[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7558515B2 - Wavelength gain compensator and optical amplification system - Google Patents

Wavelength gain compensator and optical amplification system Download PDF

Info

Publication number
JP7558515B2
JP7558515B2 JP2021069859A JP2021069859A JP7558515B2 JP 7558515 B2 JP7558515 B2 JP 7558515B2 JP 2021069859 A JP2021069859 A JP 2021069859A JP 2021069859 A JP2021069859 A JP 2021069859A JP 7558515 B2 JP7558515 B2 JP 7558515B2
Authority
JP
Japan
Prior art keywords
wavelength
gain
waveguide
core
gain compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021069859A
Other languages
Japanese (ja)
Other versions
JP2022164395A (en
Inventor
崇嘉 森
泰志 坂本
諒太 今田
和秀 中島
剛 藤澤
晋聖 齊藤
孝憲 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Original Assignee
Hokkaido University NUC
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Nippon Telegraph and Telephone Corp filed Critical Hokkaido University NUC
Priority to JP2021069859A priority Critical patent/JP7558515B2/en
Publication of JP2022164395A publication Critical patent/JP2022164395A/en
Application granted granted Critical
Publication of JP7558515B2 publication Critical patent/JP7558515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Description

本開示は、波長利得差を補償する波長利得補償器及びこれを用いた光増幅システムに関する。 This disclosure relates to a wavelength gain compensator that compensates for wavelength gain differences and an optical amplification system using the same.

マルチコア又はマルチモードなどの空間多重を用いた空間多重伝送においては、光増幅器内の空間チャンネル間利得差や各空間チャンネルの利得の波長依存性が大きな問題となる。そのため、空間チャンネル(コア、モード)ごとに、波長利得差を補償する空間光学系による利得等化器が提案されている(例えば、非特許文献1参照。)。 In spatial multiplexing transmission using spatial multiplexing such as multi-core or multi-mode, the gain difference between spatial channels in an optical amplifier and the wavelength dependency of the gain of each spatial channel become major problems. For this reason, a gain equalizer using a spatial optical system that compensates for the wavelength gain difference for each spatial channel (core, mode) has been proposed (see, for example, Non-Patent Document 1).

R. A. Betts et al., “Split-beam Fourier filter and its application in a gain-flattened EDFA,” OFC’95 Technical Digest, pp.80-81, 1995.R. A. Betts et al. , “Split-beam Fourier filter and its application in a gain-flattened EDFA,” OFC’95 Technical Digest, pp. 80-81, 1995.

非特許文献1は、空間チャンネル(コア、モード)ごとに空間光学系が必要となるため、大型化が生じるという課題がある。そこで、本開示は、波長利得差の補償を、小型のデバイスで実現することを目的とする。 Non-Patent Document 1 has the problem of requiring a spatial optical system for each spatial channel (core, mode), resulting in large size. Therefore, the present disclosure aims to realize compensation for wavelength gain difference using a small device.

本開示の波長利得補償器は、
第1の導波路と第2の導波路を結合する3以上の結合部と、
前記結合部の間に配置され、前記第1の導波路と前記第2の導波路が結合せずかつ前記第1の導波路と前記第2の導波路の間で導波路長差を生じさせる複数の遅延部と、
を備え、
前記結合部における結合長の比率、前記遅延部における導波路長差、及び前記結合長の総和が、設定されたスペクトル形状と整合するように設定されている。
The wavelength gain compensator of the present disclosure comprises:
three or more coupling portions that couple the first waveguide and the second waveguide;
a plurality of delay sections disposed between the coupling sections, the first waveguide and the second waveguide not being coupled to each other and causing a waveguide length difference between the first waveguide and the second waveguide;
Equipped with
The ratio of the coupling lengths in the coupling section, the waveguide length difference in the delay section, and the sum of the coupling lengths are set to match a set spectral shape.

本開示の光増幅システムは、
複数のモードを有する波長多重信号を増幅するマルチモード光増幅器と、
増幅後の波長多重信号をモードごとに分波するモード分波器と、
前記モード分波器で分波された波長多重信号ごとに波長間での利得差を補償する、本開示の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するモード間利得補償器と、
前記モード間利得補償器からの波長多重信号を、前記モード分波器で分波前のモードに変換し、合波する、モード合波器と、
を備えるマルチモード光増幅システムである。
The optical amplification system of the present disclosure comprises:
a multimode optical amplifier for amplifying a wavelength-multiplexed signal having a plurality of modes;
a mode demultiplexer that demultiplexes the amplified wavelength multiplexed signal into individual modes;
a wavelength gain compensator according to the present disclosure that compensates for a gain difference between wavelengths for each wavelength multiplexed signal demultiplexed by the mode demultiplexer;
an inter-mode gain compensator for compensating for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a mode multiplexer that converts the wavelength-multiplexed signal from the inter-modal gain compensator into a mode before demultiplexing by the mode demultiplexer and multiplexes the signal;
A multimode optical amplifier system comprising:

本開示の光増幅システムは、
マルチコアファイバに備わる各コアで伝搬された波長多重信号を増幅するマルチコア光増幅器と、
前記マルチコア光増幅器で増幅された波長多重信号を、マルチコアファイバに備わるコアごとに分波するファンアウトデバイスと、
前記ファンアウトデバイスで分波された波長多重信号ごとに波長間の利得差を補償する、本開示の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するコア間利得補償器と、
前記コア間利得補償器からの波長多重信号を、前記ファンアウトデバイスで分波前のコアに合波する、ファンインデバイスと、
を備えるマルチコア光増幅システムである。
The optical amplification system of the present disclosure comprises:
a multi-core optical amplifier that amplifies a wavelength-multiplexed signal propagated through each core of the multi-core fiber;
a fan-out device that demultiplexes the wavelength-multiplexed signal amplified by the multi-core optical amplifier for each core of a multi-core fiber;
a wavelength gain compensator according to the present disclosure that compensates for a gain difference between wavelengths for each wavelength multiplexed signal demultiplexed by the fan-out device;
an inter-core gain compensator that compensates for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a fan-in device that multiplexes the wavelength-multiplexed signal from the inter-core gain compensator into a core before demultiplexing by the fan-out device;
The multi-core optical amplifier system includes:

本開示の光増幅システムは、
マルチコアファイバに備わる各コアで伝搬された波長多重信号を、コアごとに分波するファンアウトデバイスと、
前記ファンアウトデバイスで分波された波長多重信号ごとに増幅する光増幅器と、
前記光増幅器で増幅された波長多重信号ごとに波長間の利得差を補償する、本開示の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するコア間利得補償器と、
前記コア間利得補償器からの波長多重信号を、前記ファンアウトデバイスで分波前のコアに合波する、ファンインデバイスと、
を備えるマルチコア光増幅システムである。
The optical amplification system of the present disclosure comprises:
A fan-out device that splits wavelength-multiplexed signals propagated through each core of a multicore fiber into individual cores;
an optical amplifier that amplifies each of the wavelength multiplexed signals demultiplexed by the fan-out device;
a wavelength gain compensator according to the present disclosure that compensates for a gain difference between wavelengths for each wavelength multiplexed signal amplified by the optical amplifier;
an inter-core gain compensator that compensates for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a fan-in device that multiplexes the wavelength-multiplexed signal from the inter-core gain compensator into a core before demultiplexing by the fan-out device;
The multi-core optical amplifier system includes:

本開示によれば、2つの導波路を用いて波長利得差の補償を行うことができるため、波長利得差の補償を小型のデバイスで実現することができる。 According to the present disclosure, wavelength gain difference compensation can be achieved using two waveguides, making it possible to achieve wavelength gain difference compensation in a small device.

本開示の利得補償の構成概要図を示す。FIG. 2 shows a schematic diagram of the configuration of gain compensation according to the present disclosure. EDFA及び利得補償器の利得スペクトルの一例を示す。3 shows an example of the gain spectrum of an EDFA and a gain compensator. 本開示の導波路構造概要の一例を示す。1 shows an example of a schematic waveguide structure according to the present disclosure. 透過スペクトル特性の一例であり、(a)は結合長の比率がL:L:L=1:1:4である場合、(b)はL:L:L=1:2:3である場合、(c)はL:L:L=1:3:2である場合を示す。1 shows an example of transmission spectrum characteristics, where (a) shows a case where the coupling length ratio is L1 : L2 : L3 = 1:1:4, (b) shows a case where L1 : L2 : L3 = 1:2:3, and (c) shows a case where L1 : L2 : L3 = 1:3:2. 透過スペクトル特性の一例であり、(a)はΔLが20μmの場合、(b)はΔLが30μmの場合、(c)はΔLが40μmの場合を示す。1 shows an example of transmission spectrum characteristics, where (a) shows a case where ΔLd is 20 μm, (b) shows a case where ΔLd is 30 μm, and (c) shows a case where ΔLd is 40 μm. 透過スペクトル特性の一例を示す。2 shows an example of a transmission spectrum characteristic. EDFAの利得スペクトルT(λ)、EDFAの利得スペクトルの反転スペクトル-T(λ)、波長利得補償で求めたいスペクトルT’(λ)、設計した波長利得補償器の透過スペクトルT(λ)の一例を示す。Illustrated are an example of the EDFA gain spectrum T e (λ), the inverted spectrum −T e (λ) of the EDFA gain spectrum, a spectrum T e ′(λ) to be obtained by wavelength gain compensation, and a transmission spectrum T w (λ) of a designed wavelength gain compensator. 4LPモードEDFAの利得スペクトルの一例を示す。2 shows an example of the gain spectrum of a 4LP mode EDFA. 各モードの最大偏差の一例であり、(a)はLP01モードを示し、(b)はLP11モードを示し、(c)はLP21モードを示し、(d)はLP02モードを示す。1 shows an example of the maximum deviation for each mode, where (a) shows the LP 01 mode, (b) shows the LP 11 mode, (c) shows the LP 21 mode, and (d) shows the LP 02 mode. 4LPモードEDFAに対する各モードの最適パラメータの一例である。1 is an example of optimal parameters for each mode for a 4LP mode EDFA. 最適パラメータを用いた場合に各モードに対して得られる透過スペクトルの一例を示す。An example of the transmission spectrum obtained for each mode when the optimal parameters are used is shown. 本開示の利得補償の構成概要図を示す。FIG. 2 shows a schematic diagram of the configuration of gain compensation according to the present disclosure. 可変光減衰器の構成例を示す。2 shows an example of the configuration of a variable optical attenuator. 本開示の利得補償の構成概要図を示す。FIG. 2 shows a schematic diagram of the configuration of gain compensation according to the present disclosure. 本開示の利得補償の構成概要図を示す。FIG. 2 shows a schematic diagram of the configuration of gain compensation according to the present disclosure.

以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 The following describes in detail the embodiments of the present disclosure with reference to the drawings. Note that the present disclosure is not limited to the embodiments shown below. These implementation examples are merely illustrative, and the present disclosure can be implemented in various forms with various modifications and improvements based on the knowledge of those skilled in the art. Note that components with the same reference numerals in this specification and drawings are mutually identical.

(実施形態例1)
図1に、本開示の利得補償の構成概要図を示す。2モード(LP01モード、LP11モード)を想定した場合、マルチモード光増幅器(MM-EDFA:Multi-mode Erbium-Doped Fiber Amplifier)81の後段のモード分波器(DEMUX:demultiplexer)82により各モードを分波した後、利得補償器83により各モードの利得を補償した後、モード合波器(MUX:multiplexer)84により合波する。ここでは2LPモードとしたときの実施形態例を示すが、モード数が増加した場合も同様に考えることができる。
(Example 1)
1 shows a schematic diagram of the gain compensation configuration of the present disclosure. In the case of two modes (LP01 mode, LP11 mode), each mode is demultiplexed by a mode demultiplexer (DEMUX: demultiplexer) 82 at the rear stage of a multi-mode optical amplifier (MM-EDFA: Multi-mode Erbium-Doped Fiber Amplifier) 81, and then the gain of each mode is compensated by a gain compensator 83, and then the mode multiplexer (MUX: multiplexer) 84 multiplexes the signals. Here, an embodiment example in which 2LP modes are used is shown, but the same can be considered when the number of modes is increased.

図2に示すように、EDFAの利得スペクトルG81は波長に対し利得差が生じる。そこで、本実施形態の利得補償器83は、利得スペクトルG81と逆の利得スペクトルG83を有する波長利得補償器によりこの波長に関する利得差を補償する。本開示では波長利得補償器を導波路構造により実現する。 2, the gain spectrum G 81 of the EDFA has a gain difference with respect to wavelength. Therefore, the gain compensator 83 of this embodiment compensates for this gain difference with respect to wavelength by using a wavelength gain compensator having a gain spectrum G 83 that is the inverse of the gain spectrum G 81. In this disclosure, the wavelength gain compensator is realized by a waveguide structure.

本開示の波長利得補償器の導波路構造概要を図3に示す。波長利得補償器は、導波路111及び導波路112が導波路間隔gで平行に配置され、一方の導波路112から他方の導波路111へ光パワーが移行する結合部を備える。本構造では、2つの導波路(導波路111及び導波路112)の構造は同一である。ここで、結合部において一方の導波路112から他方の導波路111へ光パワーが完全に移行するために必要な平行導波路長に関しては、導波路コア部からクラッド部への電界の染みだし量によって決まる。 The waveguide structure of the wavelength gain compensator of the present disclosure is outlined in FIG. 3. The wavelength gain compensator has a coupling section in which the waveguide 111 and the waveguide 112 are arranged in parallel with a waveguide spacing g, and optical power is transferred from one waveguide 112 to the other waveguide 111. In this structure, the two waveguides (waveguide 111 and waveguide 112) have the same structure. Here, the parallel waveguide length required for complete transfer of optical power from one waveguide 112 to the other waveguide 111 at the coupling section is determined by the amount of electric field seeping from the waveguide core section to the cladding section.

本開示では、N個(N≧3)以上の結合部を有し、結合部間の区間で、導波路111及び導波路112を伝搬する遅延量が異なるよう、N-1個以下の複数の遅延部を有している。ここで、遅延部によって生じる導波路111及び導波路112間の遅延量に相当する導波路長差をΔLとする。本実施形態では、遅延部における導波路111の長さが2Lであり、遅延部における導波路112の長さが2L+ΔLと表すことができ、各結合部間の区間に備わる遅延部の導波路長差がΔLで等しい場合について検討する。 In the present disclosure, the waveguide has N (N≧3) or more coupling parts, and has a plurality of delay parts of N−1 or less so that the delay amount propagating through the waveguide 111 and the waveguide 112 is different in the sections between the coupling parts. Here, the waveguide length difference corresponding to the delay amount between the waveguide 111 and the waveguide 112 caused by the delay parts is ΔL d . In this embodiment, the length of the waveguide 111 in the delay part can be expressed as 2L d and the length of the waveguide 112 in the delay part can be expressed as 2L d + ΔL d , and a case will be considered in which the waveguide length differences of the delay parts provided in the sections between each coupling part are equal to ΔL d .

例えば、導波路111及び112の屈折率差Δが1.0%、導波路111及び112の導波路幅wが4.0μm、導波路111及び112の導波路高さhが5.0μm、導波路111及び112の導波路間隔gが5.0μm、図3に示すLが3710μmであり、結合部が3箇所ある構造を考える。それぞれの結合長をL、L、Lとする。この結合長の組合せを調節することにより、さらに導波路長差ΔLを調節することにより、透過スペクトル特性の形状を調整可能である。 For example, consider a structure in which the refractive index difference Δ between the waveguides 111 and 112 is 1.0%, the waveguide width w of the waveguides 111 and 112 is 4.0 μm, the waveguide height h of the waveguides 111 and 112 is 5.0 μm, the waveguide spacing g of the waveguides 111 and 112 is 5.0 μm, Ld shown in Fig. 3 is 3710 μm, and there are three coupling parts. The respective coupling lengths are L1 , L2 , and L3 . By adjusting the combination of these coupling lengths and further adjusting the waveguide length difference ΔLd , it is possible to adjust the shape of the transmission spectrum characteristics.

図4に、結合長の比率がL:L:L=1:1:4である場合、L:L:L=1:2:3である場合、L:L:L=1:3:2である場合の、透過スペクトル特性の一例を示す。ここで、ΔL=500μm、(L+L+L)=8400μmとした。例えば、図2に示す利得スペクトルG81の波長利得補償(例えば波長帯域1530nm~1565nm)をする場合、L:L:L=1:1:4のとき、図4(a)中の破線の枠内で示すように、目的の利得スペクトルG83に近い振動をもつ透過スペクトル特性が得られることがわかる。 4 shows an example of the transmission spectrum characteristics when the coupling length ratio is L 1 :L 2 :L 3 =1:1:4, L 1 :L 2 :L 3 =1:2:3, and L 1 :L 2 :L 3 =1:3:2. Here, ΔL d =500 μm, (L 1 +L 2 +L 3 )=8400 μm. For example, when performing wavelength gain compensation (for example, wavelength band 1530 nm to 1565 nm) of the gain spectrum G 81 shown in FIG. 2, when L 1 :L 2 :L 3 =1:1:4, it can be seen that a transmission spectrum characteristic having an oscillation close to that of the target gain spectrum G 83 can be obtained, as shown within the dashed frame in FIG. 4(a).

次に、ΔLを調節し、透過スペクトル特性の形状をさらに調整する。
図5に、L:L:L=1:1:4とし、ΔLを20μm、30μm、40μmとした場合の透過スペクトル特性の一例を示す。ΔLが30μmの場合、図5(b)中の破線の枠内で示すように、図2に示す利得スペクトルG83のような目的に近いスペクトル形状が得られることがわかる。
Next, ΔL d is adjusted to further tune the shape of the transmission spectral characteristic.
Fig. 5 shows an example of the transmission spectrum characteristics when L1 : L2 : L3 = 1:1:4 and ΔLd is 20 μm, 30 μm, and 40 μm. When ΔLd is 30 μm, it can be seen that a spectrum shape close to the target one like the gain spectrum G83 shown in Fig. 2 can be obtained, as shown in the dashed line frame in Fig. 5(b).

次に、結合長の総和(L+L+L)の調節を行う。
図6に、(L+L+L)が7800μm、8100μmの場合の透過スペクトル特性の一例を示す。(L+L+L)を調節することにより、スペクトルのピーク位置やピークの大きさを調整することが可能であることが分かる。
Next, the sum of the bond lengths (L 1 +L 2 +L 3 ) is adjusted.
6 shows an example of the transmission spectrum characteristics when ( L1 + L2 + L3 ) is 7800 μm and 8100 μm. It can be seen that it is possible to adjust the position and magnitude of the peak of the spectrum by adjusting ( L1 + L2 + L3 ).

以上により、提案する導波路構造の構造パラメータを調節することにより、EDFAの利得特性に応じた透過スペクトル特性の調節が可能である。なお、利得補償器83に備わる結合部が3箇所である必要はなく、4箇所以上であってもよい。この場合、より透過スペクトル特性の微調整が可能となる。 As described above, by adjusting the structural parameters of the proposed waveguide structure, it is possible to adjust the transmission spectrum characteristics according to the gain characteristics of the EDFA. Note that the number of coupling parts provided in the gain compensator 83 does not need to be three, and four or more coupling parts may be provided. In this case, it is possible to fine-tune the transmission spectrum characteristics.

(実施形態例2)
図7に、EDFAの利得スペクトルT(λ)、EDFAの利得スペクトルの反転スペクトル-T(λ)、波長利得補償で求めたい理想スペクトルT’(λ)、設計した波長利得補償器の透過スペクトルT(λ)の一例を示す。波長λが1.55μmのとき、T(λ)、-T(λ)、T’(λ)、T(λ)は次式で表すことができる。

Figure 0007558515000001
(Example 2 of the embodiment)
7 shows an example of the EDFA gain spectrum T e (λ), the inverted spectrum -T e (λ) of the EDFA gain spectrum, the ideal spectrum T e '(λ) to be obtained by wavelength gain compensation, and the transmission spectrum T w (λ) of the designed wavelength gain compensator. When the wavelength λ is 1.55 μm, T e (λ), -T e (λ), T e '(λ), and T w (λ) can be expressed by the following equations.
Figure 0007558515000001

理想スペクトルT’(λ)に近い(L+L+L)及びΔLを求めることで、理想スペクトルT’(λ)に近いスペクトル形状が得られる。そこで、下式のように、T(λ)とT’(λ)の差の最大偏差を求め、式(2)が最小となるL+L+L及びΔLを求める。

Figure 0007558515000002
By determining ( L1 + L2 + L3 ) and ΔLd that are close to the ideal spectrum Te '(λ), a spectral shape close to the ideal spectrum Te '(λ) can be obtained. Therefore, as shown in the following formula, the maximum deviation of the difference between Tw (λ) and Te '(λ) is determined, and L1 + L2 + L3 and ΔLd that minimize formula (2) are determined.
Figure 0007558515000002

C帯(波長帯域1530nm~1565nm)での利用を想定し、図8に記載の4LPモードEDFAの利得スペクトルをT(λ)とした場合の、L+L+L及びΔLの組み合わせによる式(2)の最大偏差の一例を図9に示す。このときの最適パラメータを図10に示す。図9の最大偏差の算出にあたっては、導波路の屈折率差Δを1.0%、導波路幅wを4.0μm、導波路高さhを5.0μm、導波路間隔gを5.0μmとしている。 Assuming use in the C band (wavelength band 1530 nm to 1565 nm), and assuming that the gain spectrum of the 4LP mode EDFA shown in Fig. 8 is T e (λ), an example of the maximum deviation of formula (2) resulting from a combination of L 1 +L 2 +L 3 and ΔL d is shown in Fig. 9. The optimal parameters in this case are shown in Fig. 10. In calculating the maximum deviation in Fig. 9, the refractive index difference Δ of the waveguide is 1.0%, the waveguide width w is 4.0 μm, the waveguide height h is 5.0 μm, and the waveguide interval g is 5.0 μm.

図11に、図10に示す最適パラメータを用いた場合に得られる透過スペクトル特性の一例を示す。破線は図8に示す利得スペクトルを反転させた理想スペクトルT’(λ)を示す。Δw=0.0μm、+0.1μm、-0.1μmのいずれの透過スペクトル特性も、理想スペクトルの形状に整合させることができている。このため、結合長の比率L:L:L、導波路長差ΔL、結合長の総和(L+L+L)を調整することで、最適パラメータを導出した1.55μmだけでなく、C帯(波長帯域1530nm~1565nm)全体での波長利得補償が可能であることが分かる。したがって、本開示は、各モードに対して構造パラメータを最適化することにより、波長利得差を精度よく補償可能である。 FIG. 11 shows an example of the transmission spectrum characteristic obtained when the optimum parameters shown in FIG. 10 are used. The dashed line shows the ideal spectrum T e '(λ) obtained by inverting the gain spectrum shown in FIG. 8. The transmission spectrum characteristic for any of Δw=0.0 μm, +0.1 μm, and -0.1 μm can be matched to the shape of the ideal spectrum. Therefore, it can be seen that wavelength gain compensation is possible not only for 1.55 μm for which the optimum parameters were derived, but also for the entire C band (wavelength band 1530 nm to 1565 nm) by adjusting the coupling length ratio L 1 :L 2 :L 3 , the waveguide length difference ΔL d , and the sum of the coupling lengths (L 1 +L 2 +L 3 ). Therefore, the present disclosure is capable of accurately compensating for wavelength gain differences by optimizing the structural parameters for each mode.

なお、本明細書においてはガラス系材料を用いた平面光波回路に関する実施形態例を記載したが、その材料は当然ほかのものであってもかまわない。たとえば、SiやInGaAsPなどの半導体、またポリマーなどの有機物を用いた平面光波回路であっても、本明細書記載の実施形態例と同様の効果を得ることができる。 In this specification, examples of embodiments of planar lightwave circuits using glass-based materials are described, but the materials may of course be other materials. For example, similar effects to those of the examples of embodiments described in this specification can be obtained even with planar lightwave circuits using semiconductors such as Si or InGaAsP, or organic materials such as polymers.

また、使用する波長帯域に関しても、本明細書記載の実施形態例では1.5~1.6μm程度としているが、より波長の長い中赤外領域(2μm以上)や可視光帯であっても構わない。 In addition, the wavelength band used in the embodiment described in this specification is approximately 1.5 to 1.6 μm, but it can also be a longer wavelength band such as the mid-infrared region (2 μm or more) or the visible light band.

(実施形態例3)
図12に、本開示の光増幅システムの構成例を示す。図12では、6モード(LP01,LP11a,LP11b,LP21a,LP21b,LP02モード)の利得補償の構成例を示す。6モード対応のマルチモードEDFA81が、6モードを有する波長多重信号を増幅する。その後段のモード分波器82が、増幅後の波長多重信号をモードごとに分波し、各モードを基本モードであるLP01モードに変換する。その後段の波長利得補償器31が、各波長多重信号における波長間の利得差を補償する。ここで、波長利得補償器31は本開示の波長利得補償器であり、波長利得補償器31の透過スペクトル特性は、マルチモードEDFA81におけるモードごとの利得スペクトルを反転させたスペクトル形状を有する。これにより、モードごとに波長利得差の補償(DWG補償)が行われる。その後段の可変光減衰器32は、波長利得補償器31からの波長多重信号間の利得差を補償するモード間利得補償器として機能し、モード間の利得差を補償する。その後段のモード合波器84が、モード分波器82で分波前の6モードに変換し、合波する。なお、マルチモードEDFA81は、マルチモードの光を増幅可能な任意のマルチモード光増幅器を用いることができる。
(Example 3)
FIG. 12 shows a configuration example of an optical amplification system according to the present disclosure. FIG. 12 shows a configuration example of gain compensation for six modes (LP01, LP11a, LP11b, LP21a, LP21b, LP02 modes). A multimode EDFA 81 compatible with six modes amplifies a wavelength multiplexed signal having six modes. A mode demultiplexer 82 at the rear demultiplexes the amplified wavelength multiplexed signal for each mode and converts each mode to the LP01 mode, which is the fundamental mode. A wavelength gain compensator 31 at the rear compensates for the gain difference between wavelengths in each wavelength multiplexed signal. Here, the wavelength gain compensator 31 is the wavelength gain compensator of the present disclosure, and the transmission spectrum characteristic of the wavelength gain compensator 31 has a spectral shape that inverts the gain spectrum for each mode in the multimode EDFA 81. This allows compensation (DWG compensation) for the wavelength gain difference for each mode to be performed. The variable optical attenuator 32 at the downstream side functions as an inter-mode gain compensator that compensates for the gain difference between the wavelength multiplexed signals from the wavelength gain compensator 31, and compensates for the gain difference between the modes. The mode multiplexer 84 at the downstream side converts the signals into the six modes before being separated by the mode demultiplexer 82, and multiplexes them. The multimode EDFA 81 can be any multimode optical amplifier that can amplify multimode light.

可変光減衰器32は、光強度を調整可能な任意の構成を採用することができ、例えば、図13に示すような、ヒーター調節部323を有するマッハツェンダー型の導波路321及び322により実現可能である。また、モード分波器82は、LP01モードに変換しない、モードごとに分波する機能のみであってもよい。この場合、モード合波器84は、LP01モードをモード分波器82で分波前の6モードに変換しない、各モードを合波する機能のみであってもよい。 The variable optical attenuator 32 may have any configuration capable of adjusting the optical intensity, and may be realized, for example, by Mach-Zehnder type waveguides 321 and 322 having a heater adjustment unit 323 as shown in FIG. 13. The mode splitter 82 may only have the function of splitting each mode without converting to the LP01 mode. In this case, the mode combiner 84 may only have the function of combining each mode without converting the LP01 mode to the 6 modes before splitting by the mode splitter 82.

また、図14のように、本開示の光増幅システムはマルチモードではなくマルチコア増幅器91にも適用可能である。マルチコア光増幅器91の後段のファンアウトデバイス92によりコアごとに分離し、それぞれの利得差を利得補償器93により補償する。利得補償器93では、波長利得補償器41で波長間の利得差を補償し、その後可変光減衰器42でコア間の利得差を補償する。ここで、波長利得補償器41は本開示の波長利得補償器であり、波長利得補償器41の透過スペクトル特性は、マルチコア光増幅器91におけるコアごとの利得スペクトルを反転させたスペクトル形状を有する。また可変光減衰器42は、波長利得補償器41からの波長多重信号間の利得差を補償するコア間利得補償器として機能する。利得補償器93での補償の後、ファンインデバイス94によりマルチコアファイバに合波する。ファンインデバイス94では、利得補償器93からの波長多重信号を、ファンアウトデバイス92で分波前のコアに合波する。 As shown in FIG. 14, the optical amplification system of the present disclosure can be applied to a multi-core amplifier 91 instead of a multi-mode amplifier. The multi-core optical amplifier 91 is separated into individual cores by a fan-out device 92 at the rear stage thereof, and the respective gain differences are compensated for by a gain compensator 93. In the gain compensator 93, the wavelength gain compensator 41 compensates for the gain difference between wavelengths, and then the variable optical attenuator 42 compensates for the gain difference between cores. Here, the wavelength gain compensator 41 is the wavelength gain compensator of the present disclosure, and the transmission spectrum characteristic of the wavelength gain compensator 41 has a spectral shape that is an inversion of the gain spectrum for each core in the multi-core optical amplifier 91. The variable optical attenuator 42 also functions as an inter-core gain compensator that compensates for the gain difference between the wavelength multiplexed signals from the wavelength gain compensator 41. After compensation by the gain compensator 93, the signals are multiplexed into a multi-core fiber by a fan-in device 94. In the fan-in device 94, the wavelength multiplexed signal from the gain compensator 93 is multiplexed into the core before demultiplexing by the fan-out device 92.

また、本開示の光増幅システムは、図14に示す構成に代えて、図15のように、4コアファイバの後段のファンアウトデバイス92により信号を分波した後にEDFA43を配置し、それぞれの信号が波長利得補償器(DWG補償)41を通り、その後コア間の利得差を補償するための可変光減衰器42を通り、その後、ファンインデバイス94により合波しても良い。ここで、波長利得補償器41の透過スペクトル特性は、EDFA43ごとの利得スペクトルを反転させたスペクトル形状を有する。 In addition, instead of the configuration shown in FIG. 14, the optical amplification system of the present disclosure may be configured as shown in FIG. 15, in which an EDFA 43 is placed after the signal is split by a fan-out device 92 at the rear of the 4-core fiber, and each signal passes through a wavelength gain compensator (DWG compensation) 41, then a variable optical attenuator 42 for compensating for the gain difference between the cores, and then multiplexed by a fan-in device 94. Here, the transmission spectrum characteristic of the wavelength gain compensator 41 has a spectral shape that is the inverse of the gain spectrum of each EDFA 43.

以上説明したように、本開示は、第1の光導波路(111)と、第1の光導波路(111)にそれぞれ近接するN個(N≧3)以上の結合部および各結合部間に配置されたN-1個以下の遅延部を有する第2の光導波路(112)とを備え、第1の光導波路(111)と第2の光導波路(112)との間の波長に対する光透過特性が所望の特性となるように各結合部および各遅延部の長さが設定されている。 As described above, the present disclosure comprises a first optical waveguide (111) and a second optical waveguide (112) having N (N≧3) or more coupling sections each adjacent to the first optical waveguide (111) and N-1 or less delay sections disposed between each coupling section, and the length of each coupling section and each delay section is set so that the optical transmission characteristics for the wavelength between the first optical waveguide (111) and the second optical waveguide (112) are the desired characteristics.

(本開示の効果)
平行導波路構造を用いた波長利得補償デバイスにおいて、光増幅器の利得スペクトルの逆特性を有する透過スペクトル特性が柔軟に設定可能にあり、デバイスの小型化を可能とする。
(Effects of the present disclosure)
In a wavelength gain compensation device using a parallel waveguide structure, the transmission spectrum characteristic having the inverse characteristic of the gain spectrum of an optical amplifier can be flexibly set, which enables the device to be miniaturized.

(本開示のポイント)
2つの導波路を有する結合長の比率を調整した導波路により、デバイスの小型化をした上で波長利得差補償を実現できる。特に空間多重伝送において空間チャネルが増えた場合に、デバイスの集積化によりさらなる小型化が可能となる。
(Key Points of the Disclosure)
By using a waveguide with two waveguides with an adjusted ratio of coupling lengths, it is possible to realize wavelength gain compensation while miniaturizing the device. In particular, when the number of spatial channels increases in spatial multiplexing transmission, further miniaturization is possible through device integration.

本開示は情報通信産業に適用することができる。 This disclosure can be applied to the information and communications industry.

31、41:波長利得補償器
32、42:可変光減衰器
323:ヒーター調節部
43:EDFA
81:マルチモードEDFA
82:モード分波器
83、93:利得補償器
84:モード合波器
91:マルチコア光増幅器
92:ファンアウトデバイス
94:ファンインデバイス
111、112、321、322:導波路
31, 41: Wavelength gain compensator 32, 42: Variable optical attenuator 323: Heater adjustment unit 43: EDFA
81: Multimode EDFA
82: Mode splitter 83, 93: Gain compensator 84: Mode multiplexer 91: Multi-core optical amplifier 92: Fan-out device 94: Fan-in device 111, 112, 321, 322: Waveguide

Claims (6)

第1の導波路と第2の導波路を結合する3つの結合部と、
前記3つの結合部の間のそれぞれに配置され、前記第1の導波路と前記第2の導波路が結合せずかつ前記第1の導波路と前記第2の導波路の間で導波路長差を生じさせる2つの遅延部と、
を備え、
前記3つの結合部のうちの2つの結合部の結合長が等しく、前記3つの結合部のうちの残りの1つの結合部の結合長が前記2つの結合部の結合長とは異なり、
前記2つの遅延部のそれぞれにおける前記第1の導波路同士の長さが等しく、前記2つの遅延部のそれぞれにおける前記第2の導波路同士の長さが等しく、
前記2つの遅延部のそれぞれの導波路長差が等しく、
前記3つの結合部における結合長の比率、前記導波路長差、及び前記結合長の総和が、設定されたスペクトル形状と整合するように設定されている、
波長利得補償器。
three coupling portions for coupling the first waveguide and the second waveguide;
two delay sections disposed between the three coupling sections, respectively , where the first waveguide and the second waveguide are not coupled and a waveguide length difference is generated between the first waveguide and the second waveguide;
Equipped with
Two of the three bonds have equal bond lengths, and the bond length of the remaining one of the three bonds is different from the bond lengths of the two bonds ;
The first waveguides in each of the two delay sections have the same length, and the second waveguides in each of the two delay sections have the same length,
The waveguide length differences of the two delay sections are equal,
The ratio of the coupling lengths in the three coupling parts, the waveguide length difference, and the sum of the coupling lengths are set to match a set spectral shape.
Wavelength Gain Compensator.
前記第1の導波路は、直線状の導波路のみで構成され、前記第2の導波路は、曲線状の導波路を含んで構成される、The first waveguide is composed of only a straight waveguide, and the second waveguide is composed of a curved waveguide.
請求項1に記載の波長利得補償器。2. The wavelength gain compensator of claim 1.
前記設定されたスペクトル形状は、光増幅器の利得スペクトルを反転させたスペクトル形状を有する、
請求項1又は2に記載の波長利得補償器。
The set spectral shape has a spectral shape that is an inversion of the gain spectrum of an optical amplifier.
3. A wavelength gain compensator according to claim 1 or 2 .
複数のモードを有する波長多重信号を増幅するマルチモード光増幅器と、
増幅後の波長多重信号をモードごとに分波するモード分波器と、
前記モード分波器で分波された波長多重信号ごとに波長間での利得差を補償する、請求項1から3のいずれかに記載の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するモード間利得補償器と、
前記モード間利得補償器からの波長多重信号を、前記モード分波器で分波前のモードに変換し、合波する、モード合波器と、
を備える光増幅システム。
a multimode optical amplifier for amplifying a wavelength-multiplexed signal having a plurality of modes;
a mode demultiplexer that demultiplexes the amplified wavelength multiplexed signal into individual modes;
a wavelength gain compensator according to claim 1 , which compensates for a gain difference between wavelengths for each wavelength multiplexed signal demultiplexed by the mode demultiplexer;
an inter-mode gain compensator for compensating for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a mode multiplexer that converts the wavelength-multiplexed signal from the inter-modal gain compensator into a mode before demultiplexing by the mode demultiplexer and multiplexes the signal;
An optical amplification system comprising:
マルチコアファイバに備わる各コアで伝搬された波長多重信号を増幅するマルチコア光増幅器と、
前記マルチコア光増幅器で増幅された波長多重信号を、マルチコアファイバに備わるコアごとに分波するファンアウトデバイスと、
前記ファンアウトデバイスで分波された波長多重信号ごとに波長間の利得差を補償する、請求項1から3のいずれかに記載の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するコア間利得補償器と、
前記コア間利得補償器からの波長多重信号を、前記ファンアウトデバイスで分波前のコアに合波する、ファンインデバイスと、
を備える光増幅システム。
a multi-core optical amplifier that amplifies a wavelength-multiplexed signal propagated through each core of the multi-core fiber;
a fan-out device that demultiplexes the wavelength-multiplexed signal amplified by the multi-core optical amplifier for each core of a multi-core fiber;
a wavelength gain compensator according to claim 1 , which compensates for a gain difference between wavelengths for each wavelength multiplexed signal demultiplexed by the fan-out device;
an inter-core gain compensator that compensates for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a fan-in device that multiplexes the wavelength-multiplexed signal from the inter-core gain compensator into a core before demultiplexing by the fan-out device;
An optical amplification system comprising:
マルチコアファイバに備わる各コアで伝搬された波長多重信号を、コアごとに分波するファンアウトデバイスと、
前記ファンアウトデバイスで分波された波長多重信号ごとに増幅する光増幅器と、
前記光増幅器で増幅された波長多重信号ごとに波長間の利得差を補償する、請求項1から3のいずれかに記載の波長利得補償器と、
前記波長利得補償器からの波長多重信号間の利得差を補償するコア間利得補償器と、
前記コア間利得補償器からの波長多重信号を、前記ファンアウトデバイスで分波前のコアに合波する、ファンインデバイスと、
を備える光増幅システム。
A fan-out device that splits wavelength-multiplexed signals propagated through each core of a multicore fiber into individual cores;
an optical amplifier that amplifies each of the wavelength multiplexed signals demultiplexed by the fan-out device;
a wavelength gain compensator according to claim 1 , which compensates for a gain difference between wavelengths for each wavelength multiplexed signal amplified by the optical amplifier;
an inter-core gain compensator that compensates for a gain difference between the wavelength multiplexed signals from the wavelength gain compensator;
a fan-in device that multiplexes the wavelength-multiplexed signal from the inter-core gain compensator into a core before demultiplexing by the fan-out device;
An optical amplification system comprising:
JP2021069859A 2021-04-16 2021-04-16 Wavelength gain compensator and optical amplification system Active JP7558515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069859A JP7558515B2 (en) 2021-04-16 2021-04-16 Wavelength gain compensator and optical amplification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069859A JP7558515B2 (en) 2021-04-16 2021-04-16 Wavelength gain compensator and optical amplification system

Publications (2)

Publication Number Publication Date
JP2022164395A JP2022164395A (en) 2022-10-27
JP7558515B2 true JP7558515B2 (en) 2024-10-01

Family

ID=83743011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069859A Active JP7558515B2 (en) 2021-04-16 2021-04-16 Wavelength gain compensator and optical amplification system

Country Status (1)

Country Link
JP (1) JP7558515B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014306A (en) 2000-04-26 2002-01-18 Sumitomo Electric Ind Ltd Optical filter
JP2002350656A (en) 2001-05-24 2002-12-04 Sumitomo Electric Ind Ltd Plane waveguide type optical filter
JP2003185875A (en) 2001-10-12 2003-07-03 Furukawa Electric Co Ltd:The Optical fourier filter
JP2004151175A (en) 2002-10-29 2004-05-27 Nippon Telegr & Teleph Corp <Ntt> Optical directional coupler and its manufacturing method
US6768843B1 (en) 2002-08-16 2004-07-27 Wavesplitter Technologies, Inc. Cascaded fourier filter interleaver having enhanced performance
JP2005250504A (en) 2000-03-03 2005-09-15 Hitachi Cable Ltd Optical multiplexer demultiplexer
US20100046065A1 (en) 2008-08-21 2010-02-25 Infinera Corporation Tunable optical filter
JP2011043567A (en) 2009-08-19 2011-03-03 Oki Electric Industry Co Ltd Directional coupler, optical element, mach-zehnder interferometer and ring resonator
JP2011197700A (en) 2004-08-04 2011-10-06 Furukawa Electric Co Ltd:The Optical circuit device
JP2016219753A (en) 2015-05-26 2016-12-22 日本電信電話株式会社 Multicore optical fiber amplifier
CN108828722A (en) 2018-07-16 2018-11-16 中国计量大学 A kind of cascade MZI filter reducing crosstalk using secondary cascade
JP2020013934A (en) 2018-07-19 2020-01-23 日本電信電話株式会社 Multimode optical amplifier
JP2020148968A (en) 2019-03-14 2020-09-17 日本電信電話株式会社 Intermode loss difference compensation device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005250504A (en) 2000-03-03 2005-09-15 Hitachi Cable Ltd Optical multiplexer demultiplexer
JP2002014306A (en) 2000-04-26 2002-01-18 Sumitomo Electric Ind Ltd Optical filter
JP2002350656A (en) 2001-05-24 2002-12-04 Sumitomo Electric Ind Ltd Plane waveguide type optical filter
JP2003185875A (en) 2001-10-12 2003-07-03 Furukawa Electric Co Ltd:The Optical fourier filter
US6768843B1 (en) 2002-08-16 2004-07-27 Wavesplitter Technologies, Inc. Cascaded fourier filter interleaver having enhanced performance
JP2004151175A (en) 2002-10-29 2004-05-27 Nippon Telegr & Teleph Corp <Ntt> Optical directional coupler and its manufacturing method
JP2011197700A (en) 2004-08-04 2011-10-06 Furukawa Electric Co Ltd:The Optical circuit device
US20100046065A1 (en) 2008-08-21 2010-02-25 Infinera Corporation Tunable optical filter
JP2011043567A (en) 2009-08-19 2011-03-03 Oki Electric Industry Co Ltd Directional coupler, optical element, mach-zehnder interferometer and ring resonator
JP2016219753A (en) 2015-05-26 2016-12-22 日本電信電話株式会社 Multicore optical fiber amplifier
CN108828722A (en) 2018-07-16 2018-11-16 中国计量大学 A kind of cascade MZI filter reducing crosstalk using secondary cascade
JP2020013934A (en) 2018-07-19 2020-01-23 日本電信電話株式会社 Multimode optical amplifier
JP2020148968A (en) 2019-03-14 2020-09-17 日本電信電話株式会社 Intermode loss difference compensation device

Also Published As

Publication number Publication date
JP2022164395A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
Chen et al. Compact dense wavelength-division (de) multiplexer utilizing a bidirectional arrayed-waveguide grating integrated with a Mach–Zehnder interferometer
US20190025506A1 (en) Polarization splitter rotator
WO2020086744A1 (en) Wavelength-division multiplexer comprising cascaded optical couplers
Shi et al. Silicon CWDM demultiplexers using contra-directional couplers
EP3457186B1 (en) An optical transmission system
Uematsu et al. Low-loss and broadband PLC-type mode (de) multiplexer for mode-division multiplexing transmission
Taha et al. Compact MMI-based AWGs in a scalable monolithic silicon photonics platform
JP6482126B2 (en) Optical amplifier
US6768822B1 (en) Chromatic dispersion compensation
JP6939728B2 (en) Multimode optical amplifier
US20020106143A1 (en) Dynamic passband shape compensation of optical signals
JP7558515B2 (en) Wavelength gain compensator and optical amplification system
JP7097212B2 (en) Optical parametric amplifiers, optical amplification systems, wavelength transducers and optical communication systems
US20090016724A1 (en) Multimode optical transmission system and multimode optical transmission method
Lu et al. Cyclic arrayed waveguide grating devices with flat-top passband and uniform spectral response
JP6824814B2 (en) Loss difference compensator
JPH11215058A (en) Super-wide band wavelength dispersion compensation device
JP7539067B2 (en) Mode characteristic compensator, multimode amplification system and mode multiplexing transmission system
JP2002101045A (en) Wavelength dispersion compensator, and optical transmission path
Khalilzadeh et al. MMI-based all-optical four-channel wavelength division demultiplexer
JP2010250238A (en) Optical wavelength multiplexing and demultiplexing circuit and method of adjusting polarized wave dependence of the same
JP2018146754A (en) Mode exchanger
Mohammed et al. A CMOS compatible on-chip MMI based wavelength diplexer with 60 Gbit/s system demonstration
Xiong et al. Crosstalk suppressed high efficient mode-selective four-wave mixing through tailoring waveguide geometry
KR101243762B1 (en) Optical transmission system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210416

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240905

R150 Certificate of patent or registration of utility model

Ref document number: 7558515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150