JP7558702B2 - Image blur correction device and control method thereof, and imaging device - Google Patents
Image blur correction device and control method thereof, and imaging device Download PDFInfo
- Publication number
- JP7558702B2 JP7558702B2 JP2020125432A JP2020125432A JP7558702B2 JP 7558702 B2 JP7558702 B2 JP 7558702B2 JP 2020125432 A JP2020125432 A JP 2020125432A JP 2020125432 A JP2020125432 A JP 2020125432A JP 7558702 B2 JP7558702 B2 JP 7558702B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- unit
- shake
- detection signal
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012937 correction Methods 0.000 title claims description 116
- 238000003384 imaging method Methods 0.000 title claims description 92
- 238000000034 method Methods 0.000 title claims description 92
- 238000001514 detection method Methods 0.000 claims description 134
- 238000012545 processing Methods 0.000 claims description 68
- 230000008569 process Effects 0.000 claims description 64
- 238000004364 calculation method Methods 0.000 claims description 55
- 238000005259 measurement Methods 0.000 claims description 43
- 230000006641 stabilisation Effects 0.000 claims description 35
- 238000011105 stabilization Methods 0.000 claims description 35
- 239000013598 vector Substances 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 30
- 230000010354 integration Effects 0.000 claims description 8
- 238000003672 processing method Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 22
- 230000004048 modification Effects 0.000 description 13
- 238000012986 modification Methods 0.000 description 13
- 238000005070 sampling Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 9
- 238000006731 degradation reaction Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 7
- 230000002265 prevention Effects 0.000 description 7
- 230000003068 static effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 238000005295 random walk Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000004044 response Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Structure And Mechanism Of Cameras (AREA)
- Adjustment Of Camera Lenses (AREA)
- Studio Devices (AREA)
Description
本発明は、撮像装置等における画像の像ブレ補正処理の技術に関する。 The present invention relates to a technology for image blur correction processing in an imaging device, etc.
像ブレ補正機能を有する撮像装置では、手振れ量の検出に角速度センサ等の慣性センサが用いられ、撮像装置の振れ検出情報に基づいて撮像光学系の一部または全部を駆動する制御が行われる。慣性センサの出力信号には、個体差による基準電圧のばらつき等の直流成分が含まれ、また温度変化によるドリフトが発生する。 In imaging devices with image stabilization functions, inertial sensors such as angular velocity sensors are used to detect the amount of camera shake, and control is performed to drive part or all of the imaging optical system based on the shake detection information of the imaging device. The output signal of the inertial sensor contains DC components such as variations in reference voltage due to individual differences, and drift occurs due to temperature changes.
角速度センサを使用する場合、直流成分やドリフトは、時間積分により角度を求める際に角度誤差を発生させる要因となる。そこでフィルタ処理によって、角速度センサの出力信号から直流成分やドリフトを除去することで、角度誤差による像ブレ補正精度の低下を抑制する方法がある。特許文献1では、カルマンフィルタを用いて慣性センサの出力信号に含まれる直流成分およびドリフトを除去する方法が開示されている。
When using an angular velocity sensor, DC components and drift can cause angle errors when determining the angle through time integration. There is a method for suppressing the deterioration of image blur correction accuracy due to angle errors by removing DC components and drift from the output signal of the angular velocity sensor through filtering.
従来の技術では、カルマンフィルタのパラメータ値が適切でない場合、像ブレ補正性能等に及ぼす影響が大きくなる可能性がある。例えばパラメータ値が設定者の意図する結果になるように設定者の経験や試行錯誤によって決定される場合には、カルマンフィルタの良し悪しが設定者の力量に左右される。 In conventional technology, if the parameter values of the Kalman filter are not appropriate, there is a possibility that the impact on the image stabilization performance, etc. will be significant. For example, if the parameter values are determined by the experience or trial and error of the person setting the filter so as to achieve the results that the person intends, the quality of the Kalman filter will depend on the skill of the person setting the filter.
また、ドリフトが大きいことで個体ごとの時間経過による慣性センサの出力変動(以降、「揺らぎ」と呼ぶ)が発生する可能性がある。この場合、カルマンフィルタの適切なパラメータ値が個体ごとに異なるジャイロセンサに対して、設定者がセンサ個体ごとにパラメータ値を設定する方法は現実的ではない。よって、揺らぎの大きいジャイロセンサを使用する場合であっても、カルマンフィルタのパラメータ値はセンサ個体ごとに設定されることなく、一律に設定される。その結果、撮像装置の個体ごとに像ブレ補正効果にばらつきが発生した場合には、同一機種でも画像品位に差異が生じる可能性がある。
本発明の目的は、像ブレ補正効果のばらつきを抑え、画像品位を安定させることである。
Furthermore, a large drift may cause fluctuations in the output of the inertial sensor over time for each individual sensor (hereinafter referred to as "fluctuations"). In this case, it is not realistic for a setter to set the parameter values for each individual sensor for a gyro sensor in which the appropriate parameter values for the Kalman filter differ for each individual sensor. Therefore, even when a gyro sensor with large fluctuations is used, the parameter values of the Kalman filter are set uniformly, not for each individual sensor. As a result, if there is variation in the image stabilization effect for each individual imaging device, there is a possibility that differences in image quality may occur even for the same model.
An object of the present invention is to suppress variations in the effect of image blur correction and stabilize image quality.
本発明の一実施形態の像ブレ補正装置は、撮像手段を備えた撮像装置の本体部または該本体部に装着可能な外部装置における振れを検出する検出手段から当該振れの検出信号を取得して像ブレ補正を行う前記撮像装置の像ブレ補正装置であって、前記撮像手段もしくは補正レンズを撮影光軸の方向とは異なる方向に移動させる光学的な像ブレ補正、または前記撮像手段によって撮像された画像に対して画像処理を施す電子的な像ブレ補正を行う像ブレ補正手段と、前記撮像手段によって撮像された複数の画像の間の動きベクトルを求め、当該動きベクトルに基づいて前記撮像装置における振れ量を求める画像処理手段と、前記振れの検出信号から前記振れ量を除去した信号に対してカルマンフィルタによるフィルタ処理を施すことにより、前記振れの検出信号に含まれる直流成分を含む揺らぎとしてのオフセット成分を推定する推定手段と、前記振れの検出信号から前記オフセット成分を減算した信号に基づき前記像ブレ補正手段を制御する制御手段と、を備え、前記推定手段は、前記検出手段の出力の測定時間間隔に対する角度誤差の関係を示す統計データを用いて前記カルマンフィルタのパラメータ値を変更することを特徴とする。
An image blur correction device of one embodiment of the present invention is an image blur correction device for an image blur correction device that performs image blur correction by acquiring a shake detection signal from a detection means that detects shake in a main body of the image blur correction device equipped with an image blur correction means or an external device that can be attached to the main body, and is characterized in that the image blur correction device comprises: an image blur correction means that performs optical image blur correction by moving the image blur correction means or a correction lens in a direction different from a direction of an imaging optical axis, or an electronic image blur correction by applying image processing to an image captured by the image blur correction means; an image processing means that calculates a motion vector between a plurality of images captured by the image blur correction means and calculates an amount of shake in the image blur correction device based on the motion vector; an estimation means that estimates an offset component as a fluctuation including a DC component contained in the shake detection signal by performing filtering processing with a Kalman filter on a signal obtained by removing the shake amount from the shake detection signal; and a control means that controls the image blur correction means based on a signal obtained by subtracting the offset component from the shake detection signal, and the estimation means changes a parameter value of the Kalman filter using statistical data that indicates a relationship between an angular error and a measurement time interval of the output of the detection means.
本発明によれば、像ブレ補正効果のばらつきを抑え、画像品位を安定させることができる。 The present invention makes it possible to reduce variation in the image stabilization effect and stabilize image quality.
以下に本発明の実施形態について、図面を参照して詳細に説明する。
[第1実施形態]
図1(A)は本実施形態の撮像装置1000の中央断面図であり、図1(B)は撮像装置1000の電気的構成を示すブロック図である。図1(A)の紙面に垂直な方向をx方向とし、紙面内にて互いに直交する2方向をそれぞれy方向、z方向と定義する。図1ではカメラ本体部(以下、単に本体部という)1と、本体部1に装着可能な交換レンズ2からなる撮像システムの例を示す。本体部1と交換レンズ2は電気接点11を介して接続可能である。例えば本体部1は、いわゆるミラーレスカメラの構成を有する。尚、ミラーレスカメラに限定されることなく、本発明はレンズ交換式一眼レフカメラや、撮像機能を有する各種電子機器に適用可能である。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
[First embodiment]
FIG. 1A is a central cross-sectional view of an
本体部1は撮像素子6、像ブレ補正部14、振れ検出部15、シャッタ機構16を備える。交換レンズ2は撮像光学系を構成する光学部材と、振れ検出部18を備える。本体部1に交換レンズ2が装着された状態で撮像装置1000は振れ検出部15,18により取得される振れ検出信号に基づいて撮像画像の像ブレ補正を実行可能である。
The
交換レンズ2は光学系3を備えており、レンズ駆動部13によって焦点調節、絞り駆動、像ブレ補正等が行われる。これにより被写体からの光は光学系3を透過し、本体部1の撮像素子6にて良好な像が結像する。レンズ駆動制御はレンズシステム制御部(以下、レンズ制御部という)12が行う。レンズ制御部12はCPU(中央演算処理装置)を備え、交換レンズ2の制御を行う。
The
振れ検出部18は、撮影光軸4の方向である第1の方向と、第1の方向と直交し、かつ互いに直交する第2の方向および第3の方向における交換レンズ2の振れを検出して複数の検出信号をレンズ制御部12に出力する。例えば第1の方向はz方向と平行な方向であり、第2の方向はx方向と平行な方向であり、第3の方向はy方向と平行な方向である。レンズ制御部12はレンズ駆動部13を介して光学系3が備える補正レンズ(シフトレンズ、チルトレンズ等)の制御を行う。
The
本体部1は、レリーズボタン等を用いた撮影者の指示操作を検出する操作検出部10を備える。例えば指示操作にしたがって、撮像素子6は被写体からの光に対して光電変換を行う。画像処理部7は撮像素子6の出力を取得して画像処理を行い、画像データをメモリ部8に記憶する処理を行う。この際、画像処理部7は、被写体像の移動量を検出するためのベクトル演算を行うことができる。ベクトル演算とは、異なる時刻の画像から特徴点の移動方向と距離を求める演算のことである。公知の技術を用いたベクトル演算の結果から、被写体像の移動量やカメラの振れ量を取得できる。具体的な演算方法については割愛する。
The
カメラシステム制御部(以下、カメラ制御部という)5はCPUを備え、撮像装置1000の制御を統括する。カメラ制御部5は、本体部1に交換レンズ2が装着された状態にて電気接点11を介してレンズ制御部12と通信しつつ、連携して撮像システムの制御を行う。撮影前のライブビュー表示はカメラ制御部5の制御下で表示部9により行われる。表示部9は本体部1の背面に設けられた液晶式表示部9aと、ファインダ内に表示デバイスを有する電子ビューファインダ9bから構成される。メモリ部8は記憶媒体を有し、撮影により取得された画像データが記憶媒体に記憶される。
The camera system control unit (hereinafter referred to as the camera control unit) 5 has a CPU and controls the
シャッタ機構16はカメラ制御部5により、シャッタ駆動部17を介して駆動制御される。撮影者が設定した撮影秒時、またはカメラ制御部5が決定した撮影秒時にしたがって撮像素子6の露光時間が制御される。
The
像ブレ補正部14は、カメラ制御部5の制御指令にしたがって撮像素子6を移動させることにより像ブレ補正を行う。像ブレ補正部14は、本体部1の振れ検出部15の出力から算出された出力補正値に基づいて、例えば交換レンズ2の撮影光軸4に直交する第2または第3の方向に撮像素子6を移動させる。これにより、撮影者の手振れ等によるカメラ振れに起因する像ブレを補正することができる。
The image
振れ検出部15は3方向における本体部1の振れを検出し、複数の振れ検出信号をカメラ制御部5に出力する。例えば振れ検出部15は角速度センサを有する。カメラ制御部5は振れ検出部15の出力を取得し、その出力補正値を算出して、撮影光軸4に対する撮像素子6の移動を制御する。
The
図1の構成例では、撮像素子6の移動制御に基づく像ブレ補正を説明したが、これに限らず、以下の実施形態への適用が可能である。
(1)交換レンズ2が備える補正レンズの駆動制御に基づく光学的な像ブレ補正。
(2)撮像画像に対する画像処理(画像領域の抽出処理)に基づく電子的な像ブレ補正。
(3)図1の構成、または(1)、(2)のいずれかの組み合わせによる複合的な像ブレ補正。
In the configuration example of FIG. 1, image blur correction based on movement control of the
(1) Optical image blur correction based on drive control of a correction lens provided in the
(2) Electronic image blur correction based on image processing of the captured image (image area extraction processing).
(3) A composite image blur correction using the configuration of FIG. 1 or a combination of (1) and (2).
次に、図2を参照して、カメラ制御部5が備えるオフセット推定部5002について詳述する。図2はカメラ制御部5の動作を説明するための機能構成を示すブロック図である。カメラ制御部5は加算器5001,5003と、オフセット推定部5002、積分フィルタ5004、記憶部5100を備える。以下では加算器が行う演算には負値の加算(減算)も含まれるものとする。
Next, the offset
加算器5001は、振れ検出部15が有する角速度センサの出力信号と、画像処理部7にてベクトル演算により算出されるカメラ振れ量の信号を取得し、両信号の差分を演算する。加算器5001は差分信号をオフセット推定部5002に出力する。
The
オフセット推定部5002には、差分信号から振れ検出部15の出力の揺らぎを推定するために、記憶部5100に保存されているデータが入力される。記憶部5100には観測ノイズ分散5101およびシステムノイズ分散5102のデータが記憶されている。これらのデータは、静止時の振れ検出部15の出力の測定時間間隔に対する角度誤差の関係を示すテーブルから算出されるデータであり、その詳細については後述する。
Data stored in the
オフセット推定部5002は、入力信号に基づいてオフセット推定処理を実行する。つまりオフセット推定部5002によって、振れ検出部15の出力に重畳されている揺らぎの信号が取得される。オフセット推定部5002で取得された揺らぎの信号は加算器5003に送られる。
The offset
加算器5003は、振れ検出部15の出力の揺らぎの信号と振れ検出部15の出力信号を取得して減算を行う。振れ検出部15の出力信号から揺らぎの信号を差し引くことで、揺らぎの影響が除去または低減された振れ検出部15の出力信号を取得することができる。積分フィルタ5004は、加算器5003の出力信号に対して時間積分を行うことで、振れ検出部15の出力補正値を取得する。この出力補正値は像ブレ補正部14に入力され、撮像素子6の移動量の制御に用いられる。
The
次に、オフセット推定部5002が行う推定処理について詳述する。オフセットとは、振れ検出部15の出力に含まれる直流成分を含む揺らぎのことである。オフセット推定部5002を線形カルマンフィルタで構成してフィルタ処理を行う例を示す。線形カルマンフィルタは、下記式(1)~式(7)で表すことができる。
式(1)は状態空間表現での動作モデルを表し、式(2)は観測モデルを表す。各記号の意味は以下のとおりである。
A:動作モデルでのシステムマトリクス。
B:入力マトリクス。
C:観測モデルでの出力マトリクス。
εt:プロセスノイズ。
δt:観測ノイズ。
t:離散的な時間。
ut:制御入力。
Equation (1) represents an operation model in a state space representation, and equation (2) represents an observation model. The meanings of each symbol are as follows:
A: System matrix in the operating model.
B: Input matrix.
C: Output matrix in the observation model.
ε t : process noise.
δ t : Observation noise.
t: discrete time.
u t : control input.
本実施形態では、振れ検出部15の出力の揺らぎを推定するため、振れ検出部15の出力が持つオフセットの値をxtとし、振れ検出部15の出力をztとする。更に、εtをシステムノイズとし、δtを観測ノイズとすると、オフセットの値を表すモデルは式(1)における制御入力項であるutがなく、式(1)および式(2)でA=C=1となる以下の1次線形モデルで表すことができる。
上記式(4)における動作モデルのノイズの分散Σxを、システムノイズの分散
オフセットの事前推定値を、
オフセット推定部5002は上記式(10)から式(14)までの演算式を用いて推定演算を行う。推定演算の更新周期の時刻「t-1」でのオフセット推定値
式(13)によって、
観測された振れ検出部15の出力
Observed output of the
また式(14)により、事前誤差分散推定値
以上のように構成されたカルマンフィルタにおいて、システムノイズの分散
図3を参照して、振れ検出部15の出力の測定時間間隔に対する角度誤差の関係を示す統計データに基づくテーブルと、そのテーブルに用いられるアラン分散について詳述する。図3(A)は振れ検出部15の出力の測定時間間隔に対する角度誤差の関係を示すテーブルの例を示す。測定時間間隔τごとに対応するアラン分散σ(τ)の値と、隣り合うデータ間の傾きが表記されている。この例の測定時間間隔τはサンプリング時間Δtまたはその2のべき乗倍である。
Referring to Figure 3, a table based on statistical data showing the relationship of angular error to the measurement time interval of the output of the
図3(B)は両対数グラフであり、横軸は測定時間間隔τを表し、縦軸はアラン分散σ(τ)を表している。また、実線301は静止時の振れ検出部15の出力信号のノイズ特性を示している。アラン分散σ(τ)は、角速度センサ等の慣性センサ出力の周波数安定度の指標として広く用いられており、測定時間間隔τにおける出力のばらつき具合を表したものである。分散という名前がついているが実際には標準偏差である。しかし、一般にσ(τ)はアラン分散と呼ばれている。サンプリング時間Δt、総数N個(ここでは2n個とする)のデータをm個(m=1,2,4,8,・・・,N/2)のグループに分けた場合のアラン分散σ(τ)は、下記式(15)によって求められる。
測定時間間隔τはデータを取得する時間間隔であるので、データ数m個のグループにおけるサンプリング時間と言い換えることができる。よって、図3(B)のアラン分散のグラフから、データを測定時間間隔τでサンプリングした場合の測定データの偏差を読み取ることができる。このとき、実線301の左端にプロットされるデータの測定時間間隔τはデータ取得時のサンプリング時間Δtとなり、それより短い測定時間間隔τの偏差は取得できない。尚、図3(A)に示したテーブルには、式(17)においてm=1~N/2のときのτにおけるアラン分散の値が表記されている。図3(B)の実線301は、そのテーブルデータを両対数グラフ上に表したものである。
The measurement time interval τ is the time interval for acquiring data, so it can be rephrased as the sampling time for a group of m pieces of data. Therefore, from the Allan variance graph in Figure 3(B), the deviation of the measurement data when data is sampled at the measurement time interval τ can be read. In this case, the measurement time interval τ of the data plotted at the left end of the
図3(B)のアラン分散によるノイズ特性を表すグラフからは、サンプリング時間τで信号を測定した場合に、その信号のノイズが示す特徴を知ることができる。一般的に、慣性センサの出力に含まれるノイズには、ホワイトノイズ、1/fノイズ、ランダムウォークノイズがあり、測定時間間隔τを変えることで主だった特徴を示すノイズが変わる。図3(B)にて第1の範囲302で示す傾き「-1/2」の直線部分は、ホワイトノイズの特徴を示す範囲である。また、図3(B)にて第2の範囲303で示す傾き「+1/2」の直線部分はランダムウォークノイズの特徴を示す範囲である。尚、図示しないが、信号に1/fノイズが含まれる場合には、範囲302と範囲303との間に傾き0の直線の範囲が現れることが知られている。
From the graph showing the noise characteristics due to Allan variance in FIG. 3B, the characteristics of the noise in a signal measured at a sampling time τ can be known. In general, noise contained in the output of an inertial sensor includes white noise, 1/f noise, and random walk noise, and the noise that exhibits the main characteristics changes by changing the measurement time interval τ. The straight line portion with a slope of "-1/2" shown in the
図3(B)では実線301で示されるように、1本の連続した曲線になっているが、実際には信号の持つノイズに含まれるホワイトノイズとランダムウォークノイズそれぞれの偏差、すなわちアラン分散を表す線を足し合わせたものである。よって、図3(B)の各傾きの線をそれぞれ延長すれば、その傾きに対応するノイズを測定時間間隔τでサンプリングした場合のアラン分散を読み取ることができる。図3(B)の実線301は、静止時の振れ検出部15の出力信号のノイズ特性を表した線であるが、出力信号自体を観測ノイズと見なせる。そのため、実線301は式(12)の観測ノイズのアラン分散、すなわち観測ノイズのサンプリング時間に対する偏差σzを表した線になる。
In Fig. 3B, as shown by the
また、図3(B)の破線304は静止時の振れ検出部15の出力信号に含まれるランダムウォークノイズ、すなわち揺らぎの分散を表している。これは式(11)のシステムノイズのアラン分散、すなわちシステムノイズのサンプリング時間に対する偏差σxを表した線になる。
3B indicates the random walk noise contained in the output signal of the
よって、これらの線から所望のサンプリング時間に相当するτのアラン分散の値を読み取ることができる。取得したアラン分散の値を式(10)~式(14)にて用いることで、慣性センサ出力に応じたアラン分散からカルマンフィルタのパラメータに相当する各分散を設定することが可能になる。 The value of the Allan variance of τ corresponding to the desired sampling time can be read from these lines. By using the obtained Allan variance value in equations (10) to (14), it becomes possible to set each variance corresponding to the parameters of the Kalman filter from the Allan variance corresponding to the inertial sensor output.
次に図3を用いて、サンプリング時間がΔtである場合の各分散の取得方法について説明する。まず慣性センサの出力ノイズを表す観測ノイズの偏差σzの場合、測定時間間隔τが出力ノイズのサンプリング時間Δtと一致する。そのため、式(15)でτ=Δtの場合のアラン分散から観測ノイズの偏差σzを取得することができる。 Next, a method for obtaining each variance when the sampling time is Δt will be described with reference to Fig. 3. First, in the case of the deviation σz of the observation noise representing the output noise of the inertial sensor, the measurement time interval τ coincides with the sampling time Δt of the output noise. Therefore, the deviation σz of the observation noise can be obtained from the Allan variance when τ = Δt in equation (15).
また、慣性センサの出力ノイズの中の揺らぎを表すシステムノイズの偏差σxの場合、下記式において、測定時間間隔τ=Δtの時の値からアラン分散を求めることができる。
式(15)、式(18)、式(19)により求めたシステムノイズの偏差σxおよび観測ノイズの偏差σzは振れ検出部15の出力に重畳される本体部1の振れ量を除去した信号から得た実際の偏差である。よって、この方法を用いれば、揺らぎの大きなジャイロセンサに対しても個体に合わせたカルマンフィルタのパラメータ値を設定することができる。
The system noise deviation σ x and the observation noise deviation σ z obtained by equations (15), (18), and (19) are actual deviations obtained from a signal obtained by removing the amount of shake of the
本実施形態のカルマンフィルタのパラメータ値については、予め工場等で振れ検出部15が有する角速度センサの静止状態で取得したデータからテーブルを算出する処理が実施される。そのテーブルから算出された各ノイズの分散のデータが記憶部5100に保存される。この方法以外には、撮像装置1000が静止状態の時に取得した角速度センサのデータを用いてテーブルを生成してカルマンフィルタのパラメータ値を算出する方法がある。
For the parameter values of the Kalman filter in this embodiment, a process is carried out in advance at a factory or the like to calculate a table from data acquired when the angular velocity sensor of the
図4、図5を参照して、オフセット推定部5002によって振れ検出部15の出力補正値を取得する処理について詳述する。振れ検出部15の出力補正値とは、振れ検出部15の出力からオフセットを取り除いた出力のことであり、像ブレ補正部14の振れ補正量の目標値に相当する。尚、本実施形態では本体部1内の振れ検出部15の出力に対してオフセット推定を行うが、オフセット推定の対象は交換レンズ2内の振れ検出部18の出力であってもよい。
The process of acquiring the output correction value of the
図4は撮像装置1000の電源が投入された時点から、撮影開始前までの処理を説明するフローチャートであり、撮影者が本体部1の電源をONにすることで開始される。また、図5は出力信号を表した図であり、横軸は時間軸であり、縦軸は角速度を示している。図5(A)は振れ検出部15の出力信号51を表した図である。図5(B)は画像処理部7の動きベクトル情報により取得した本体部1の振れ量52を表した図である。図5(C)は振れ検出部15の出力信号51から本体部1の振れ量52を除去した信号53と、オフセット推定部5002により取得したオフセット成分の推定波形54(白線部参照)を表した図である。図5(D)は振れ検出部15の出力信号51からオフセット成分の推定波形54を除去して得られる波形55を表した図である。
Figure 4 is a flow chart explaining the process from when the power of the
図4のS401でカメラ制御部5は、本体部1の振れ検出部15の出力信号51を取得し、S402の処理に進む。S402でカメラ制御部5は、画像処理部7により動きベクトル情報から本体部1の振れ量52を検出する処理を行った後、S403の処理に進む。動きベクトル情報とは、撮像素子6により取得された複数の画像間の比較に基づく振れ検出情報のことである。この動きベクトル情報により、本体部1の振れ量を検出することができる。
In S401 of FIG. 4, the
S403でカメラ制御部5は、S401で検出された本体部1の振れ検出部15の出力信号51から、S402で検出された本体部1の振れ量52を除去または低減した信号53を取得してから、S404の処理に進む。
In S403, the
S404でオフセット推定部5002は、S403で取得された信号53に含まれるオフセット成分を推定する。オフセット推定部5002は、S403で取得された信号53と、記憶部5100に予め記憶されている観測ノイズ分散5101およびシステムノイズ分散5102のデータを用いてオフセット成分の推定処理を実行する。カルマンフィルタを用いたオフセット成分の推定方法、および観測ノイズ分散5101とシステムノイズ分散5102の求め方について前述の通りであるので、それらの説明を割愛する。図5(C)にて白線部で示される波形54は、オフセット推定部5002が推定したオフセット成分の時間変化を表している。
In S404, the offset
オフセット成分の推定波形54の算出後、S405に進んでカメラ制御部5は、本体部1の振れ検出部15の出力信号51からオフセット成分の推定波形54の信号を減算して図5(D)の角速度波形55を求める。角速度波形55は、出力信号51からオフセット成分の推定波形54が取り除かれたことにより、振れ検出部15が検出した本体部1の振れ量を表した波形となる。
After calculating the estimated
次にS406に進んでカメラ制御部5は、積分フィルタ5004により、S405で取得された角速度波形55に対して時間積分処理を行う。本体部1の角変位量による振れを表した振れ検出部15の出力補正値が取得されて、処理が終了する。
Next, the process proceeds to S406, where the
本実施形態では以上の一連の動作により、フィルタ処理によるオフセット推定において、慣性センサの個体ごとの揺らぎに応じたカルマンフィルタのパラメータ値の設定が可能である。同一機種の撮像装置の像ブレ補正効果のばらつきを抑えることで画像品位の安定化を実現できる。 In this embodiment, the above series of operations allows the parameter values of the Kalman filter to be set according to the fluctuations of each individual inertial sensor in offset estimation using filter processing. By suppressing the variation in the image stabilization effect of imaging devices of the same model, it is possible to stabilize image quality.
[第2実施形態]
次に、本発明の第2実施形態について説明する。本実施形態では、アラン分散の時間変化に応じてパラメータ値を切り替える処理例を示す。本実施形態と第1実施形態との主な相違点は、本実施形態の場合、振れ検出部15の出力に含まれる揺らぎが時間経過と共に変化する場合を考慮して処理を行うことである。第1実施形態と同様の事項については既に使用した符号や記号を流用することにより、それらの詳細な説明を省略して相違点を中心に説明する。このような説明の省略方法は後述の実施形態でも同じである。
[Second embodiment]
Next, a second embodiment of the present invention will be described. In this embodiment, a processing example in which parameter values are switched according to the time change of the Allan variance is shown. The main difference between this embodiment and the first embodiment is that in this embodiment, processing is performed taking into consideration the case in which the fluctuation contained in the output of the
図6を参照して、カメラ制御部5の動作について説明する。図6はカメラ制御部5の動作を説明するための構成例を示すブロック図である。図2との相違点は、テーブル算出部5201および記憶部5100内の判定部5202が設けられている点である。
The operation of the
カメラ制御部5の加算器5001は、振れ検出部15の出力信号と、画像処理部7のベクトル演算により取得されたカメラ振れ量の信号との差分を演算する。取得された差分データはテーブル算出部5201に入力される。テーブル算出処理の詳細については後述する。
The
テーブル算出部5201により取得された観測ノイズ分散のデータおよびシステムノイズ分散のデータは記憶部5100に保存される。保存の際、記憶部5100内の判定部5202は、テーブル算出部5201が算出したシステムノイズ分散の値と、記憶部5100に保存されているシステムノイズ分散5102の値とを比較し、どちらの値を記憶保持するのかを判定する。ここでシステムノイズの分散値のみが比較される理由は、揺らぎの影響を受けて分散値が変化するのはシステムノイズのみであることに拠る。
The data of the observed noise variance and the data of the system noise variance acquired by the
記憶部5100に保存された観測ノイズ分散5101およびシステムノイズ分散5102のデータと、加算器5001で取得された差分データはオフセット推定部5002に入力される。オフセット推定部5002は、振れ検出部15の出力に重畳されるオフセット成分の推定処理を実行する。
The data of the
加算器5003は、オフセット推定部5002で取得された振れ検出部15のオフセット成分を、振れ検出部15の出力から減算することで、揺らぎの影響が除去または低減された振れ検出部15の出力信号を取得する。この出力信号の時間積分を積分フィルタ5004が行い、振れ検出部15の出力補正値が取得されて像ブレ補正部14に入力される。
The
次に図7を参照して、テーブル算出部5201におけるアラン分散を表すテーブルの算出方法について詳述する。このテーブルは、加算器5001の差分波形の測定時間間隔に対する角度誤差の関係を表したテーブルである。以下、アラン分散の取得に必要な測定時間の決定方法と、アラン分散の更新方法について説明する。
Next, referring to FIG. 7, a method for calculating the table representing the Allan variance in the
図7は撮像装置1000の電源投入直後の加算器5001の差分波形71を表すグラフである。横軸は時間軸であり、縦軸は角速度を表す。振れ検出部15が有する角速度センサには、電源投入直後に起動ドリフトと呼ばれる温度ドリフトが生じており、範囲72で示すようにセンサ出力に低周波数成分が重畳している。この起動ドリフトは時間経過につれて影響が小さくなるので、低周波数成分の重畳も時間経過につれて解消する。起動ドリフトが解消されるまでの間、ドリフトによる揺らぎの大きさが変化し続けるので、システムノイズの偏差も時間経過と共に変化する。
Figure 7 is a graph showing a
時間経過と共に変化するシステムノイズの偏差を取得するために、テーブル算出部5201は撮像装置1000の電源投入直後から加算器5001の差分波形データを取り溜めていく。所定時間(s秒と記す)が経過した後、その差分波形データのアラン分散からシステムノイズの偏差の取得が開始される。ここでs秒は、システムノイズの偏差の取得に必要な測定時間である。システムノイズの偏差を取得する際には、併せて観測ノイズの偏差も取得される。s秒間の測定により得られるアラン分散の最大測定時間間隔はs/2秒である。しかし、最大測定時間間隔で求めたアラン分散は2グループのみの差分で求めた値であるため、偏差を表す値としての精度は所定の精度より低い。よって測定時間であるs秒については、システムノイズの偏差を得る上で必要な精度が十分に得られる時間に設定される。また、揺らぎの大きさは時間経過とともに変化するので、その変化に合わせてシステムノイズの偏差の値を更新していかなければならない。図7に示す時間Tは、テーブル算出部5201が加算器5001から差分波形データを取得して始めた時点からの経過時間を表しており、sに対して「T≧s」の関係である。T秒経過の後、テーブル算出部5201は、振れ検出部15のサンプリング時間に合わせて随時T-Δs秒間のアラン分散を算出し、システムノイズおよび観測ノイズの偏差を取得するとともに、更新を続行する。
In order to obtain the system noise deviation that changes over time, the
図8を参照して、カメラ制御部5がオフセット推定部5002によって振れ検出部15の出力補正値を取得するまでの一連の処理について詳述する。図8は撮像装置1000の電源が投入されてから、撮影開始前までの処理を説明するフローチャートである。図6のフローチャートに示す処理と同じ処理に関しては、図6と同じステップ番号を使用することで、それらの詳細な説明を割愛する。
Referring to FIG. 8, a detailed description will be given of a series of processes until the
S401からS403の処理後、S801の処理に進む。S801では、撮像装置1000の電源投入後、カメラ制御部5は経過時間Tと測定時間s秒とを比較する。経過時間Tはカメラ制御部5内のタイマーで計測される。経過時間Tに関し、測定時間s秒が経過したかどうかについて判定が行われる。「T≧s」と判定された場合、S802の処理に進み、「T<s」と判定された場合にはS801の判定処理が繰り返される。
After the processes of S401 to S403, the process proceeds to S801. In S801, after the
S802でテーブル算出部5201は、経過時間Tからその直前のs秒間における加算器5001の差分波形データを用いてアラン分散を算出し、観測ノイズおよびシステムノイズの偏差から各分散を取得する。アラン分散の算出および各ノイズの分散の取得方法については前述の通りである。観測ノイズの分散とシステムノイズの分散の取得処理後にS404の処理へ進む。
In S802, the
S406の次のS803で判定部5202は、S802で取得されたシステムノイズ分散と、記憶部5100に記憶されているシステムノイズ分散5102との差分値を取得し、差分値が閾値以下であるか否かを判定する。この閾値は、S802で取得されたシステムノイズの分散値が記憶部5100内のシステムノイズの分散値に収束したことが判断できる値に設定されている。取得された差分値が閾値より大きいと判定された場合、S804の処理に進み、また差分値が閾値以下であると判定された場合には一連の処理を終了する。尚、今回取得された分散値と前回取得された分散値との差分値を閾値と比較する方法に限定されず、上記分散値への収束が判断できる方法であればよい。
In S803 following S406, the
S804では、記憶部5100に保存されている観測ノイズ分散5101およびシステムノイズ分散5102のデータ値を、S802で取得された分散値により更新する処理が実行された後、S802へ移行する。
In S804, a process is executed to update the data values of the
本実施形態では、振れ検出部15の出力に含まれる揺らぎが時間経過とともに変化する場合において、振れ検出部15の出力に合わせてフィルタ手段(カルマンフィルタ)のパラメータ値を随時更新する処理が行われる。同一機種の撮像装置の像ブレ補正効果のばらつきを抑えることで画像品位を安定させることができる。
In this embodiment, when the fluctuations contained in the output of the
[第3実施形態]
図9から図17を参照して、本発明の第3実施形態について説明する。本実施形態では前記実施形態と同様の像ブレ補正装置を有し、長秒露光や超望遠撮影において、像ブレ補正性能の低下を抑制可能な撮像装置の例を示す。従来技術では、振動検出センサの特性に応じた、より正確な像ブレ補正の制御が困難であり、また振動検出センサの出力誤差のみに対する正確な制御ができない。
[Third embodiment]
A third embodiment of the present invention will be described with reference to Fig. 9 to Fig. 17. In this embodiment, an example of an imaging apparatus having an image stabilization device similar to that of the above-mentioned embodiment and capable of suppressing degradation of image stabilization performance in long exposure or super telephoto shooting is shown. In the conventional technology, it is difficult to control image stabilization more accurately in accordance with the characteristics of the vibration detection sensor, and it is also not possible to perform accurate control only for the output error of the vibration detection sensor.
本実施形態では、角速度センサの出力誤差を起因とする、像ブレ補正性能の低下への対策としてアラン分散と露光時間と焦点距離に基づいて、予測される誤差が閾値以上である場合にブレ画像生成防止処理が行われる。以下に撮像光学系および映像処理装置を備える撮像装置の例を説明する。 In this embodiment, as a measure against degradation of image blur correction performance caused by output error of the angular velocity sensor, a blurred image generation prevention process is performed when a predicted error is equal to or greater than a threshold value based on the Allan variance, exposure time, and focal length. An example of an imaging device equipped with an imaging optical system and an image processing device is described below.
図9は、撮像装置100の構成を示すブロック図である。撮像装置100はデジタルカメラであり、本体部101と、本体部101に装着可能な交換レンズ102とで構成される。本体部101はその内部に撮像素子、像ブレ補正部、シャッタ機構部等を備える。
Figure 9 is a block diagram showing the configuration of the
本体部101が備えるカメラCPU201は撮像装置100の制御を統括し、レリーズボタン104等を用いた撮影者による指示操作に応答して、図9に示す各構成部を制御する。
The
被写体からの光は、図9に示す撮影光軸214に沿って撮像光学系213を通過して撮像素子210に入射する。撮像素子210はCMOS(相補型金属酸化膜半導体)イメージセンサ等であり、入力光束に応答して光像に対応する電気信号を出力する。撮像素子210から出力された信号は画像処理部で画像処理が行われ、生成された画像データは記憶部に記憶される。フォーカルプレーンシャッタ212は、撮像素子210に入射する光の遮蔽状態を制御する。フォーカルプレーンシャッタ212および撮像素子210はカメラCPU201の制御信号にしたがって駆動される。
Light from the subject passes through the imaging
本体部101は振動センサ部202を備える。振動センサ部202が有する角速度センサは、本体部101に加わる振動から角速度を検出する。角速度検出信号はオフセット補正部203に入力される。オフセット補正部203は、複数の撮像画像から取得される動きベクトル情報を参照し、角速度センサに発生するオフセットを補正する。
The
演算部204は、オフセット補正部203により補正された角速度信号を取得し、1階の時間積分等を行って目標値を演算する。演算部204は角度信号に変換された信号から、像ブレ補正機構に対する補正量を算出する。制御部205は、演算部204が算出した補正量(角度情報)に基づき、像ブレ補正機構を駆動する補正部211を制御する。補正部211は、制御部205の制御信号にしたがって、矢印211(a)で示すように、撮影光軸214と直交する方向に撮像素子210を駆動させる。本体部101の振れにより撮像素子210の撮像面で生じる像ブレを補正することが可能である。
The
振動センサの特性算出部206は、オフセット補正部203により補正された角速度信号に基づいて振動センサのノイズ特性の算出処理を行う。振動センサの積算誤差演算部207は特性算出部206により算出されたノイズ特性と、撮影者が設定した露光時間および焦点距離の情報に基づいて積算誤差を算出し、撮影条件における画像のブレ量を予測する。撮影者が設定した露光時間と焦点距離の情報はカメラCPU201から取得される。
The vibration sensor characteristic calculation unit 206 performs a calculation process of the noise characteristics of the vibration sensor based on the angular velocity signal corrected by the offset
判断部208はブレ画像生成の判断処理を行う。例えば判断部208は、積算誤差演算部207が演算した画像のブレ量の予測値を閾値と比較し、予測値が閾値以上であるか否かを判断する。ブレ画像防止処理部209は、積算誤差演算部207により得られた画像のブレ量の予測結果から判断部208により画像ブレの大きさが閾値以上であると判断された場合、ブレ画像生成を抑制または防止するための指令をカメラCPU201に送る。カメラCPU201は、ブレ画像防止処理部209からの指令にしたがってブレ画像生成の抑制または防止の処理を実行する。
The
図10から図12は角速度センサのオフセット補正に関する説明図である。図10はオフセット補正部203の動作を説明するためのブロック図である。オフセット補正部203は動きベクトル検出部1301、乗算部1302、除算部1304を備える。
Figures 10 to 12 are explanatory diagrams regarding offset correction of an angular velocity sensor. Figure 10 is a block diagram for explaining the operation of the offset
乗算部1302は、振動センサ部202が有する角速度センサの出力信号と、動きベクトル検出部1301から出力された動きベクトル情報を取得して乗算を行う。乗算部1302で演算される偏差1303(eと記す)は、角速度センサに重畳されるオフセット量に相当する。除算部1304は偏差eの情報を取得し、角速度センサの出力に対し、偏差eに応じた除算を行うことで、オフセット量が除算された角速度信号が生成される。
The
図11(A)、図11(B)は、静定時の角速度センサの出力波形例を示すグラフである。縦軸は角速度信号を表し、横軸は時間軸である。図11(A)中のグラフ線305は角速度センサにオフセットが発生している状態を示している。オフセットが発生している状態において、撮像装置の振れが小さい静定状態でも本来は発生しない変動をもつ信号を角速度センサが出力する可能性がある。そのため、不要な信号成分を含む検出信号に基づいて像ブレ補正が実行された場合、誤った像ブレ補正が行われることで像ブレを有する画像が取得されてしまう。これに対して、図11(B)中のグラフ線306は、オフセット補正処理が施された角速度センサの波形を示している。グラフ線306の波形は、図11(A)中のグラフ線305の波形に対して変動の少ない波形となっている。
11(A) and 11(B) are graphs showing examples of output waveforms of an angular velocity sensor in a static state. The vertical axis represents the angular velocity signal, and the horizontal axis represents the time axis.
オフセット補正により生成された角速度センサにかかわる信号(グラフ線306参照)、つまり、オフセットが低減された角速度センサの信号を出力することができ、像ブレ補正性能の低下を抑制可能である。 It is possible to output a signal related to the angular velocity sensor generated by offset correction (see graph line 306), i.e., a signal from the angular velocity sensor with reduced offset, thereby suppressing degradation of image stabilization performance.
図12(A)は角度信号の時間変化を示し、横軸は時間軸であり、縦軸は角度軸である。グラフ線307で示す波形は、図11(B)にグラフ線306で示すオフセット補正後の角速度信号の波形に対して演算部204(図9)が積分処理を行った角度信号を示している。オフセット補正における演算処理等の遅れが発生した場合、角速度センサの補正残りが発生し、出力信号に誤差が発生し得る。図12(A)中のグラフ線307で示す波形は、出力誤差を含んだ角速度信号を積分した値を示しており、本来では発生しない角度揺らぎが確認できる。この角度揺らぎは、積分時間に対する積分後誤差に相当する。角速度センサの出力誤差により発生する角度揺らぎが及ぼす影響について、図12(B)を参照して詳細に説明する。
Figure 12 (A) shows the change in the angle signal over time, with the horizontal axis being the time axis and the vertical axis being the angle axis. The waveform shown by
図12(B)は、撮像装置100にて静止画撮影を行う際の撮影シーケンス図である。各記号の意味は以下のとおりである。
・RLS:レリーズボタン104が押下されたときに出力される信号。
・SIG_A:図9中のフォーカルプレーンシャッタ212の先幕駆動信号。
・SIG_B:図9中のフォーカルプレーンシャッタ212の後幕駆動信号。
・SIG_deg:角速度の出力誤差を含んだ信号を積分した角度波形を表し、図12(A)中のグラフ線307の波形に相当する。
時間軸において複数の時刻t1~t4を示す。第1の期間Tv_Aは時刻t2から時刻t3までの期間であり、第2の期間Tv_Bは時刻t2から時刻t4までの期間である。Tv_Aの期間長よりもTv_Bの期間長の方が大きいものとする。
12B is a shooting sequence diagram when still image shooting is performed by the
RLS: A signal that is output when the
SIG_A: a front curtain drive signal for the
SIG_B: rear curtain drive signal for the
SIG_deg: represents an angular waveform obtained by integrating a signal including an output error of the angular velocity, and corresponds to the waveform of
A plurality of times t1 to t4 are shown on the time axis. A first period Tv_A is the period from time t2 to time t3, and a second period Tv_B is the period from time t2 to time t4. It is assumed that the period length of Tv_B is longer than the period length of Tv_A.
図12(B)中の時刻t1でユーザがレリーズボタン104を押下すると、RLS信号が変化し、撮像装置100は非撮影状態から撮影状態に移行する。RLS信号が変化した後、一定時間後にSIG_A信号が変化し、先幕の駆動が開始される。時刻t2はフォーカルプレーンシャッタ212の先幕駆動開始のタイミングを示している。SIG_A信号の出力時点から一定時間後にSIG_B信号が変化し、フォーカルプレーンシャッタ212の後幕の駆動が開始される。
When the user presses the
撮影者が設定した露光時間に従って、フォーカルプレーンシャッタ212の駆動制御が行われる。図12(B)中の時刻t3は、手振れ等の数秒の撮影条件に関して第1の露光時間の設定に従う、後幕駆動開始のタイミングを示している。期間Tv_Aは、時刻t2から時刻t3までの第1の露光時間に対応する期間である。
The
一方、図12(B)中の時刻t4は、第1の露光時間よりも長い第2の露光時間の設定に従う、後幕駆動開始のタイミングを示している。例えば第2の露光時間は、三脚に撮像装置100を固定した状態等で行われる撮影を想定したときの露光時間である。期間Tv_Bは、時刻t2から時刻t4までの第2の露光時間に対応する期間である。
On the other hand, time t4 in FIG. 12(B) indicates the timing of starting rear curtain drive in accordance with the setting of a second exposure time that is longer than the first exposure time. For example, the second exposure time is an exposure time assuming image capture performed with the
例えば焦点距離100mmのレンズでユーザが手持ち撮影を行う場合、期間Tv_Aに示す様に相対的に短秒(数秒程度)の露光条件であれば、角速度信号の出力誤差を起因とする、角度信号の揺らぎは小さいので像ブレ補正に影響はない。しかし、期間Tv_Bの様に、三脚等にカメラを固定して相対的に長秒の露光条件で撮影を行う場合には、角速度信号の出力誤差を起因とする、角度信号の揺らぎは無視できなくなる。つまり、角度信号の揺らぎの影響によって誤った像ブレ補正が行われると、像ブレを有する画像が生成される可能性がある。 For example, if a user takes a handheld shot with a lens with a focal length of 100 mm, and the exposure conditions are relatively short (several seconds) as shown in period Tv_A, the fluctuations in the angle signal caused by the output error of the angular velocity signal are small and do not affect image blur correction. However, when shooting under relatively long exposure conditions with the camera fixed to a tripod or the like, as in period Tv_B, the fluctuations in the angle signal caused by the output error of the angular velocity signal cannot be ignored. In other words, if incorrect image blur correction is performed due to the influence of the fluctuations in the angle signal, an image with image blur may be generated.
また、期間Tv_Aに示される露光条件であっても、焦点距離が大きい超望遠レンズでユーザが撮影を行う場合には、像ブレ補正機構のわずかな動きであっても増大されて被写体が撮影される。そのため、角速度信号の出力誤差を起因とする角度信号の揺らぎに基づく像ブレ補正機構の動きにより、像ブレを有する画像が生成される可能性がある。 Even under the exposure conditions shown in period Tv_A, if a user takes a photograph with a super telephoto lens with a large focal length, even a slight movement of the image stabilization mechanism is magnified when the subject is photographed. Therefore, an image with image blur may be generated due to the movement of the image stabilization mechanism based on the fluctuation of the angle signal caused by the output error of the angular velocity signal.
この様に、三脚固定による長秒の露光時間での撮影や、超望遠レンズを使用した撮影等においては、角速度センサの出力誤差を起因とする像ブレが発生し得る。角速度センサの出力誤差を起因とする像ブレ補正性能の低下を抑制するためには、事前に角速度センサの出力誤差による角度揺らぎを推定し、撮影条件に応じた画像ブレ量を予測して適切に処理する事が必要である。 In this way, image blurring due to output errors from the angular velocity sensor can occur when shooting with a long exposure time using a fixed tripod or when shooting with a super telephoto lens. In order to prevent degradation of image blurring correction performance caused by output errors from the angular velocity sensor, it is necessary to estimate the angular fluctuation due to output errors from the angular velocity sensor in advance, predict the amount of image blurring according to the shooting conditions, and handle it appropriately.
図13を参照して、角速度センサの出力誤差による角度揺らぎを推定する方法について説明する。図13(A)のグラフ線401は、図11(B)中にグラフ線306で示したオフセット補正後の角速度センサ出力に対するアラン標準偏差を示している。図13(A)の横軸は、オフセット補正後の角速度センサ出力信号の測定時間間隔τを表す。図13(A)の縦軸は、測定時間間隔τにおけるオフセット補正後の角速度センサ出力信号の標準偏差値στを表す。両軸とも対数スケールで示している。
A method for estimating angular fluctuations due to output errors of the angular velocity sensor will be described with reference to FIG. 13.
アラン標準偏差は角速度センサのノイズ特性を表す量に相当する。アラン標準偏差は角速度センサ等の慣性センサの評価をする際の指標として広く用いられている。アラン標準偏差では評価対象とするセンサ出力信号が有する標準偏差値を時間軸にて評価することができる。本実施形態では、その特徴を利用して角度揺らぎを推定することができる。尚、アラン標準偏差は、一般的にはアラン分散の名称で知られているが、前述のように標準偏差であることを明記するために、本実施形態ではアラン標準偏差と表記する。 The Allan standard deviation corresponds to a quantity that represents the noise characteristics of an angular velocity sensor. The Allan standard deviation is widely used as an index when evaluating inertial sensors such as angular velocity sensors. With the Allan standard deviation, the standard deviation value of the sensor output signal to be evaluated can be evaluated on the time axis. In this embodiment, this characteristic can be used to estimate the angular fluctuation. Note that the Allan standard deviation is generally known as the Allan variance, but in order to clearly state that it is a standard deviation as described above, in this embodiment it is referred to as the Allan standard deviation.
図13(A)にて横軸はオフセット補正後の角速度センサ出力信号の測定時間間隔τである。そのため、下記式(20)で示す様に測定時間間隔τに応じたアラン標準偏差値στに測定時間間隔τを乗算した値を、角速度の積分により得られる角度揺らぎとしてとり扱うことができる。
τ(sec)×στ(dps)=角度揺らぎ推定値(degree)・・・式(20)
図13(A)では測定時間間隔τの単位を「秒」とし、τに応じたアラン標準偏差στの単位を“degrees per second”、つまり1秒あたりの角度としている。一例として、図13(A)中のグラフ線401にて、測定時間間隔τが20秒の位置では、その測定時間間隔に応じたオフセット補正後の角速度センサ出力信号のアラン標準偏差値στが0.0016dpsである。この場合、式(20)を用いた計算結果は以下のようになる。
20(sec)×0.0016(dps)=角度揺らぎ推定値0.032(degree)
つまり20秒間の積分により算出される角度揺らぎ推定値は、0.032(degree)である。
13A, the horizontal axis is the measurement time interval τ of the angular velocity sensor output signal after offset correction. Therefore, as shown in the following formula (20), the value obtained by multiplying the Allan standard deviation value στ corresponding to the measurement time interval τ by the measurement time interval τ can be treated as the angular fluctuation obtained by integrating the angular velocity.
τ(sec)×στ(dps)=Angle fluctuation estimated value (degree) Equation (20)
In Fig. 13A, the unit of the measurement time interval τ is "seconds", and the unit of the Allan standard deviation στ corresponding to τ is "degrees per second", that is, angles per second. As an example, on
20 (sec) x 0.0016 (dps) = estimated angular fluctuation value 0.032 (degrees)
That is, the estimated angle fluctuation value calculated by integrating for 20 seconds is 0.032 (degrees).
図13(B)中のグラフ線402は、図13(A)に示したグラフ線401に基づいて、前記の方法で角度揺らぎ推定値を求めたときのデータを示す。横軸は測定時間間隔τを表し、縦軸は角度揺らぎ推定値を表す。両軸とも対数スケールで示している。前述したように、アラン標準偏差を用いることにより、時間軸におけるオフセット補正後の角速度センサ出力信号の標準偏差値を評価することができる。図13(B)中のグラフ線402で示すように、時間軸における角度揺らぎ推定値を算出することができる。つまりグラフ線402は時間経過による角度揺らぎ推定値を表している。グラフ線402に示すカーブデータを使用することで、露光時間における角度揺らぎ推定値を取得できる。露光時間における角度揺らぎ推定値のデータは、テーブルデータとして撮像装置内の記憶部に予め記憶されている。よって撮影者が設定する撮影条件に基づいて、画像ブレ量の予測が可能となる。
図14を参照して、処理例を説明する。図14は画像ブレ量を予測して、像ブレ補正性能の低下を抑制するカメラシーケンスを説明するフローチャートである。S501で撮像装置100の電源がONされると、S502の処理に進む。S502でオフセット補正部203は角速度センサのオフセット補正処理を実行する。
A processing example will be described with reference to FIG. 14. FIG. 14 is a flowchart illustrating a camera sequence for predicting the amount of image blur and suppressing degradation of image blur correction performance. When the power supply of the
S503で特性算出部206は、S502でオフセット補正された角速度センサの出力信号に基づいて、角速度センサ出力のアラン標準偏差を算出する。露光時間における角度揺らぎ推定値のテーブルデータが作成される。S504では撮影指示の判定処理が実行される。カメラCPU201は、撮影者がレリーズボタン104を押下して撮影指示操作を行ったかどうかを判定する。撮影指示操作が検出された場合、S505の処理に進む。撮影指示操作が検出されない場合には、S503に戻ってテーブルデータの作成を継続する。
In S503, the characteristic calculation unit 206 calculates the Allan standard deviation of the angular velocity sensor output based on the output signal of the angular velocity sensor that was offset corrected in S502. Table data of the estimated angular fluctuation value during the exposure time is created. In S504, a shooting instruction determination process is executed. The
S505でカメラCPU201は、角速度センサの出力誤差により、像ブレ補正性能が低下する撮影条件であるか否かについて判断する。具体的には、三脚固定等による長秒の露光時間での撮影条件(露光時間が閾値より長いこと)、あるいは超望遠レンズを使用した撮影条件(焦点距離が閾値より大きいこと)である。これらの撮影条件は、振動検出手段の特性が支配的な撮影条件に相当する。S505で前記の撮影条件でないことが判断された場合、S506へ進んで処理を終了する。またS505で前記の撮影条件であると判断された場合には、S507の処理に進む。
In S505, the
S507で積算誤差演算部207は、撮影者が設定した露光条件および焦点距離の情報に基づいて画像ブレの予測値を算出する。次のS508で判断部208は、画像ブレの予測値を閾値と比較することにより判定処理を行う。予測値が閾値以下であると判定された場合、S506へ進んで動作を終了する。一方、S508で予測値が閾値より大きいと判定された場合にはS509の処理に進む。
In S507, the integrated
S509でブレ画像防止処理部209は、画像ブレが発生することを警告するための処理を行う指令をカメラCPU201に出力する。カメラCPU201は、例えば表示画面上でのメッセージやスピーカでの音声等によってブレ画像生成を警告する処理を実行する。S509の処理後、S506へ進んで動作を終了する。
In S509, the blurred image
本実施形態では、長秒露光や超望遠撮影等において、角速度センサの出力誤差を起因とする像ブレ補正性能の低下を、ユーザに認識させる事が可能な撮像装置を提供できる。角速度センサのオフセット補正後の出力結果に基づいて、角度誤差の予測テーブルが作成される。その際、オフセット補正にかかる時間が不足し、十分な補正が可能性でない場合もあり得る。その場合には、オフセット補正前の角速度センサの出力信号から、角度誤差の予測テーブルを作成してもよい。オフセット補正前の角速度センサ情報には、オフセットによる揺らぎが発生するが、その情報に基づいて画像ブレの予測値が算出される場合でも、像ブレ補正性能の低下をユーザに認識させる処理は可能である。 In this embodiment, an imaging device can be provided that can make a user aware of a degradation in image stabilization performance caused by an output error of the angular velocity sensor during long exposures, super telephoto shooting, and the like. A prediction table for angular error is created based on the output result of the angular velocity sensor after offset correction. At that time, there may be cases where the time required for offset correction is insufficient and sufficient correction is not possible. In such cases, the prediction table for angular error may be created from the output signal of the angular velocity sensor before offset correction. Although fluctuations due to offset occur in the angular velocity sensor information before offset correction, even when a predicted value of image blur is calculated based on that information, it is possible to process the user to be aware of a degradation in image stabilization performance.
[第3実施形態の変形例1]
図15を参照して、第3実施形態の変形例1について説明する。第3実施形態に対する主な相違点は、角速度信号に対して信号処理を施す点である。図15は、変形例1にて像ブレ補正性能の低下を抑制するための具体的なカメラシーケンスを説明するフローチャートである。図15にて、図14と同様の処理(S501~S508)については既に使用したステップ番号を流用することで、それらの詳細な説明を省略する。このような省略方法は後述の変形例でも同じである。
[
S508にて画像ブレの予測値が閾値より大きいと判定された場合、S601の処理に進む。S601でブレ画像防止処理部209は、角速度センサの出力信号に対して、ハイパスフィルタ(HPF)の時定数を高周波側にシフトさせる処理の実行をカメラCPU201に指示する。この処理は、振動検出手段の信号処理方法を切り替える処理である。これにより、オフセットの要因となる低域の特性がカットされるため、角速度センサの出力誤差を起因とする、角度揺らぎを抑えることができる。尚、HPFの時定数を高周波側へシフトする処理が行われると、手振れ等の低周波数成分を検出できなくなるが、本変形例の制御は三脚固定状態等の手振れが発生し難い条件での撮影において実施される。そのため、HPFを高周波側へシフトする処理による弊害は少ない。
If it is determined in S508 that the predicted value of image blur is greater than the threshold value, the process proceeds to S601. In S601, the blurred image
本変形例によれば、振動検出手段の信号処理方法の変更により、像ブレ補正性能の低下を抑制することが可能である。 According to this modified example, it is possible to suppress the deterioration of image stabilization performance by changing the signal processing method of the vibration detection means.
[第3実施形態の変形例2]
図16を参照して、第3実施形態の変形例2について説明する。第3実施形態に対する主な相違点は、撮影された画像に対して画像処理が実行される点である。図16は、変形例2にて像ブレ補正性能の低下を抑制するための具体的なカメラシーケンスを示すフローチャートである。
[
A second modification of the third embodiment will be described with reference to Fig. 16. The main difference from the third embodiment is that image processing is performed on a captured image. Fig. 16 is a flowchart showing a specific camera sequence for suppressing a decrease in image blur correction performance in the second modification.
S508にて画像ブレの予測値が閾値より大きいと判定された場合、S701の処理に進む。この場合には、撮影される画像が像ブレのある画像となることが事前に判明している。そのため、ユーザが撮影された画像を確認する前に、S701でブレ画像防止処理部209はブレ画像を補正する画像処理の実行をカメラCPU201に指示する。ブレ画像を補正する画像処理には、画像のシャープネスを高める画像処理がある。この動作は、画像処理方法を切り替える動作に相当する。
If it is determined in S508 that the predicted value of image blur is greater than the threshold value, the process proceeds to S701. In this case, it is known in advance that the captured image will be an image with image blur. Therefore, in S701, before the user checks the captured image, the blurred image
本変形例によれば、画像処理方法の変更により、像ブレ補正性能の低下を抑制することが可能である。 According to this modified example, it is possible to suppress the deterioration of image stabilization performance by changing the image processing method.
[第3実施形態の変形例3]
図17を参照して、第3実施形態の変形例3について説明する。第3実施形態に対する主な相違点は、露光時間を変更する処理が実行される点である。図17は、変形例3にて像ブレ補正性能の低下を抑制するための具体的なカメラシーケンスを示すフローチャートである。
[
S508にて画像ブレの予測値が閾値より大きいと判定された場合、S801の処理に進む。S801でブレ画像防止処理部209は、露光時間の自動設定の実行をカメラCPU201に指示する。角度誤差の予測テーブルに基づいて、画像ブレの予測値が閾値以下となるように露光時間を自動で短く設定する処理が実行され、設定された露光時間で撮影が実施される。この処理は、撮像装置の露出条件を切り替える処理に相当する。
If it is determined in S508 that the predicted value of image blur is greater than the threshold value, the process proceeds to S801. In S801, the blurred image
本変形例によれば、露出条件の自動変更により、像ブレ補正性能の低下を抑制することが可能である。 According to this modified example, it is possible to suppress deterioration of image stabilization performance by automatically changing the exposure conditions.
[第4実施形態]
図18を参照して、本発明の第4実施形態について説明する。レンズ交換式カメラシステムにおいて各種のレンズ装置が撮像装置の本体部に装着されて使用される場合でも、像ブレ補正性能が低下することを抑制可能な撮像装置の例を示す。振動センサの出力と動きベクトルに基づいてアラン分散のデータを算出する処理について説明する。
[Fourth embodiment]
A fourth embodiment of the present invention will be described with reference to Fig. 18. An example of an image capture device capable of suppressing degradation of image blur correction performance even when various lens devices are attached to the main body of the image capture device and used in a lens-interchangeable camera system will be described. A process of calculating Allan variance data based on the output of the vibration sensor and the motion vector will be described.
図18は、本体部101と交換レンズ102で構成される撮像装置100の制御に関するブロック図である。交換レンズ102は、レンズCPU1202と、電気接点1203と、撮像光学系213と、レンズ駆動部1215と、振動センサ1216とを有する。
Figure 18 is a block diagram related to the control of the
本体部101と交換レンズ102とが機械的に接続された場合、カメラCPU1201とレンズCPU1202は電気接点1203を介して電気的に接続され、互いに通信が可能となる。レンズCPU1202は、振動センサ1216からの信号とカメラCPU1201からの指令に従ってレンズ駆動部1215を制御する。レンズ駆動部1215は、撮像光学系213の絞りや像ブレ補正レンズをレンズCPU1202の指令にしたがって駆動する。撮像光学系213は撮影光軸214上にフォーカスレンズやズームレンズ、シフトレンズ、絞り等を備えており、被写体からの光を結像させる。
When the
振動センサ1216は、交換レンズ102の振動を検出し、検出信号はレンズCPU1202に送信される。振動センサ1216は角速度センサ等の慣性センサである。本体部101は、カメラCPU1201と、撮像素子210と、フォーカルプレーンシャッタ212と、画像処理部1204と、記憶部1205と、動きベクトル検出部1206と、アラン分散算出部1207を備える。
The
カメラCPU1201はシステム全体の制御を統括する。カメラCPU1201は、レリーズボタン104等を用いた撮影者による撮影指示の操作に応答して、レンズ交換式カメラシステムの各構成部を制御する。
The
フォーカルプレーンシャッタ212は、撮像素子210に入射する光の遮蔽状態を、カメラCPU1201の指令に基づいて制御する。撮像素子210は、撮像光学系213を通過して結像した光に対して光電変換を行い、光学像に対応する電気信号を画像処理部1204へ出力する。
The
画像処理部1204は内部にA/D変換器、ホワイトバランス調整回路、ガンマ補正回路、補間演算回路等を有する。画像処理部1204は所定の画像処理を実行し、記憶用画像(映像)のデジタルデータを生成する。また画像処理部1204は、公知の方法を用いて静止画像データ、動画像データ、音声データの圧縮を行う。
The
記憶部1205は、カメラCPU1201が実行するプログラム等を記憶する半導体記憶装置や、画像処理部1204が生成した各種データを記憶するメモリカード等を含む。半導体記憶装置は、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)である。
The
動きベクトル検出部1206は、画像処理部1204が処理した撮像時刻の異なる複数の画像信号から動きベクトルを検出する。動きベクトルの検出では、時間的に連続した2枚の画像の特徴点を比較することで画像の動きを検出することができる。動きベクトルの検出方法は周知技術であるため、その詳細な説明を割愛する。
The motion
アラン分散算出部1207は、振動センサ1216の検出信号と、動きベクトル検出部1206の検出信号との差分を算出し、差分を用いてアラン分散を算出する。このとき、振動センサ1216の検出信号と動きベクトル検出部1206の検出信号は、それぞれ角速度に換算された上で差分演算が行われる。動きベクトルを角速度に換算する際には、交換レンズ102の焦点距離、動きベクトルの検出に用いた画像の撮影間隔(またはフレームレート)、撮像素子210の画素ピッチ等の情報が用いられる。アラン分散算出部1207により算出されたアラン分散のデータはカメラCPU1201により参照可能である。
The Allan
撮像装置100が三脚等に固定されていない状態、例えば手持ち撮影の準備中に撮像装置100に振れが発生している場合を想定する。この場合、動きベクトル検出部1206が検出した撮像装置100の振れの信号を、振動センサ1216の検出信号から除くことで、振動センサ1216が有する固有のノイズやドリフトの検出が可能になる。カメラCPU1201は振れ検出信号のオフセット補正やドリフトを抑制する信号処理をより正確に行うことが可能である。
Let us assume that the
本実施形態では、交換レンズ102が本体部101に装着された後でもカメラCPU1201は、振動センサ1216に固有のアラン分散のデータをアラン分散算出部1207から取得することができる。よって、各種のレンズ装置が本体部に取り付けられた場合に像ブレ補正性能が低下することを抑制可能な撮像装置を提供できる。尚、撮像装置の本体部に装着される外部装置の例としてレンズ装置を示したが、本発明は振動センサを有するアクセサリ等の外部装置を本体部に装着可能なシステムに適用可能である。
In this embodiment, even after the
[第5実施形態]
図19を参照して、本発明の第5実施形態の撮像装置300について説明する。第4実施形態の撮像装置100との相違点を主に説明する。図19と図18との相違点は、補正部211、補正制御部1208が設けられている点である。また本体部101は第1の振動センサ1209を備えており、交換レンズ102は第2の振動センサ1216を備えている。つまり、振動センサ1209は本体部101の振動を検出し、検出信号をカメラCPU1201に出力する。振動センサ1216は交換レンズ102の振動を検出し、検出信号をレンズCPU1202に出力する。
[Fifth embodiment]
An
補正制御部1208はカメラCPU1201からの制御指令にしたがって補正部211の制御を行い、補正部211は撮像素子210を駆動する。撮像素子210の駆動機構部は、撮像素子210を撮影光軸214と直交する平面内で並進させるとともに、撮影光軸214のまわりに回転させることができるように構成されている。補正制御部1208は、振動センサ1209により検出された振動が相殺されるように、補正部211に制御指令を送って撮像素子210の駆動を行う。
The
アラン分散算出部1307は、振動センサ1209の検出信号の大きさが所定の閾値以下であるかどうかを判定する。所定の閾値としては、例えば撮像装置300が三脚に支持されていると判断するときに用いられる、振動センサ1209の検出信号に対する閾値が設定される。振動センサ1209の検出信号の大きさが閾値以下である場合、アラン分散算出部1307は、振動センサ1216の検出信号を用いてアラン分散を算出する。尚、撮像装置が三脚に支持されているかどうかを振動センサの検出信号を用いて判断する方法には、振動センサの検出信号の大きさが所定の閾値よりも小さい状態が所定の閾値時間以上に亘って継続したか否で判断する方法がある。この技術は周知であるため、詳細な説明を割愛する。また、撮像装置が机等の上に置かれた状態であるかどうかの判断についても同様である。
The Allan
交換レンズ102が本体部101に装着された後に、撮像装置300が静定状態となった場合を想定する。静定状態とは、撮像装置が三脚等に取り付けられている場合や机の上に置かれている場合等のように、振れが殆ど無い状態である。このような場合、振動センサ1216の検出信号を取得してアラン分散を算出することが可能となる。つまり、撮像装置300の本体部101が振動していないときにアラン分散を算出することが可能となるので、振動センサ1216が有する固有のノイズやドリフトの検出が可能になる。レンズCPU1202は振れ検出信号のオフセット補正やドリフトを抑制する信号処理をより正確に行うことが可能である。
Assume that the
本実施形態によれば、各種のレンズ装置を撮像装置の本体部に装着可能な撮像システムにて像ブレ補正性能の低下を抑制可能である。本実施形態では、補正部211の制御に本来用いられる振動センサ1209の検出信号を、撮像装置300の静定状態を判断するために使用する例を示した。これに限らず、本体部101に設けられている他の振動センサの検出信号を使用して撮像装置300の静定状態を判断してもよい。
According to this embodiment, it is possible to suppress deterioration of image blur correction performance in an imaging system in which various lens devices can be attached to the main body of the imaging device. In this embodiment, an example has been shown in which the detection signal of the
前記実施形態によれば、慣性センサの個体ごとの揺らぎに対して、統計データに基づいてフィルタ処理のパラメータ値を適切に設定してオフセット補正を行うことができ、撮像装置の像ブレ補正効果のばらつきを抑制することができる。 According to the above embodiment, offset correction can be performed by appropriately setting filter processing parameter values based on statistical data to account for fluctuations in each individual inertial sensor, thereby suppressing variation in the image stabilization effect of the imaging device.
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形および変更が可能である。前記実施形態および変形例を適宜に組み合わせた構成で実施が可能である。また前記実施形態では振れ検出出力の測定時間間隔に対する角度誤差の関係を示す統計データとしてアラン分散のデータテーブルを用いる例を示した。これに限らず各種の統計処理を利用した実施形態への適用が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and variations are possible within the scope of the gist of the present invention. The present invention can be implemented in a configuration in which the above-mentioned embodiments and modifications are appropriately combined. In addition, in the above-mentioned embodiment, an example was shown in which a data table of Allan variance is used as statistical data showing the relationship of the angle error to the measurement time interval of the shake detection output. However, the present invention is not limited to this, and can be applied to embodiments that utilize various types of statistical processing.
5 カメラ制御部
7 画像処理部
14 像ブレ補正部
15 振れ検出部
5002 オフセット推定部
5100 記憶部
5
Claims (19)
前記撮像手段もしくは補正レンズを撮影光軸の方向とは異なる方向に移動させる光学的な像ブレ補正、または前記撮像手段によって撮像された画像に対して画像処理を施す電子的な像ブレ補正を行う像ブレ補正手段と、
前記撮像手段によって撮像された複数の画像の間の動きベクトルを求め、当該動きベクトルに基づいて前記撮像装置における振れ量を求める画像処理手段と、
前記振れの検出信号から前記振れ量を除去した信号に対してカルマンフィルタによるフィルタ処理を施すことにより、前記振れの検出信号に含まれる直流成分を含む揺らぎとしてのオフセット成分を推定する推定手段と、
前記振れの検出信号から前記オフセット成分を減算した信号に基づき前記像ブレ補正手段を制御する制御手段と、を備え、
前記推定手段は、前記検出手段の出力の測定時間間隔に対する角度誤差の関係を示す統計データを用いて前記カルマンフィルタのパラメータ値を変更する
ことを特徴とする像ブレ補正装置。 An image stabilization device for an imaging device that performs image stabilization by acquiring a detection signal of shake from a detection unit that detects shake in a main body of the imaging device having an imaging unit or in an external device that can be attached to the main body, the image stabilization device comprising:
an image blur correction unit that performs optical image blur correction by moving the image capture unit or the correction lens in a direction different from the direction of the photographing optical axis, or performs electronic image blur correction by performing image processing on the image captured by the image capture unit;
an image processing means for calculating a motion vector between a plurality of images captured by the imaging means and calculating an amount of shake in the imaging device based on the motion vector;
an estimation means for estimating an offset component as a fluctuation including a direct current component contained in the shake detection signal by performing a filtering process using a Kalman filter on a signal obtained by removing the shake amount from the shake detection signal;
a control unit that controls the image blur correction unit based on a signal obtained by subtracting the offset component from the shake detection signal ,
the estimation means changes parameter values of the Kalman filter using statistical data indicating a relationship between an angular error and a measurement time interval of the output of the detection means.
ことを特徴とする請求項1に記載の像ブレ補正装置。 2. The image blur correction device according to claim 1, further comprising an integrating means for obtaining an output correction value of said detecting means by performing time integration on a signal obtained by subtracting the offset component from the shake detection signal, and said control means controls said image blur correction means by using said output correction value .
ことを特徴とする請求項1または請求項2に記載の像ブレ補正装置。 3. The image stabilization apparatus according to claim 1, wherein the estimation means changes the parameter value by using data on a standard deviation related to the offset component as the statistical data.
ことを特徴とする請求項2または請求項3に記載の像ブレ補正装置。 4. The image stabilization apparatus according to claim 2, wherein the parameter value is a variance value of observation noise and a variance value of system noise.
前記推定手段は、更新された前記統計データを取得して前記パラメータ値を変更する
ことを特徴とする請求項1から4のいずれか1項に記載の像ブレ補正装置。 an update means for acquiring the shake detection signal and the motion vector and updating the statistical data;
5. The image stabilization apparatus according to claim 1, wherein the estimation means obtains updated statistical data and changes the parameter value.
前記振れの検出信号および動きベクトルを取得して前記記憶手段に記憶されたシステムノイズの分散値を更新する更新手段を備える
ことを特徴とする請求項4に記載の像ブレ補正装置。 a storage means for storing data on the variance of the observation noise and the variance of the system noise;
5. The image stabilization device according to claim 4, further comprising an update unit that acquires the shake detection signal and the motion vector and updates the variance value of the system noise stored in the storage unit.
ことを特徴とする請求項6に記載の像ブレ補正装置。 7. The image stabilization device according to claim 6, wherein the updater updates the variance value of the system noise when a difference between the variance value of the system noise currently acquired and the variance value of the system noise previously acquired is greater than a threshold value.
ことを特徴とする請求項1から7のいずれか1項に記載の像ブレ補正装置。 8. The image stabilization device according to claim 1, wherein the estimation means changes the parameter value by using the statistical data generated from the detection signal acquired in a stationary state.
ことを特徴とする撮像装置。 An imaging apparatus comprising the image blur correction device according to claim 1 .
前記算出手段により算出されたノイズ特性を用いて、前記振れの検出信号に関して積分時間に対する積算誤差の関係を示すデータを生成する演算手段と、
前記演算手段が生成したデータと撮像素子の露光時間と撮像光学系の焦点距離の情報を取得し、前記積算誤差が閾値以上である場合に、ブレ画像生成を抑制または防止する処理を実行する処理手段と、を備える
ことを特徴とする請求項9に記載の撮像装置。 a calculation means for calculating a noise characteristic related to a signal in which the offset component is suppressed with respect to the vibration detection signal ;
a calculation means for generating data indicating a relationship between an integrated error and an integral time for the shake detection signal by using the noise characteristic calculated by the calculation means;
and a processing means for acquiring the data generated by the calculation means, information on an exposure time of an image sensor and a focal length of an image capturing optical system, and executing a process for suppressing or preventing generation of a blurred image when the integrated error is equal to or greater than a threshold value.
ことを特徴とする請求項10に記載の撮像装置。 The imaging device according to claim 10, characterized in that the processing means executes one or more of a process of issuing a warning about generation of a blurred image, a process of switching a signal processing method for the shake detection signal, a process of switching an image processing method for a captured image, and a process of switching exposure conditions.
ことを特徴とする請求項10または請求項11に記載の撮像装置。 12. The imaging apparatus according to claim 10, wherein the calculation means calculates a standard deviation related to the shake detection signal to generate table data.
ことを特徴とする請求項10から12のいずれか1項に記載の撮像装置。 13. The imaging apparatus according to claim 10, wherein the processing means executes the processing when a predetermined shooting condition is satisfied and the integrated error is equal to or greater than a threshold value.
ことを特徴とする請求項13に記載の撮像装置。 The imaging device according to claim 13 , wherein the calculation means predicts an image blur of the captured image from information on an exposure time and a focal length when the photographing condition is satisfied.
ことを特徴とする請求項13または請求項14に記載の撮像装置。 15. The imaging device according to claim 13, wherein the photographing condition is a photographing condition in which the exposure time is longer than a threshold value, or a photographing condition in which the focal length is greater than a threshold value.
前記算出手段は、前記振れの検出信号の測定時間間隔に対応する標準偏差値に測定時間間隔を乗算して角度の変動を表すデータを算出する
ことを特徴とする請求項10から15のいずれか1項に記載の撮像装置。 The detection means includes an angular velocity sensor,
16. The imaging apparatus according to claim 10, wherein the calculation means calculates data representing a fluctuation in angle by multiplying a standard deviation value corresponding to a measurement time interval of the shake detection signal by the measurement time interval.
前記外部装置が前記本体部に装着された状態にて、前記外部装置が備える検出手段の検出信号と前記動きベクトルとの差分を演算して前記統計データを算出する算出手段を備える
ことを特徴とする請求項9に記載の撮像装置。 An external device having a detection means for detecting vibration can be attached to the main body,
10. The imaging device according to claim 9, further comprising a calculation means for calculating a difference between a detection signal of a detection means included in the external device and the motion vector when the external device is attached to the main body, to calculate the statistical data.
前記本体部の振動を検出する第1の検出手段と、
前記外部装置が前記本体部に装着された状態にて、前記第1の検出手段の検出信号の大きさが閾値以下である場合、前記外部装置が備える第2の検出手段の検出信号を用いて前記統計データを算出する算出手段と、を備える
ことを特徴とする請求項9に記載の撮像装置。 An external device can be attached to the main body,
a first detection means for detecting vibration of the main body portion;
and a calculation means for calculating the statistical data using a detection signal of a second detection means included in the external device when the external device is attached to the main body and a magnitude of the detection signal of the first detection means is equal to or smaller than a threshold value.
前記撮像手段によって撮像された複数の画像の間の動きベクトルを求め、当該動きベクトルに基づいて前記撮像装置における振れ量を求める画像処理工程と、
前記振れの検出信号から前記振れ量を除去した信号に対してカルマンフィルタによるフィルタ処理を施すことにより、前記振れの検出信号に含まれる直流成分を含む揺らぎとしてのオフセット成分を推定する推定工程と、
前記振れの検出信号から前記オフセット成分を減算した信号に基づき前記像ブレ補正手段を制御する制御工程と、を有し、
前記推定工程では、前記検出手段の出力の測定時間間隔に対する角度誤差の関係を示す統計データを用いて前記カルマンフィルタのパラメータ値を変更する処理が行われる
ことを特徴とする制御方法。
A control method executed by an image stabilization device of an imaging device equipped with an imaging means, the image stabilization device comprising an image stabilization means for performing optical image stabilization by moving the imaging means or a correction lens in a direction different from a direction of an optical axis of an image capture, or electronic image stabilization by performing image processing on an image captured by the imaging means, the method comprising:
an image processing step of calculating a motion vector between a plurality of images captured by the imaging means and calculating an amount of shake in the imaging device based on the motion vector;
an estimation step of estimating an offset component as a fluctuation including a DC component contained in the shake detection signal by performing a filtering process using a Kalman filter on a signal obtained by removing the shake amount from the shake detection signal;
a control step of controlling the image blur correction means based on a signal obtained by subtracting the offset component from the shake detection signal ,
a process of changing a parameter value of the Kalman filter using statistical data indicating a relationship between an angle error and a measurement time interval of the output of the detection means, the process comprising: changing a parameter value of the Kalman filter using the statistical data indicating a relationship between an angle error and a measurement time interval of the output of the detection means;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125432A JP7558702B2 (en) | 2020-07-22 | 2020-07-22 | Image blur correction device and control method thereof, and imaging device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020125432A JP7558702B2 (en) | 2020-07-22 | 2020-07-22 | Image blur correction device and control method thereof, and imaging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022021684A JP2022021684A (en) | 2022-02-03 |
JP7558702B2 true JP7558702B2 (en) | 2024-10-01 |
Family
ID=80782909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020125432A Active JP7558702B2 (en) | 2020-07-22 | 2020-07-22 | Image blur correction device and control method thereof, and imaging device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7558702B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007241126A (en) | 2006-03-10 | 2007-09-20 | Seiko Epson Corp | Imaging apparatus |
JP2009294283A (en) | 2008-06-03 | 2009-12-17 | Nikon Corp | Vibration evaluating circuit, vibration evaluating device and electronic camera |
JP2017212681A (en) | 2016-05-27 | 2017-11-30 | キヤノン株式会社 | Vibration-proof control device, optical equipment, and vibration-proof control program |
JP2018025703A5 (en) | 2016-08-12 | 2019-10-10 | Image blur correction device, imaging device, and image blur correction method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018025703A (en) | 2016-08-12 | 2018-02-15 | キヤノン株式会社 | Shake correction device, optical apparatus, and shake correction correct method |
-
2020
- 2020-07-22 JP JP2020125432A patent/JP7558702B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007241126A (en) | 2006-03-10 | 2007-09-20 | Seiko Epson Corp | Imaging apparatus |
JP2009294283A (en) | 2008-06-03 | 2009-12-17 | Nikon Corp | Vibration evaluating circuit, vibration evaluating device and electronic camera |
JP2017212681A (en) | 2016-05-27 | 2017-11-30 | キヤノン株式会社 | Vibration-proof control device, optical equipment, and vibration-proof control program |
JP2018025703A5 (en) | 2016-08-12 | 2019-10-10 | Image blur correction device, imaging device, and image blur correction method |
Also Published As
Publication number | Publication date |
---|---|
JP2022021684A (en) | 2022-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6017381B2 (en) | Image blur correction apparatus and imaging apparatus | |
US20190174062A1 (en) | Image stabilization apparatus, optical apparatus, and image stabilization method | |
CN107040711B (en) | Image stabilization apparatus and control method thereof | |
JP2017212681A (en) | Vibration-proof control device, optical equipment, and vibration-proof control program | |
JP6961500B2 (en) | Image shake correction device and its control method, imaging device | |
JP6543946B2 (en) | Shake correction device, camera and electronic device | |
JP6401494B2 (en) | Blur correction apparatus, blur correction method and program, and imaging apparatus | |
CN111953891B (en) | Control apparatus, lens apparatus, image pickup apparatus, control method, and storage medium | |
JP6171575B2 (en) | Blur correction device and optical apparatus | |
JP2016171541A (en) | Motion vector detector, dynamic body angular speed calculation device, imaging apparatus and lens device | |
JP7558702B2 (en) | Image blur correction device and control method thereof, and imaging device | |
JP2019216374A (en) | Imaging apparatus and control method therefor | |
JP6268981B2 (en) | Blur correction device, interchangeable lens and camera | |
JP6171576B2 (en) | Blur correction device and optical apparatus | |
JP7426841B2 (en) | Image blur correction device, its control method, program, storage medium | |
JP7204855B2 (en) | IMAGE STABILIZATION DEVICE AND CONTROL METHOD THEREOF, IMAGING DEVICE | |
JP7356272B2 (en) | Image blur information acquisition device and method, image blur correction device, program, storage medium | |
JP6717396B2 (en) | Image stabilization apparatus and image pickup apparatus | |
JP7308672B2 (en) | IMAGE STABILIZER AND CONTROL METHOD THEREOF, IMAGING SYSTEM, AND PROGRAM | |
JP7254555B2 (en) | IMAGING DEVICE AND METHOD OF CONTROLLING IMAGING DEVICE | |
JP7073078B2 (en) | Image pickup device and its control method | |
JP7506500B2 (en) | Image blur correction device and method, and imaging device | |
JP6590013B2 (en) | Interchangeable lens and imaging device | |
JP6778014B2 (en) | Imaging device and its control method, program, storage medium | |
JP6485499B2 (en) | Blur correction device and optical apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240528 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240723 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240918 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7558702 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |