohexyl group. Examples of linear perfluoroalkyl groups having 1 to 7 carbon atoms which may have an etheric oxygen atom include, for example, -CF2OCF3 group , -( CF2 ) 2OCF3 group , and -( CF2 ) 2OCF2CF3 group. Examples of cyclic perfluoroalkyl groups having 3 to 7 carbon atoms which may have an etheric oxygen atom include, for example, 2-(2,3,3,4,4,5,5,6,6-decafluoro)-pyrinyl group, 4-(2,3,3,4,4,5,5,6,6-decafluoro)-pyrinyl group, and 2-(2,3,3,4,4,5,5-heptafluoro)-furanyl group.

優れた耐熱性となるため、Rf1、Rf2、Rf3およびRf4の少なくともいずれか1種が炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基および炭素数3~7環状のパーフルオロアルキル基からなる群の1種であることが好ましい。 In order to achieve excellent heat resistance, it is preferable that at least one of Rf 1 , Rf 2 , Rf 3 and Rf 4 is a member selected from the group consisting of linear perfluoroalkyl groups having 1 to 7 carbon atoms, branched perfluoroalkyl groups having 3 to 7 carbon atoms, and cyclic perfluoroalkyl groups having 3 to 7 carbon atoms.

一般式(1)で表される残基単位としては、例えば以下の残基単位が挙げられる。 Examples of the residue unit represented by general formula (1) include the following residue units:

これらの中でも、耐熱性および成型加工性に優れるため以下の残基単位を含む樹脂粒子が好ましく、一般式(2)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位を含む樹脂がより好ましい。 Among these, resin particles containing the following residue units are preferred because they have excellent heat resistance and moldability, and resins containing perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue units represented by general formula (2) are more preferred.

本発明の樹脂粒子は、体積平均粒子径が5μm以上2000μm以下であることで流動性が高く、成型加工機等に対する連続した供給が可能となる。体積平均粒子径は、5μm以上1000μm以下であることが好ましい。さらに、体積平均粒子径が上記範囲であることで、樹脂粒子への溶媒の残留が抑制できることから、加熱重量減少量が小さいものとなる。尚、樹脂粒子への溶媒の残留は、後述する、沈殿重合法により樹脂粒子を得ることでも得られる。 The resin particles of the present invention have a volume average particle diameter of 5 μm or more and 2000 μm or less, which makes them highly fluid and allows them to be continuously supplied to molding machines and the like. The volume average particle diameter is preferably 5 μm or more and 1000 μm or less. Furthermore, by having the volume average particle diameter in the above range, the amount of solvent remaining in the resin particles can be suppressed, resulting in a small amount of weight loss due to heating. Note that the amount of solvent remaining in the resin particles can also be obtained by obtaining the resin particles by a precipitation polymerization method, which will be described later.

本発明の樹脂粒子は、体積平均粒子径が5μm以上500μm以下であることがより好ましい。体積平均粒子径がこの範囲であることで、より流動性が高く、成型加工機等に対する連続した供給が容易となり、加熱重量減少量も小さいものとなる。さらに、非特許文献1に記載の方法で得られた樹脂に比べ充填性が増加し、効率的に容器に収納することが可能となる。体積平均粒子径が5μm以上であることにより気流により飛散しにくく、本発明の樹脂粒子の取り扱い性が向上する。また体積平均粒子径が500μm以下である場合、より短時間で樹脂粒子を溶融させることができ成型加工の効率性が向上するため好ましい。 It is more preferable that the resin particles of the present invention have a volume average particle diameter of 5 μm or more and 500 μm or less. With a volume average particle diameter in this range, the resin particles have a higher fluidity, can be easily supplied continuously to a molding machine, and the amount of weight loss due to heating is small. Furthermore, the resin particles have a higher packing ability than the resin obtained by the method described in Non-Patent Document 1, and can be efficiently stored in a container. With a volume average particle diameter of 5 μm or more, the resin particles are less likely to be scattered by air currents, improving the handleability of the resin particles of the present invention. In addition, a volume average particle diameter of 500 μm or less is preferable because the resin particles can be melted in a shorter time, improving the efficiency of molding processing.

本発明の樹脂粒子は、その90%粒子径が2500μm以下、さらには2000μm以下、またさらには1000μm以下であることが好ましい。これにより、本発明の樹脂粒子において、粗大な粒子の含有量が低くなり、流動性・成形性がより向上する。 The resin particles of the present invention preferably have a 90% particle size of 2500 μm or less, more preferably 2000 μm or less, and even more preferably 1000 μm or less. This reduces the content of coarse particles in the resin particles of the present invention, further improving the flowability and moldability.

また、本発明の樹脂粒子は、その10%粒子径が3μm以上であることが好ましい。これにより、本発明の樹脂粒子において、微細な粒子の含有量が低くなり、粉塵化がより防止され、流動性がより向上する。 The resin particles of the present invention preferably have a 10% particle size of 3 μm or more. This reduces the content of fine particles in the resin particles of the present invention, better preventing dusting, and improving fluidity.

本発明の樹脂粒子の体積平均粒子径、90%粒子径、10%粒子径および粒子径分布は、レーザー回折散乱法による粒子径分布測定(体積分布)で評価することができる。レーザー回折散乱法による粒子径分布は、樹脂粒子を水中又はメタノール等の有機溶媒中に分散させて、必要に応じて超音波式ホモジナイザーで粒子の分散状態を均一化にする処理を施した後に測定することで、再現性良く定量化することができる。レーザー散乱計として、マイクロトラック・ベル株式会社製のマイクロトラックを例示することができる。 The volume average particle size, 90% particle size, 10% particle size and particle size distribution of the resin particles of the present invention can be evaluated by particle size distribution measurement (volume distribution) using a laser diffraction scattering method. The particle size distribution using the laser diffraction scattering method can be quantified with good reproducibility by dispersing the resin particles in water or an organic solvent such as methanol, and if necessary, treating the particles to make the dispersion state uniform using an ultrasonic homogenizer, and then measuring. An example of a laser scattering meter is the Microtrac manufactured by Microtrac Bell Co., Ltd.

体積平均粒子径とは、Mean Volume Diameterとも言われ、体積基準で表した平均粒子径であり、粒子径分布を各粒径チャンネルごとに区切り、各粒径チャンネルの代表粒径値をd、各粒径チャンネルごとの体積基準のパーセントをvとした時に、Σ(vd)/Σ(v)で表される。 The volume average particle diameter, also known as the Mean Volume Diameter, is the average particle diameter expressed on a volume basis. When the particle size distribution is divided into each particle size channel, the representative particle size value of each particle size channel is d, and the volume-based percentage of each particle size channel is v, it is expressed as Σ(vd)/Σ(v).

10%粒子径とは、その粉体の集団の全体積を100%として累積量を求めた時、その累積量が10%となる点の粒子径を表す。90%粒子径とは、その粉体の集団の全体積を100%として累積量を求めた時、その累積量が90%となる点の粒子径を表す。 The 10% particle size refers to the particle size at which the cumulative amount is 10% when the total volume of the powder group is taken as 100%. The 90% particle size refers to the particle size at which the cumulative amount is 90% when the total volume of the powder group is taken as 100%.

本発明の樹脂粒子は、好ましくは、乳化剤および/または分散剤を含まない。乳化剤および/または分散剤を含まないことで透明性、耐熱性に優れた樹脂および樹脂粒子となる。乳化剤および/または分散剤を含まない樹脂粒子は、後述する沈殿重合法を用いて製造できる。従って本発明の樹脂粒子は、沈殿重合物であることが好ましい。ここで、分散剤は、樹脂粒子を溶媒中で分散させる働きを有する剤であり、その例としては、ポリビニルアルコール、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等が挙げられる。乳化剤は、樹脂粒子を溶媒中で乳化させる働きを有する剤であり、その例としては、パーフルオロオクタン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、パーフルオロオクタン酸アンモニウム塩等の含フッ素界面活性剤;ラウリル硫酸ナトリウム、エチレングリコール系重合体等の非フッ素界面活性剤等が挙げられる。 The resin particles of the present invention preferably do not contain an emulsifier and/or a dispersant. By not containing an emulsifier and/or a dispersant, the resin and resin particles have excellent transparency and heat resistance. Resin particles that do not contain an emulsifier and/or a dispersant can be produced using the precipitation polymerization method described below. Therefore, the resin particles of the present invention are preferably precipitation polymers. Here, the dispersant is an agent that has the function of dispersing the resin particles in a solvent, and examples of such agents include polyvinyl alcohol, methyl cellulose, hydroxypropyl methyl cellulose, and hydroxyethyl methyl cellulose. The emulsifier is an agent that has the function of emulsifying the resin particles in a solvent, and examples of such agents include fluorine-containing surfactants such as sodium perfluorooctanoate, sodium perfluorooctane sulfonate, and ammonium perfluorooctanoate; non-fluorine-containing surfactants such as sodium lauryl sulfate and ethylene glycol-based polymers.

本発明の樹脂粒子の嵩密度は充填性の観点から0.2g/cm3以上1.5g/cm3以下であることが好ましい。嵩密度は後述する実施例に記載の方法で測定することができる。 From the viewpoint of packing property, the bulk density of the resin particles of the present invention is preferably 0.2 g/cm 3 or more and 1.5 g/cm 3 or less. The bulk density can be measured by the method described in the examples below.

本発明の樹脂粒子には他の単量体残基単位が含まれていても良く、他の単量体残基単位としては、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロイソブチレン、パーフルオロアルキルエチレン、フルオロビニルエーテル、フッ化ビニル(VF)、フッ化ビニリデン(VDF)、パーフルオロ-2,2-ジメチル-1,3-ジオキソール(PDD)、パーフルオロ(アリルビニルエーテル)およびペルフルオロ(ブテニルビニルエーテル)などが挙げられる。 The resin particles of the present invention may contain other monomer residue units, such as tetrafluoroethylene (TFE), hexafluoropropylene (HFP), chlorotrifluoroethylene (CTFE), trifluoroethylene, hexafluoroisobutylene, perfluoroalkylethylene, fluorovinyl ether, vinyl fluoride (VF), vinylidene fluoride (VDF), perfluoro-2,2-dimethyl-1,3-dioxole (PDD), perfluoro(allyl vinyl ether), and perfluoro(butenyl vinyl ether).

本発明の樹脂粒子は、安息角が5°以上60°以下であることが好ましい。これにより、樹脂粒子の流動性がより高くなり、成型加工機等に対する連続した供給が容易となる。安息角は5°以上40°以下であることがより好ましく、10°以上40°以下であることがさらに好ましい。 The resin particles of the present invention preferably have an angle of repose of 5° or more and 60° or less. This increases the fluidity of the resin particles, making it easier to continuously supply them to molding machines and the like. The angle of repose is more preferably 5° or more and 40° or less, and even more preferably 10° or more and 40° or less.

ここで、安息角とは平面に樹脂粉末を堆積させたときに平面と粉末の稜線の作る角度のことをいう。安息角は、容器に樹脂粉末を充填し、自然落下させ、水平面に堆積させたときに山になった樹脂粉末の作る角度を測定することで評価可能である。安息角の具体的な測定方法は、後述する実施例に記載する。 The angle of repose here refers to the angle between a plane and the ridge of the powder when resin powder is piled on a plane. The angle of repose can be evaluated by filling a container with resin powder, allowing it to fall naturally, and measuring the angle formed by the pile of resin powder when piled on a horizontal surface. A specific method for measuring the angle of repose will be described in the Examples below.

本発明において、樹脂粒子の分子量には何ら制限はなく、例えば、ゲルパーミエイションクロマトグラフィー(GPC)で測定される重量平均分子量が2,500~2,000,000等が挙げられる。樹脂の溶融粘度、および機械強度の観点から10,000~1,000,000(g/モル)であることが好ましい。測定の際は、標準試料としてポリメタクリル酸メチルを用い、樹脂粒子と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量を算出する。 In the present invention, there is no restriction on the molecular weight of the resin particles, and examples of the molecular weight include a weight average molecular weight of 2,500 to 2,000,000 as measured by gel permeation chromatography (GPC). From the viewpoint of the melt viscosity and mechanical strength of the resin, it is preferable that the molecular weight is 10,000 to 1,000,000 (g/mol). During the measurement, polymethylmethacrylate is used as a standard sample, and the weight average molecular weight converted into polymethylmethacrylate is calculated from the elution times of the resin particles and the standard sample.

次に本発明の樹脂粒子の製造方法について説明する。 Next, we will explain the method for producing the resin particles of the present invention.

本発明の樹脂粒子は、例えば、ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(3)で表される残基単位を含む樹脂を得る工程を含む方法により製造することができる。 The resin particles of the present invention can be produced, for example, by a method including a step of subjecting a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3), and an organic solvent under polymerization conditions to obtain a resin containing a residue unit represented by general formula (3).

式(3)中、Rf5、Rf6、Rf7およびRf8は、それぞれ式(1)中のRf1、Rf2、Rf3、およびRf4と同義である。 In formula (3), Rf 5 , Rf 6 , Rf 7 and Rf 8 have the same meanings as Rf 1 , Rf 2 , Rf 3 and Rf 4 in formula (1), respectively.

式(4)中、Rf5、Rf6、Rf7、およびRf8は、それぞれ式(1)中のRf1、Rf2、Rf3、およびRf4と同義である。 In formula (4), Rf 5 , Rf 6 , Rf 7 and Rf 8 have the same meanings as Rf 1 , Rf 2 , Rf 3 and Rf 4 in formula (1), respectively.

本発明の樹脂粒子の製造方法において、前記有機溶媒は、少なくとも一般式(3)で表される単量体は溶解し、かつ重合により生じた一般式(4)で表される残基単位を含む樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であり、前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する。本発明の樹脂粒子の製造方法において用いる前記有機溶媒を「沈殿重合溶媒」と記載することがある。沈殿重合溶媒は、より具体的には一般式(3)で表される単量体を溶解し、かつ一般式(4)で表される残基単位を含む樹脂を溶解しない有機溶媒であることができ、この沈殿重合溶媒を以下、沈殿重合溶媒Aと呼ぶ。本発明では沈殿重合溶媒を用いることにより、重合反応によって生成した樹脂を、特定の体積平均粒子径を有する粒子として析出させることができ、結果として成形性および充填性に優れる樹脂粒子を製造することができる。また、乳化剤および分散剤などの重合助剤を用いることがないため、透明性や耐熱性を損なう原因となる乳化剤および分散剤を含まない樹脂粒子を製造することができる。 In the method for producing resin particles of the present invention, the organic solvent dissolves at least the monomer represented by general formula (3), but does not dissolve at least a part of the resin containing the residue unit represented by general formula (4) produced by polymerization, and causes precipitation of the resin, and the resin produced by the polymerization precipitates in the organic solvent as particles. The organic solvent used in the method for producing resin particles of the present invention may be referred to as a "precipitation polymerization solvent". More specifically, the precipitation polymerization solvent can be an organic solvent that dissolves the monomer represented by general formula (3) and does not dissolve the resin containing the residue unit represented by general formula (4), and this precipitation polymerization solvent is hereinafter referred to as precipitation polymerization solvent A. In the present invention, by using the precipitation polymerization solvent, the resin produced by the polymerization reaction can be precipitated as particles having a specific volume average particle size, and as a result, resin particles with excellent moldability and filling properties can be produced. In addition, since no polymerization aids such as emulsifiers and dispersants are used, resin particles that do not contain emulsifiers and dispersants that cause deterioration of transparency and heat resistance can be produced.

ここで、沈殿重合溶媒Aとは、一般式(4)で表される残基単位を含む樹脂粒子を当該有機溶媒に長時間浸漬した後に樹脂粒子が残存する溶媒を意味する。具体的には一般式(4)で表される残基単位を含む重量平均分子量Mwが5×104~70×104の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる場合に、当該有機溶媒を沈殿重合溶媒Aとして見なすことができる。沈殿重合溶媒Aは、50℃で5時間以上浸漬した後に前記溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒であることが好ましい。樹脂試料の重量減少率は、より好ましくは12重量%未満、さらに好ましくは10重量%未満である。 Here, the precipitation polymerization solvent A means a solvent in which resin particles containing a residue unit represented by the general formula (4) remain after the resin particles are immersed in the organic solvent for a long time. Specifically, when resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 containing the residue unit represented by the general formula (4) are immersed in an organic solvent of 10 times the amount (w/w) of the resin particles at 50° C. for 5 hours or more, and the remaining resin particles can be confirmed with the naked eye in the organic solvent, the organic solvent can be regarded as the precipitation polymerization solvent A. The precipitation polymerization solvent A is preferably an organic solvent in which the weight loss rate of the resin sample remaining in a solid state is recovered after the solution is cooled to 25° C. after immersion for 5 hours or more at 50° C. is less than 20% by weight. The weight loss rate of the resin sample is more preferably less than 12% by weight, and even more preferably less than 10% by weight.

樹脂重量の減少率は以下の方法により計測できる。上記の冷却後の溶液をフィルターろ過後、フィルター上の固体を該溶媒でリンス洗浄し、アセトンで複数回洗浄後に乾燥し、フィルター上の樹脂試料を回収する。回収した樹脂の重量を計測し、当該有機溶媒に浸漬させた樹脂量から回収樹脂重量を引いた値を、当該有機溶媒に浸漬させた樹脂量で除した値の100分率を樹脂減少率とする。 The resin weight loss rate can be measured by the following method. After filtering the cooled solution, the solids on the filter are rinsed with the solvent, washed multiple times with acetone, and then dried to recover the resin sample on the filter. The weight of the recovered resin is measured, and the resin weight is subtracted from the amount of resin immersed in the organic solvent, and the result is divided by the amount of resin immersed in the organic solvent to obtain the resin weight loss rate.

沈殿重合溶媒としては、アセトン、メチルエチルケトン、ヘキサン、酢酸ブチル等の非ハロゲン系有機溶媒、ジクロロメタン、クロロホルム等の塩素系有機溶媒のほか、分子内にフッ素原子を含む有機溶媒が挙げられる。 Precipitation polymerization solvents include non-halogenated organic solvents such as acetone, methyl ethyl ketone, hexane, and butyl acetate, chlorine-based organic solvents such as dichloromethane and chloroform, and organic solvents that contain fluorine atoms in the molecule.

さらに、沈殿重合溶媒としてはラジカル重合において連鎖移動反応が生じにくく、重合収率に優れ、高分子量体を得やすいことから分子内にフッ素原子と水素原子を含む有機溶媒が好ましい。具体的な、分子内にフッ素原子と水素原子を含む沈殿重合溶媒としては、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、1H,1H-ペンタフルオロプロパノール、1H,1H-ヘプタフルオロブタノール、2-パーフルオロブチルエタノール、4,4,4-トリフルオロブタノール、1H,1H,3H-テトラフルオロプロパノール、1H,1H,5H-オクタフルオロプロパノール、1H,1H,7H-ドデカフルオロヘプタノール、1H,1H,3H-ヘキサフルオロブタノール、2,2,3,3,3-ペンタフルオロプロピルジフルオロメチルエーテル、2,2,3,3,3-ペンタフルオロプロピル-1,1,2,2-テトラフルオロエチルエーテル、1,1,2,2-テトラフルオロエチルエチルエーテル、1,1,2,2-テトラフルオロエチル-2,2,3,3-テトラフルオロプロピルエーテル、ヘキサフルオロイソプロピルメチルエーテル、1,1,3,3,3-ペンタフルオロ-2-トリフルオロメチルプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルメチルエーテル、1,1,2,3,3,3-ヘキサフルオロプロピルエチルエーテル、2,2,3,4,4,4-ヘキサフルオロブチルジフルオロメチルエーテルなどが挙げられる。 Furthermore, as the precipitation polymerization solvent, an organic solvent containing fluorine atoms and hydrogen atoms in the molecule is preferable because it is difficult for a chain transfer reaction to occur in radical polymerization, has a high polymerization yield, and is easy to obtain a high molecular weight substance. Specific examples of the precipitation polymerization solvent containing fluorine atoms and hydrogen atoms in the molecule include 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane, 1H,1H-pentafluoropropanol, 1H,1H-heptafluorobutanol, 2-perfluorobutylethanol, 4,4,4-trifluorobutanol, 1H,1H,3H-tetrafluoropropanol, 1H,1H,5H-octafluoropropanol, 1H,1H,7H-dodecafluoroheptanol, 1H,1H,3H-hexafluorobutanol, 2, Examples include 2,3,3,3-pentafluoropropyl difluoromethyl ether, 2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl ether, 1,1,2,2-tetrafluoroethyl ethyl ether, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, hexafluoroisopropyl methyl ether, 1,1,3,3,3-pentafluoro-2-trifluoromethylpropyl methyl ether, 1,1,2,3,3,3-hexafluoropropyl methyl ether, 1,1,2,3,3,3-hexafluoropropyl ethyl ether, and 2,2,3,4,4,4-hexafluorobutyl difluoromethyl ether.

なかでも、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンが好ましく、重合収率に優れ、高分子量体を得やすいことから、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタンが好ましい。沈殿重合溶媒の分子内のフッ素原子と水素原子の比率としては、重合収率に優れることから原子の個数比でフッ素原子:水素原子=1:9~9:1であることが好ましく、1:9~7:3であることが更に好ましく、4:6~7:3であることが更に好ましい。 Among these, 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, and 1,2,2,3,3,4,4-heptafluorocyclopentane are preferred, with 1,2,2,3,3,4,4-heptafluorocyclopentane being preferred because it has an excellent polymerization yield and is easy to obtain a high molecular weight product. The ratio of fluorine atoms to hydrogen atoms in the molecules of the precipitation polymerization solvent is preferably fluorine atoms:hydrogen atoms=1:9 to 9:1 in terms of the number of atoms, more preferably 1:9 to 7:3, and even more preferably 4:6 to 7:3, in terms of the excellent polymerization yield.

沈殿重合溶媒としては、重合収率に優れることから分子内にフッ素原子と水素原子を含み、該溶媒中の水素原子の含有量が該溶媒分子の重量に対し1重量%以上が好ましく、1.5重量%以上が更に好ましい。また、重合収率に優れ、高分子量体を得やすいことから1重量%以上5重量%以下が好ましく、1.5重量%以上4重量%以下が好ましい。また、沈殿重合溶媒としては、重合収率に優れ、高分子量体を得やすいことから分子内に塩素原子を含まないものが好ましい。 The precipitation polymerization solvent contains fluorine atoms and hydrogen atoms in the molecule, which is excellent in polymerization yield, and the content of hydrogen atoms in the solvent is preferably 1% by weight or more, more preferably 1.5% by weight or more, based on the weight of the solvent molecule. In addition, the content of hydrogen atoms in the solvent is preferably 1% by weight or more and 5% by weight or less, more preferably 1.5% by weight or more and 4% by weight or less, because it is excellent in polymerization yield and easy to obtain high molecular weight substances. In addition, the precipitation polymerization solvent does not contain chlorine atoms in the molecule, which is excellent in polymerization yield and easy to obtain high molecular weight substances.

一般式(3)で表される単量体と沈殿重合溶媒の比率としては、生産性に優れ、流動特性に優れる粒子が得られることから、重量比で単量体:沈殿重合溶媒=1:99~50:50であることが好ましく、5:95~40:60であることが更に好ましく、5:95~30:70であることが更に好ましい。 The ratio of the monomer represented by general formula (3) to the precipitation polymerization solvent is preferably 1:99 to 50:50 by weight, more preferably 5:95 to 40:60, and even more preferably 5:95 to 30:70, since this provides excellent productivity and particles with excellent flow properties.

ラジカル重合を行う際のラジカル重合開始剤としては、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、オクタノイルパーオキサイド、アセチルパーオキサイド、ジ-tetr-ブチルパーオキサイド、tetr-ブチルクミルパーオキサイド、ジクミルパーオキサイド、tetr-ブチルパーオキシアセテート、パーフルオロ(ジ-tetr-ブチルパーオキサイド)、ビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド、tetr-ブチルパーオキシベンゾエート、tetr-ブチルパーピバレート等の有機過酸化物;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-ブチロニトリル)、2,2’-アゾビスイソブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)等のアゾ系開始剤等が挙げられる。 Examples of radical polymerization initiators for radical polymerization include organic peroxides such as benzoyl peroxide, lauryl peroxide, octanoyl peroxide, acetyl peroxide, di-tetr-butyl peroxide, tetr-butylcumyl peroxide, dicumyl peroxide, tetr-butyl peroxyacetate, perfluoro(di-tetr-butyl peroxide), bis(2,3,4,5,6-pentafluorobenzoyl) peroxide, tetr-butyl peroxybenzoate, and tetr-butyl perpivalate; and azo initiators such as 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-butyronitrile), 2,2'-azobisisobutyronitrile, dimethyl-2,2'-azobisisobutyrate, and 1,1'-azobis(cyclohexane-1-carbonitrile).

本発明の製造方法は、一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位であることが好ましい。 In the manufacturing method of the present invention, it is preferable that the monomer represented by general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by general formula (5), and the residue unit represented by general formula (4) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by general formula (6).

本発明の樹脂粒子は、成形加工時に発泡しにくい樹脂粒子となることから、250℃加熱時の重量減少量が1重量%以下であることが好ましく、0.5重量%以下であることが好ましい。また、250℃加熱時の重量減少量の最小量については特に限定は無いが、例えば、0.001重量%以上を例示できる。また、本発明の樹脂粒子は、成形加工時に発泡しにくい樹脂粒子となることから、樹脂中に含まれる残存溶媒量が1重量%以下であることが好ましく、0.5重量%以下であることが好ましい。ここで、250℃加熱時の重量減少量とは、TG-DTAを用いて、エアー気流下で10℃/minで40℃から昇温した際の250℃における重量減少量を示し、(1-(250℃におけるサンプル重量)/(秤量したサンプル重量))×100)から求められる。 The resin particles of the present invention are resin particles that do not easily expand during molding, so the weight loss when heated to 250°C is preferably 1% by weight or less, and more preferably 0.5% by weight or less. There is no particular limitation on the minimum weight loss when heated to 250°C, but it can be, for example, 0.001% by weight or more. The resin particles of the present invention are resin particles that do not easily expand during molding, so the amount of residual solvent contained in the resin is preferably 1% by weight or less, and more preferably 0.5% by weight or less. Here, the weight loss when heated to 250°C refers to the weight loss at 250°C when the temperature is raised from 40°C at 10°C/min under an air flow using TG-DTA, and is calculated by (1-(sample weight at 250°C)/(weighed sample weight)) x 100).

以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

<体積平均粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ-ルを使用して体積平均粒子径(単位:μm)を測定した。
<Volume average particle size>
The volume average particle size (unit: μm) was measured using MT3000 manufactured by Microtrac and methanol as the dispersion medium.

<10%粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ-ルを使用して10%粒子径(単位:μm)を測定した。
<10% particle size>
The 10% particle size (unit: μm) was measured using MT3000 manufactured by Microtrac and methanol as the dispersion medium.

<90%粒子径>
マイクロトラック社製MT3000を用い、分散媒としてメタノ-ルを使用して90%粒子径(単位:μm)を測定した。
<90% particle size>
The 90% particle size (unit: μm) was measured using MT3000 manufactured by Microtrac and methanol as the dispersion medium.

<流動性>
樹脂の形状が粒子状であった場合を良好(〇)、粒子状ではなかった場合を不良(×)とした。
<Liquidity>
The resin was rated as good (.largecircle.) when it was particulate, and as poor (.times.) when it was not particulate.

<嵩密度>
メスシリンダーにおける50mLの標線まで、メスシリンダーに衝撃を加えずに、樹脂粒子を落下させ充填した。この体積50mLあたりの樹脂粒子の重量(g)を計量した。樹脂粒子の重量を体積で除して、嵩密度(g/mL)を算出した。
<Bulk density>
The resin particles were dropped and filled up to the 50 mL mark in the graduated cylinder without impacting the graduated cylinder. The weight (g) of the resin particles per 50 mL of this volume was measured. The weight of the resin particles was divided by the volume to calculate the bulk density (g/mL).

<充填性>
嵩密度が0.2g/mL以上を良好(〇)、0.2g/mL未満を不良(×)とした。
<Filling ability>
A bulk density of 0.2 g/mL or more was rated as good (◯), and a bulk density of less than 0.2 g/mL was rated as poor (×).

<重量平均分子量Mw>
東ソー(株)製のカラムTSKgel SuperHZM-M、RI検出器を備えたゲルパーミッションクロマトグラフィーを用いて測定を行った。溶離液としてアサヒクリンAK-225(旭硝子株式会社製)に、AK-225に対して10wt%の1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール(和光純薬工業製)を添加したものを用いた。標準試料としてAgilent製の標準ポリメタクリル酸メチルを用い、試料と標準試料の溶出時間からポリメタクリル酸メチル換算の重量平均分子量Mwを算出した。
<Weight average molecular weight Mw>
The measurement was carried out using gel permeation chromatography equipped with a column TSKgel Super HZM-M manufactured by Tosoh Corporation and an RI detector. The standard sample was a standard polymethylmethacrylate (Agilent). The weight average molecular weight Mw in terms of polymethyl methacrylate was calculated from the elution times of the sample and the standard sample.

<250℃加熱重量減少量>
アルミ製サンプルパン(株式会社日立ハイテクサイエンス社製SSC000E030)にサンプル約10~15mgを秤量し、TG/DTA装置(株式会社日立ハイテクサイエンス社製TG/DTA6200AST2)にて、計装エアー気流下(160mL/min)で40℃から300℃まで10℃/minで昇温し、250℃における重量減少量(1-(250℃におけるサンプル重量)/(秤量したサンプル重量))×100)を求め、250℃加熱重量減少量とした。
<250℃ heating weight loss>
Approximately 10 to 15 mg of sample was weighed into an aluminum sample pan (SSC000E030, Hitachi High-Tech Science Corporation), and the sample was analyzed under instrument air flow (160 mL) using a TG/DTA device (TG/DTA6200AST2, Hitachi High-Tech Science Corporation). The sample was heated from 40° C. to 300° C. at a rate of 10° C./min, and the weight loss at 250° C. (1-(sample weight at 250° C.)/(weighed sample weight))×100) was calculated. The weight loss at 100°C was calculated.

<安息角>
サンプル瓶に樹脂粉末を7ml充填し、直径4cmの円形の台(ガラス製)の上に、ガラス製粉末漏斗(アズワン株式会社製、漏斗上部の口径50mm、漏斗下部の口径10mm、漏斗全長100mm、漏斗足部分の高さ40mm)を粉末漏斗の下端が円形の台から4cmの高さとなるよう固定し、漏斗を用い、樹脂粉末を漏斗の上端の高さから落下させ、堆積したときにできる山の斜面の角度(°)を分度器で測定した(比較例については樹脂粉末の流動性が悪いため、粉末漏斗を使用せず樹脂粉末を落下させた。)
<Angle of repose>
A sample bottle was filled with 7 ml of resin powder, and a glass powder funnel (manufactured by AS ONE Corporation; upper aperture 50 mm, lower aperture 10 mm, total funnel length 100 mm, funnel foot height 40 mm) was fixed on a circular stand (made of glass) with a diameter of 4 cm so that the bottom end of the powder funnel was 4 cm above the circular stand. Using the funnel, the resin powder was dropped from the height of the upper end of the funnel, and the angle (°) of the slope of the mountain formed when it was piled up was measured with a protractor (for the comparative example, the resin powder was dropped without using a powder funnel due to poor fluidity of the resin powder).

(実施例1)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド1.288g(0.00305モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒としてアサヒクリンAE-3000(旭硝子製、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、溶媒分子中の水素原子の含有量:1.51重量%、溶媒分子中のフッ素原子:水素原子=7:3(個数比))を1340g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子(樹脂A)を得た(収率:56%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Aの重量平均分子量Mwは4.4×105であった。
Example 1: Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen inlet tube, and a thermometer was replaced with nitrogen. 1.288 g (0.00305 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 150.0 g (0.615 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 1340 g of Asahiklin AE-3000 (manufactured by Asahi Glass Co., Ltd., 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, content of hydrogen atoms in the solvent molecule: 1.51 wt%, fluorine atoms: hydrogen atoms in the solvent molecule = 7:3 (number ratio)) as a precipitation polymerization solvent were added, and the mixture was kept at 55°C for 24 hours with stirring to carry out precipitation polymerization. After cooling to room temperature, the liquid containing the purified resin particles was filtered, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin A) (yield: 56%). The shape, volume average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose of the obtained resin particles are shown in Table 1. The obtained resin particles had excellent fluidity and filling properties. The weight average molecular weight Mw of the obtained Resin A was 4.4 x 105 .

(比較例1)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂の製造
容量75mLのガラスアンプルに開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.017g(0.0000407モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)5.0g(0.0205モル)、重合溶媒としてヘキサフルオロベンゼン(溶媒分子中の水素原子の含有量:0重量%、溶媒分子中のフッ素原子:水素原子=10:0(個数比))8.2gを入れ、窒素置換と抜圧を繰り返したのち減圧状態で熔封した。このアンプルを55℃の恒温槽に入れ、24時間保持することによりラジカル溶液重合を行ったところ、樹脂が溶解した粘稠な液が得られた。室温まで冷却後アンプルを開封し、粘度調整のため樹脂溶液をヘキサフルオロベンゼン36gで希釈して樹脂希釈溶液を作成した。アンカー翼を備えたビーカー中にクロロホルム1Lを加え、攪拌下、前記の樹脂希釈溶液を前記クロロホルム中に加えることで樹脂を析出させ、真空乾燥することにより、パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂(樹脂D)を得た(収率:61%)。得られた樹脂Dの重量平均分子量Mwは3.5×105であった。得られた樹脂の形状、嵩密度、安息角を表1に示す。樹脂が不定形であるため、体積平均粒子径は測定できなかった。場合は得られた樹脂は流動性、充填性に課題があるものであった。
Comparative Example 1: Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin In a 75 mL glass ampoule, 0.017 g (0.0000407 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 5.0 g (0.0205 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 8.2 g of hexafluorobenzene (content of hydrogen atoms in the solvent molecule: 0% by weight, fluorine atoms: hydrogen atoms in the solvent molecule = 10:0 (number ratio)) were placed as a polymerization solvent, and the mixture was repeatedly substituted with nitrogen and depressurized, and then sealed under reduced pressure. The ampoule was placed in a thermostatic bath at 55°C and held for 24 hours to carry out radical solution polymerization, resulting in a viscous liquid in which the resin was dissolved. After cooling to room temperature, the ampoule was opened, and the resin solution was diluted with 36 g of hexafluorobenzene to adjust the viscosity, to prepare a diluted resin solution. 1 L of chloroform was added to a beaker equipped with an anchor blade, and the diluted resin solution was added to the chloroform under stirring to precipitate the resin, which was then vacuum dried to obtain a perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin (resin D) (yield: 61%). The weight average molecular weight Mw of the obtained resin D was 3.5 x 10 5. The shape, bulk density, and angle of repose of the obtained resin are shown in Table 1. Since the resin was amorphous, the volume average particle size could not be measured. In the case of , the obtained resin had problems with fluidity and filling properties.

(実施例2)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.346g(0.000820モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)100.0g(0.410モル)、沈殿重合溶媒として2,2,2-トリフルオロエタノール(溶媒分子中の水素原子の含有量:3.03重量%、溶媒分子中のフッ素原子:水素原子=5:5(個数比)を890g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子(樹脂B)を得た(収率:78%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Bの重量平均分子量Mwは1.1×105であった。
Example 2: Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen inlet tube, and a thermometer was replaced with nitrogen. 0.346 g (0.000820 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 100.0 g (0.410 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 890 g of 2,2,2-trifluoroethanol (content of hydrogen atoms in the solvent molecule: 3.03 wt %, fluorine atoms: hydrogen atoms in the solvent molecule = 5:5 (number ratio)) as a precipitation polymerization solvent were added, and the mixture was maintained at 55°C for 24 hours with stirring. Precipitation polymerization was carried out by cooling to room temperature, filtering the liquid containing the purified resin particles, washing with acetone, and drying in vacuum to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (resin B) (yield: 78%). The shape, volume average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose of the obtained resin particles are shown in Table 1. The obtained resin particles had excellent fluidity and filling properties. The weight average molecular weight Mw of the obtained resin B was 1.1 x 105 .

(実施例3)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.519g(0.00123モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒としてクロロホルムを1150g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子(樹脂C)を得た(収率:19%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表1に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Cの重量平均分子量Mwは7.0×103であった。
(Example 3) Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen inlet tube and a thermometer was replaced with nitrogen. 0.519 g (0.00123 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 150.0 g (0.615 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 1150 g of chloroform as a precipitation polymerization solvent were added, and the mixture was stirred at 55°C for 24 hours to carry out precipitation polymerization. The mixture was cooled to room temperature, and the liquid containing the purified resin particles was filtered, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (resin C) (yield: 19%). The shape, volume average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose of the obtained resin particles are shown in Table 1. The obtained resin particles had excellent fluidity and filling properties. The weight average molecular weight Mw of the obtained resin C was 7.0 x 103 .

(実施例4)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド1.038g(0.00246モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)300.0g(1.23モル)、沈殿重合溶媒としてゼオローラ-H(日本ゼオン製、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、溶媒分子中の水素原子の含有量:1.55重量%、溶媒分子中のフッ素原子:水素原子=7:3(個数比))を1200g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子(樹脂E)を得た(収率:86%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表2に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Eの重量平均分子量Mwは4.9×105であった。
Example 4: Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen inlet tube, and a thermometer was replaced with nitrogen. 1.038 g (0.00246 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 300.0 g (1.23 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 1200 g of Zeorola-H (manufactured by Zeon Corporation, 1,2,2,3,3,4,4-heptafluorocyclopentane, content of hydrogen atoms in the solvent molecule: 1.55 wt%, fluorine atoms: hydrogen atoms in the solvent molecule = 7:3 (number ratio)) as a precipitation polymerization solvent were added, and the mixture was kept at 55°C for 24 hours under stirring to carry out precipitation polymerization. After cooling to room temperature, the liquid containing the purified resin particles was filtered, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin E) (yield: 86%). The shape, volume average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose of the obtained resin particles are shown in Table 2. The obtained resin particles had excellent fluidity and filling properties. The weight average molecular weight Mw of the obtained Resin E was 4.9 x 105 .

(実施例5)パーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子の製造
アンカー型攪拌翼、窒素導入管および温度計を備えた1LのSUS316製オートクレーブの内部を窒素置換した。開始剤としてビス(2,3,4,5,6-ペンタフルオロベンゾイル)パーオキサイド0.519g(0.00123モル)、単量体としてパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)150.0g(0.615モル)、沈殿重合溶媒として1,1,1,3,3,3-ヘキサフルオロイソプロパノール(溶媒分子中の水素原子の含有量:1.82重量%、溶媒分子中のフッ素原子:水素原子=6:4(個数比))を1340g加え、攪拌下55℃で24時間保持することで沈殿重合を行った。室温まで冷却し、精製した樹脂粒子を含む液を濾別し、アセトンで洗浄し、真空乾燥することよりパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)樹脂粒子(樹脂F)を得た(収率:59%)。得られた樹脂粒子の形状、体積平均粒子径、10%粒子径、90%粒子径および嵩密度、安息角を表2に示す。得られた樹脂粒子は流動性、充填性に優れるものであった。得られた樹脂Fの重量平均分子量Mwは7.9×105であった。
Example 5: Production of perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles The inside of a 1 L SUS316 autoclave equipped with an anchor-type stirring blade, a nitrogen inlet tube, and a thermometer was replaced with nitrogen. 0.519 g (0.00123 mol) of bis(2,3,4,5,6-pentafluorobenzoyl) peroxide as an initiator, 150.0 g (0.615 mol) of perfluoro(4-methyl-2-methylene-1,3-dioxolane) as a monomer, and 1,340 g of 1,1,1,3,3,3-hexafluoroisopropanol (content of hydrogen atoms in the solvent molecule: 1.82 wt%, fluorine atoms: hydrogen atoms in the solvent molecule = 6:4 (number ratio)) as a precipitation polymerization solvent were added, and the mixture was kept at 55°C for 24 hours with stirring to carry out precipitation polymerization. After cooling to room temperature, the liquid containing the purified resin particles was filtered, washed with acetone, and vacuum dried to obtain perfluoro(4-methyl-2-methylene-1,3-dioxolane) resin particles (Resin F) (yield: 59%). The shape, volume average particle size, 10% particle size, 90% particle size, bulk density, and angle of repose of the obtained resin particles are shown in Table 2. The obtained resin particles had excellent fluidity and filling properties. The weight average molecular weight Mw of the obtained Resin F was 7.9 x 105 .

(参考例1)
実施例1で得られた樹脂粒子を10倍量の各種溶媒に50℃で5時間浸漬し、樹脂粒子が残存するかを肉眼で観察した。
(Reference Example 1)
The resin particles obtained in Example 1 were immersed in 10 times the amount of each of the solvents at 50° C. for 5 hours, and the presence or absence of remaining resin particles was observed with the naked eye.

・樹脂粒子の残存が肉眼で確認された有機溶媒は以下の通りである:
1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル、2,2,2-トリフルオロエタノール、1,1,1,3,3,3-ヘキサフルオロイソプロパノール、1,2,2,3,3,4,4-ヘプタフルオロシクロペンタン、クロロホルム。
Residual resin particles were confirmed with the naked eye in the following organic solvents:
1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, 2,2,2-trifluoroethanol, 1,1,1,3,3,3-hexafluoroisopropanol, 1,2,2,3,3,4,4-heptafluorocyclopentane, chloroform.

その後、25℃に冷却し、フィルターろ過後、該溶媒によりリンス洗浄することにより樹脂粒子を取出した後、樹脂粒子を10倍量のアセトンで2回洗浄し、真空乾燥し、乾燥重量から回収率を求めたところ、いずれも回収率は90%以上であった。また、上記で得られたろ液を留去し、ろ液中の固形分量を求めたところ、用いた樹脂粒子に対しろ液中の固形分量は10%未満であった。上記の結果より、樹脂重量の重量減少率は10重量%未満であることが確認された。 Then, the mixture was cooled to 25°C, filtered, and the resin particles were extracted by rinsing with the solvent. The resin particles were then washed twice with 10 times the amount of acetone and vacuum dried. The recovery rate was calculated from the dry weight, and in both cases the recovery rate was 90% or more. The filtrate obtained above was also distilled off, and the solid content in the filtrate was calculated. The solid content in the filtrate was less than 10% of the resin particles used. From the above results, it was confirmed that the weight loss rate of the resin weight was less than 10% by weight.

(参考例2)
実施例1で得られた樹脂粒子を10倍量の以下に記す各種溶媒に50℃で5時間浸漬し、樹脂粒子が残存するかを肉眼で観察した。
・樹脂粒子の残存が肉眼でされなかった有機溶媒は以下の通りである:
ヘキサフルオロベンゼン、CF3CF2CHCl2(溶媒分子中の水素原子の含有量:0.55重量%、溶媒分子中のフッ素原子:水素原子=8:2(個数比))
(Reference Example 2)
The resin particles obtained in Example 1 were immersed in 10 times the amount of each of the following solvents at 50° C. for 5 hours, and the presence or absence of remaining resin particles was observed with the naked eye.
The organic solvents in which no resin particles remained visible to the naked eye were as follows:
Hexafluorobenzene, CF 3 CF 2 CHCl 2 (content of hydrogen atoms in the solvent molecule: 0.55% by weight, fluorine atoms:hydrogen atoms in the solvent molecule=8:2 (number ratio))

50℃における肉眼観察の結果、いずれの溶液も透明であり、濁りも殆ど確認されなかった。その後、25℃に冷却し、フィルターろ過後、該溶媒によりリンス洗浄し、フィルターを真空乾燥し、フィルターの重量増加量から回収率を計算した結果、いずれも5重量%未満であった。上記の結果より、溶媒への浸漬後の樹脂の重量減少率は95重量%以上であることが確認された。 Visual observation at 50°C showed that all solutions were transparent with almost no turbidity. They were then cooled to 25°C, filtered, rinsed with the solvent, and vacuum-dried. The recovery rate was calculated from the weight increase of the filter, and all were less than 5% by weight. From the above results, it was confirmed that the weight loss rate of the resin after immersion in the solvent was 95% by weight or more.

本発明は、流動性、充填性に優れ、加熱重量減少量が小さいフッ素樹脂粒子およびフッ素樹脂粒子の製造方法を提供する。 The present invention provides fluororesin particles that have excellent fluidity and filling properties and a small amount of weight loss when heated, and a method for producing the fluororesin particles.

Claims (5)

ラジカル重合開始剤、下記一般式(3)で表される単量体および有機溶媒の混合物を重合条件下に置いて、一般式(4)で表される残基単位を含む樹脂を得る工程を有し、
前記有機溶媒は、少なくとも前記単量体は溶解し、かつ重合により生じた樹脂の少なくとも一部は溶解せず、樹脂の沈殿を生じる溶媒であって、一般式(4)で表される残基単位を含む重量平均分子量Mwが5×10 ~70×10 の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後に、有機溶媒中に肉眼で樹脂粒子の残存が確認できる有機溶媒であり
前記重合により生じた樹脂は粒子として有機溶媒中に沈殿する、一般式(4)で表される残基単位を含み、体積平均粒子径が5μm以上2000μm以下である樹脂粒子の製造方法(但し、有機溶媒が1,1,2-トリクロロ-1,2,2-トリフルオロエタンである場合は除く)。
(式(3)中、Rf、Rf、Rf、およびRfはそれぞれ独立してフッ素原子、炭素数1~7の直鎖状のパーフルオロアルキル基、炭素数3~7の分岐状のパーフルオロアルキル基または炭素数3~7の環状のパーフルオロアルキル基からなる群の1種を示す。前記パーフルオロアルキル基はエーテル性酸素原子を有していてもよい。また、Rf、Rf、Rf、およびRfは互いに連結して炭素数4以上8以下の環を形成してもよく、該環はエーテル性酸素原子を含む環であってもよい。)
(式(4)中のRf、Rf、Rf、およびRfの定義は、それぞれ式(3)中のRf、Rf、Rf、およびRfの定義と同じである。)
The method includes a step of subjecting a mixture of a radical polymerization initiator, a monomer represented by the following general formula (3), and an organic solvent under polymerization conditions to obtain a resin containing a residue unit represented by general formula (4),
the organic solvent is a solvent in which at least the monomer is dissolved, but at least a part of the resin produced by polymerization is not dissolved, and the resin precipitates; and after resin particles having a weight average molecular weight Mw of 5×10 4 to 70×10 4 containing a residue unit represented by general formula (4) are immersed in an organic solvent in an amount 10 times (w/w) the amount of the resin particles at 50° C. for 5 hours or more, the remaining resin particles can be confirmed with the naked eye in the organic solvent ;
The resin produced by the polymerization precipitates as particles in an organic solvent, the resin particles containing a residue unit represented by general formula (4) and having a volume average particle size of 5 μm or more and 2000 μm or less (excluding the case where the organic solvent is 1,1,2-trichloro-1,2,2-trifluoroethane).
(In formula (3), Rf 5 , Rf 6 , Rf 7 , and Rf 8 each independently represent one of the group consisting of a fluorine atom, a linear perfluoroalkyl group having 1 to 7 carbon atoms, a branched perfluoroalkyl group having 3 to 7 carbon atoms, or a cyclic perfluoroalkyl group having 3 to 7 carbon atoms. The perfluoroalkyl group may have an etheric oxygen atom. Rf 5 , Rf 6 , Rf 7 , and Rf 8 may be bonded to each other to form a ring having 4 to 8 carbon atoms, and the ring may contain an etheric oxygen atom.)
(The definitions of Rf 5 , Rf 6 , Rf 7 , and Rf 8 in formula (4) are the same as those of Rf 5 , Rf 6 , Rf 7 , and Rf 8 in formula (3), respectively.)
樹脂がパーハロ-2,2-ジ低級アルキル-1,3-ジオキソール(各アルキル基は独立して炭素原子を1から3個有し、そのハロゲン置換基は塩素またはフッ素であるが、但し各アルキル基がフッ素原子を少なくとも1個有する)を1モル%以上含むコポリマーである場合は除く、請求項1に記載の製造方法。 The method of claim 1, except when the resin is a copolymer containing 1 mol % or more of perhalo-2,2-dilower alkyl-1,3-dioxole (each alkyl group independently has 1 to 3 carbon atoms, and the halogen substituents are chlorine or fluorine, with the proviso that each alkyl group has at least one fluorine atom). 前記有機溶媒は、一般式(4)で表される残基単位を含む重量平均分子量Mwが5×10~70×10の樹脂粒子をこの樹脂粒子に対して10倍量(w/w)の有機溶媒に50℃で5時間以上浸漬した後にこの溶液を25℃に冷却後に、固体状態として残存する樹脂試料を回収し、樹脂試料の重量減少率が20重量%未満である有機溶媒である、請求項1または2に記載の製造方法。 3. The method according to claim 1 or 2, wherein the organic solvent is an organic solvent in which resin particles having a weight average molecular weight Mw of 5 x 10 to 70 x 10, which contains a residue unit represented by general formula (4), are immersed in an organic solvent in an amount 10 times (w/w) the amount of the resin particles at 50°C for 5 hours or more , the solution is cooled to 25°C, and the resin sample remaining in a solid state is recovered, and the weight loss rate of the resin sample is less than 20% by weight. 一般式(3)で表される単量体が一般式(5)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)であり、一般式(4)で表される残基単位が一般式(6)で表されるパーフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)残基単位である、請求項1乃至のいずれか一項に記載の製造方法。
The method according to any one of claims 1 to 3, wherein the monomer represented by general formula (3) is perfluoro(4-methyl-2-methylene-1,3-dioxolane) represented by general formula (5), and the residue unit represented by general formula (4) is a perfluoro(4-methyl-2-methylene-1,3-dioxolane) residue unit represented by general formula ( 6) .
前記樹脂粒子は、その90%粒子径が1000μm以下である、請求項1乃至4のいずれか一項に記載の製造方法。The method according to claim 1 , wherein the resin particles have a 90% particle size of 1000 μm or less.
JP2023073965A 2018-09-28 2023-04-28 Fluororesin particles and method for producing same Active JP7559864B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018183594 2018-09-28
JP2018183594 2018-09-28
JP2019027318 2019-02-19
JP2019027318 2019-02-19
JP2019171553A JP7339830B2 (en) 2018-09-28 2019-09-20 Fluororesin particles and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019171553A Division JP7339830B2 (en) 2018-09-28 2019-09-20 Fluororesin particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2023099114A JP2023099114A (en) 2023-07-11
JP7559864B2 true JP7559864B2 (en) 2024-10-02

Family

ID=87074520

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023073965A Active JP7559864B2 (en) 2018-09-28 2023-04-28 Fluororesin particles and method for producing same
JP2023134648A Pending JP2023159307A (en) 2018-09-28 2023-08-22 Fluororesin particles and their manufacturing method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023134648A Pending JP2023159307A (en) 2018-09-28 2023-08-22 Fluororesin particles and their manufacturing method

Country Status (1)

Country Link
JP (2) JP7559864B2 (en)

Also Published As

Publication number Publication date
JP2023099114A (en) 2023-07-11
JP2023159307A (en) 2023-10-31

Similar Documents

Publication Publication Date Title
CN113039213B (en) Process for producing modified polytetrafluoroethylene and composition
US12195617B2 (en) Composition and stretched body
US20240076426A1 (en) Fluororesin, fluororesin particles, and methods for producing these
JP7339830B2 (en) Fluororesin particles and method for producing the same
US20220185917A1 (en) Composition and method for producing the same
JP5598332B2 (en) Method for producing fluorine-containing polymer particles
US20240117087A1 (en) Fluoropolymer production method, polytetrafluoroethylene production method and composition
US20240141081A1 (en) Fluororesin, and method for producing same
JP7559864B2 (en) Fluororesin particles and method for producing same
CN112771086B (en) Fluororesin, fluororesin particle, and method for producing same
JP7566085B2 (en) Fluorine resin and its manufacturing method
JP2005029704A (en) Fluorine-containing copolymer and method for producing granulated substance thereof
US20240158551A1 (en) Fluororesin
JP7040533B2 (en) Fluorine-containing diene compounds, fluorine-containing polymers and methods for producing them
US20220289877A1 (en) Polytetrafluoroethylene production method
JP7631958B2 (en) Manufacturing method of fluororesin
JP7631959B2 (en) Manufacturing method of fluororesin
JP5407643B2 (en) Method for producing fluorine-containing copolymer
TW201609921A (en) Fluoropolymer compositions
US20240166777A1 (en) Production method of high-purity fluoropolymer-containing composition and high-purity fluoropolymer-containing composition
US20210380735A1 (en) Fluororesin, method for producing same, and method for producing fluororesin particles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230905

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240902

R150 Certificate of patent or registration of utility model

Ref document number: 7559864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150