[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7548642B2 - Synergistic extraction method for selective separation of lithium and transition metals from waste batteries using hydrophobic deep eutectic solvents - Google Patents

Synergistic extraction method for selective separation of lithium and transition metals from waste batteries using hydrophobic deep eutectic solvents Download PDF

Info

Publication number
JP7548642B2
JP7548642B2 JP2023573586A JP2023573586A JP7548642B2 JP 7548642 B2 JP7548642 B2 JP 7548642B2 JP 2023573586 A JP2023573586 A JP 2023573586A JP 2023573586 A JP2023573586 A JP 2023573586A JP 7548642 B2 JP7548642 B2 JP 7548642B2
Authority
JP
Japan
Prior art keywords
lithium
organic phase
extraction
cobalt
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023573586A
Other languages
Japanese (ja)
Other versions
JP2024526532A (en
Inventor
標華 陳
宇 郭
剛強 于
成娜 代
寧 劉
瑞年 徐
寧 王
Original Assignee
北京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工業大学 filed Critical 北京工業大学
Publication of JP2024526532A publication Critical patent/JP2024526532A/en
Application granted granted Critical
Publication of JP7548642B2 publication Critical patent/JP7548642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、湿式製錬の技術分野に属し、特に、疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤、及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法に関する。 The present invention belongs to the technical field of hydrometallurgy, and in particular to a synergistic extractant of a hydrophobic deep eutectic solvent and tributyl phosphate, and a method for extracting and separating lithium and transition metals from waste lithium battery leachate.

エネルギーと交通システムの脱炭素化が国際社会における最重要課題の一つとなっている時代において、リチウムイオン電池(LIB)は優れたエネルギー貯蔵能力により電子機器、電気自動車、再生可能エネルギーの貯蔵などに広く使用され、交通輸送業の化石燃料に対する依存度を低下させることができる。リチウムは、その軽さからリチウムイオン電池の主要金属元素として注目を集めており、炭酸リチウムの需要は2025年までに500万トンを超えると予想されている。世界の平均回収可能含有量(RC)データによると、遷移金属はすべてのリサイクル元素(特にニッケルとコバルト)リストのトップにあり、天然資源の枯渇につながる。車載用リチウムイオン電池だけの市場全体は、2024年までに2210億米ドルに達すると予想されている。しかし、リチウムイオン電池の生産量の増加は、リチウム、ニッケル、コバルトの資源不足が深刻になるだけでなく、廃リチウムイオン電池も環境汚染が深刻で、その中の有価金属の含有量と純度が自然界に存在するものよりも高く、回収しなければ、多大な資源の無駄となり、クリーンエネルギー及び資源利用の概念に反することになる。 In an era when the decarbonization of energy and transportation systems is one of the most important issues in the international community, lithium-ion batteries (LIBs) are widely used in electronic devices, electric vehicles, renewable energy storage, etc. due to their excellent energy storage capacity, which can reduce the transportation industry's dependence on fossil fuels. Lithium has attracted attention as a key metal element in lithium-ion batteries due to its light weight, and the demand for lithium carbonate is expected to exceed 5 million tons by 2025. According to the global average recoverable content (RC) data, transition metals are at the top of the list of all recycled elements (especially nickel and cobalt), which leads to the depletion of natural resources. The total market for automotive lithium-ion batteries alone is expected to reach US$221 billion by 2024. However, the increase in lithium-ion battery production not only leads to a serious shortage of lithium, nickel, and cobalt resources, but also serious environmental pollution from waste lithium-ion batteries, and the content and purity of valuable metals in them are higher than those found in nature. If they are not recovered, it will be a huge waste of resources and go against the concepts of clean energy and resource utilization.

現在、廃リチウム電池の一般的な回収方法は、主に乾式製錬方及び湿式製錬法である。湿式製錬法は、高い選択性、低エネルギー消費、有害ガスを発生しないという特徴があり、乾式製錬法よりもグリーン環境保全の概念に沿っている。湿式製錬法では、まず電池をさまざまな物理的方法で前処理し、次に各種金属を酸に溶解し、精製後にLi、Co、Ni及びMnの酸浸出液が得られる。塩酸又は硫酸は他の浸出剤よりも経済的であり、通常湿式製錬プロセス中のリチウムイオン電池の金属の酸還元浸出に使用される。様々な金属回収法の中でも、溶媒抽出法は操作が簡単で回収率が高く、調整が容易なことから金属分離に広く用いられている。 At present, the common recovery methods for waste lithium batteries are mainly pyrometallurgy and hydrometallurgy. Hydrometallurgy has the characteristics of high selectivity, low energy consumption, and no harmful gas generation, and is more in line with the concept of green environmental protection than pyrometallurgy. In hydrometallurgy, the batteries are first pretreated by various physical methods, and then various metals are dissolved in acid, and the acid leaching solution of Li, Co, Ni and Mn is obtained after purification. Hydrochloric acid or sulfuric acid is more economical than other leaching agents and is usually used for acid reduction leaching of metals in lithium-ion batteries during the hydrometallurgy process. Among various metal recovery methods, solvent extraction is widely used for metal separation due to its simple operation, high recovery rate and easy adjustment.

特許文献1には、ニッケル・コバルト・マンガンを含む電池からニッケル・コバルト・マンガンを分離する方法が開示されており、該方法はカルボン酸系抽出剤を使用した向流多段抽出により、ニッケル・コバルト・マンガンを段階的に分離する。特許文献2には、ジケトン化合物を抽出剤として、有機ホスフィン化合物を協同抽出剤として使用し、廃リチウム電池から金属を分離する方法が開示されており、向流多段抽出後のニッケル・コバルト・マンガンの抽出率は99%以上に達している。しかし、これらの抽出方法の多くは多段抽出を必要とするため、抽出剤のロスがある程度増加し、コストが高くなるだけでなく資源の無駄も生じまる。同時に、これらの従来の抽出剤を使用するのは抽出効果が限られているだけでなく、これらの抽出剤は揮発性、環境汚染性、有毒性などを有することにより制限され、したがって抽出効率が高いだけでなく、抽出方法が簡単で環境にも優しい「グリーン溶剤」の開発が明らかに重要である。 Patent Document 1 discloses a method for separating nickel, cobalt, and manganese from batteries containing nickel, cobalt, and manganese, in which nickel, cobalt, and manganese are separated in stages by countercurrent multi-stage extraction using a carboxylic acid extractant. Patent Document 2 discloses a method for separating metals from waste lithium batteries using a diketone compound as an extractant and an organic phosphine compound as a synergistic extractant, in which the extraction rate of nickel, cobalt, and manganese after countercurrent multi-stage extraction reaches 99% or more. However, most of these extraction methods require multi-stage extraction, which increases the loss of extractant to a certain extent, not only increasing costs but also causing resource waste. At the same time, the use of these traditional extractants is not only limited in extraction effect, but also limited by the fact that these extractants have volatility, environmental pollution, toxicity, etc., so it is obviously important to develop a "green solvent" that not only has high extraction efficiency but also has a simple extraction method and is environmentally friendly.

中国特許第CN112442596A号公報Chinese Patent No. CN112442596A 中国特許第CN111850302B号公報Chinese Patent No. CN111850302B

本発明は、上記問題点に着目して疎水性深共晶溶媒とリン酸トリブチルを用いて、廃リチウム電池中のニッケル・コバルト・マンガンを協同抽出し、ラフィネート中にリチウムを残し、一段抽出により、より高い抽出・分離効果を奏することができ、環境に優しく、運用コストも低いなどの特徴を有する。 The present invention focuses on the above problems and uses a hydrophobic deep eutectic solvent and tributyl phosphate to synergistically extract nickel, cobalt, and manganese from waste lithium batteries, leaving lithium in the raffinate. This single-stage extraction provides a higher extraction and separation effect, and is environmentally friendly and has low operating costs.

上記目的を達成するため、本発明は次の技術的手段を採用する:
(1)水相の調製:廃リチウム電池浸出液の成分を模擬し、リチウム、ニッケル、コバルト、及びマンガンの金属イオンを含む水相を調製する工程、
(2)疎水性深共晶溶媒の調製:リドカインとn-デカン酸を加熱混合して疎水性深共晶溶媒を得る工程、
(3)有機相の調製:工程(2)で得られた疎水性深共晶溶媒とリン酸トリブチルを混合して有機相を得る工程、
(4)工程(1)で得られた水相に工程(3)で得られた有機相を添加して混合抽出し、遠心分離して相分離した後、ニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得る工程、
(5)工程(4)のリチウム含有ラフィネートに沈殿剤を添加して炭酸リチウム沈殿物を得る工程、
(6)工程(4)のニッケル・コバルト・マンガンを担持した有機相に逆抽出剤を添加してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得る工程。
In order to achieve the above object, the present invention adopts the following technical means:
(1) Preparation of an aqueous phase: A step of preparing an aqueous phase containing lithium, nickel, cobalt, and manganese metal ions by simulating the components of a waste lithium battery leachate;
(2) Preparation of hydrophobic deep eutectic solvent: A step of heating and mixing lidocaine and n-decanoic acid to obtain a hydrophobic deep eutectic solvent;
(3) Preparation of an organic phase: mixing the hydrophobic deep eutectic solvent obtained in step (2) with tributyl phosphate to obtain an organic phase;
(4) adding the organic phase obtained in step (3) to the aqueous phase obtained in step (1), mixing and extracting, and then centrifuging to separate the phases, to obtain an organic phase carrying nickel, cobalt and manganese and a lithium-containing raffinate;
(5) adding a precipitant to the lithium-containing raffinate of step (4) to obtain a lithium carbonate precipitate;
(6) A step of adding a stripping agent to the nickel-cobalt-manganese-loaded organic phase of the step (4) to obtain a nickel-cobalt-manganese stripped solution and a regenerated organic phase.

さらに、工程(1)において、模擬廃電池浸出液の水相のpHは、2~6、有価金属含有量はそれぞれLi=300~400mg/L、Ni=1300~1500mg/L、Co=600~700mg/L、Mn=800~900mg/Lである。 Furthermore, in step (1), the pH of the aqueous phase of the simulated waste battery leachate is 2 to 6, and the valuable metal contents are Li = 300 to 400 mg/L, Ni = 1300 to 1500 mg/L, Co = 600 to 700 mg/L, and Mn = 800 to 900 mg/L.

さらに、工程(2)で調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とは、水素結合を介して結合し、その物質量の比は1:1となる。n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得る。 Furthermore, the lidocaine and n-decanoic acid in the hydrophobic deep eutectic solvent prepared in step (2) are bonded via hydrogen bonds, with the ratio of the amounts of substances being 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under water bath heating conditions at 50°C to obtain the hydrophobic deep eutectic solvent.

さらに、工程(3)で調製された有機相には、次の3つの構造式が含まれる。 Furthermore, the organic phase prepared in step (3) contains the following three structural formulas:

Figure 0007548642000001
Figure 0007548642000001

さらに、工程(3)で調製された有機相中のリン酸トリブチルと疎水性深共晶溶媒の体積比は6:4~4:6である。 Furthermore, the volume ratio of tributyl phosphate to the hydrophobic deep eutectic solvent in the organic phase prepared in step (3) is 6:4 to 4:6.

さらに、工程(4)中の抽出プロセスパラメータは、添加した水相と有機相の体積比(A/O)=3:1~1:3、抽出温度10~30℃、抽出段数1段、混合均一撹拌時間20~30分、混合均一撹拌回転数200~500r/分であり、水相と有機相をよく混ぜた後遠心分離機に入れ、遠心分離回転数6000~8000r/分で10~30分間遠心分離した後相分離して、ニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得る。 Furthermore, the extraction process parameters in step (4) are: volume ratio of the added aqueous phase to the organic phase (A/O) = 3:1 to 1:3, extraction temperature 10 to 30°C, number of extraction stages 1, mixing uniform stirring time 20 to 30 minutes, mixing uniform stirring rotation speed 200 to 500 r/min, the aqueous phase and the organic phase are thoroughly mixed and then placed in a centrifuge, centrifuged at a centrifugation rotation speed of 6000 to 8000 r/min for 10 to 30 minutes, and then phase separated to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

さらに、工程(5)で添加する沈殿剤は、1.5mol/Lの炭酸ナトリウム溶液であり、添加する炭酸ナトリウムとリチウム含有ラフィネートの体積比は2である。 Furthermore, the precipitant added in step (5) is a 1.5 mol/L sodium carbonate solution, and the volume ratio of the added sodium carbonate to the lithium-containing raffinate is 2.

さらに、工程(6)の逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加する塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得る。 Furthermore, in the back extraction process of step (6), 2 mol/L HCl is used as the back extraction agent, and the back extraction parameters are the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature is 24°C, the number of back extraction stages is 1, the mixing uniform stirring time is 30 minutes, and the mixing uniform stirring rotation speed is 300 r/min. After mixing well, the mixture is placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain the nickel, cobalt, and manganese back extract and the regenerated organic phase.

本発明により提供される廃リチウム電池浸出液中の有価金属の抽出・分離方法のプロセスフローチャートである。1 is a process flow chart of a method for extracting and separating valuable metals from waste lithium battery leachate provided by the present invention.

以下、実施例を挙げて本発明をさらに詳細に説明するが、下記の実施例は本発明の簡単な実施例に過ぎず、本発明の権利保護範囲を代表したり限定したりするものではなく、本発明の保護範囲は特許請求の範囲を基準とする。 The present invention will be described in more detail below with reference to examples. However, the following examples are merely simple examples of the present invention and do not represent or limit the scope of protection of the rights of the present invention. The scope of protection of the present invention is based on the scope of the claims.

本発明をより良く説明し、本発明の技術的手段の理解を容易にするため、本発明の典型的だが非限定的な実施例を以下に示す。 In order to better explain the present invention and facilitate understanding of the technical means of the present invention, typical but non-limiting examples of the present invention are given below.

本実施例により提供される疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法のフローチャートは、図1に示される。 The flowchart of the synergistic extractant of hydrophobic deep eutectic solvent and tributyl phosphate provided in this embodiment and the method for extracting and separating lithium and transition metals in waste lithium battery leachate is shown in Figure 1.

本実施例の模擬廃リチウム電池の酸性浸出液の成分は、以下の通りである。 The components of the acid leachate from the simulated used lithium battery in this example are as follows:

Figure 0007548642000002
Figure 0007548642000002

本実施例の前記抽出・分離方法によれば、調製された模擬廃リチウム電池の水相は、pH=2であり、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とが水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒をリン酸トリブチルに添加し、添加したリン酸トリブチルと疎水性深共晶溶媒の体積比は6:4で、有機相を得、
本実施例の前記抽出・分離方法によれば、水相に調製された有機相を添加し、抽出プロセスパラメータは水相と有機相の体積比(A/O)=2:1、抽出温度10℃、抽出段数1段、混合均一撹拌時間20分、回転数200r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数6000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得た。
According to the extraction and separation method of this embodiment, the aqueous phase of the prepared simulated waste lithium battery has a pH of 2.
According to the extraction and separation method of this embodiment, lidocaine and n-decanoic acid in the prepared hydrophobic deep eutectic solvent are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent.
According to the extraction and separation method of this embodiment, the prepared hydrophobic deep eutectic solvent is added to tributyl phosphate, and the volume ratio of the added tributyl phosphate to the hydrophobic deep eutectic solvent is 6:4 to obtain an organic phase;
According to the extraction and separation method of this embodiment, the prepared organic phase was added to the aqueous phase, and the extraction process parameters were the volume ratio of the aqueous phase to the organic phase (A/O) = 2:1, the extraction temperature was 10°C, the number of extraction stages was 1, the mixing and uniform stirring time was 20 minutes, and the rotation speed was 200 r/min. After thorough mixing, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 6000 r/min for 10 minutes, followed by phase separation to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

本実施例の前記抽出・分離方法によれば、リチウム含有ラフィネートに濃度1.5mol/Lの炭酸ナトリウム溶液を添加し、添加した炭酸ナトリウム溶液とリチウム含有ラフィネートの体積比は2:1であり、沈殿をよく洗浄した後炭酸リチウム溶液を得た。 According to the extraction and separation method of this embodiment, a sodium carbonate solution having a concentration of 1.5 mol/L was added to the lithium-containing raffinate, the volume ratio of the added sodium carbonate solution to the lithium-containing raffinate was 2:1, and after thoroughly washing the precipitate, a lithium carbonate solution was obtained.

本実施例の前記抽出・分離方法によれば、逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加した塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得た。 According to the extraction and separation method of this embodiment, in the back extraction process, 2 mol/L HCl was used as a back extraction agent, and the back extraction parameters were the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature was 24°C, the number of back extraction stages was 1, the mixing uniform stirring time was 30 minutes, and the mixing uniform stirring rotation speed was 300 r/min. After mixing well, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain a nickel, cobalt, and manganese back extract and a regenerated organic phase.

実施例1の抽出実験結果は、以下の通りである。 The results of the extraction experiment in Example 1 are as follows:

Figure 0007548642000003
Figure 0007548642000003

本実施例において、一段抽出を経た後、ニッケル・コバルト・マンガンの抽出率がいずれも92%以上に達し、同時にラフィネート中で高純度のリチウム塩溶液が得られ、廃リチウム電池中のリチウムと遷移金属の有効な分離を実現した。 In this embodiment, after one-stage extraction, the extraction rates of nickel, cobalt, and manganese all reached 92% or more, and at the same time, a high-purity lithium salt solution was obtained in the raffinate, achieving effective separation of lithium and transition metals in waste lithium batteries.

本実施例により提供される疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法のフローチャートは、図1に示される。 The flowchart of the synergistic extractant of hydrophobic deep eutectic solvent and tributyl phosphate provided in this embodiment and the method for extracting and separating lithium and transition metals in waste lithium battery leachate is shown in Figure 1.

本実施例の模擬廃リチウム電池の酸性浸出液の成分は、以下の通りである。 The components of the acid leachate from the simulated used lithium battery in this example are as follows:

Figure 0007548642000004
Figure 0007548642000004

本実施例の前記抽出・分離方法によれば、調製された模擬廃リチウム電池の水相は、pH=6であり、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とが水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒をリン酸トリブチルに添加し、添加したリン酸トリブチルと疎水性深共晶溶媒の体積比は4:6で、有機相を得、
本実施例の前記抽出・分離方法によれば、水相に調製された有機相を添加し、抽出プロセスパラメータは水相と有機相の体積比(A/O)=2:1、抽出温度30℃、抽出段数1段、混合均一撹拌時間30分、回転数500r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で30分間遠心分離した後相分離してニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得た。
According to the extraction and separation method of this embodiment, the aqueous phase of the prepared simulated waste lithium battery has a pH of 6.
According to the extraction and separation method of this embodiment, lidocaine and n-decanoic acid in the prepared hydrophobic deep eutectic solvent are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent.
According to the extraction and separation method of this embodiment, the prepared hydrophobic deep eutectic solvent is added to tributyl phosphate, and the volume ratio of the added tributyl phosphate to the hydrophobic deep eutectic solvent is 4:6 to obtain an organic phase;
According to the extraction and separation method of this embodiment, the prepared organic phase was added to the aqueous phase, and the extraction process parameters were the volume ratio of the aqueous phase to the organic phase (A/O) = 2:1, the extraction temperature was 30°C, the number of extraction stages was 1, the mixing and uniform stirring time was 30 minutes, and the rotation speed was 500 r/min. After thorough mixing, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 30 minutes, followed by phase separation to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

本実施例の前記抽出・分離方法によれば、リチウム含有ラフィネートに濃度1.5mol/Lの炭酸ナトリウム溶液を添加し、添加した炭酸ナトリウム溶液とリチウム含有ラフィネートの体積比は2:1であり、沈殿をよく洗浄した後炭酸リチウム溶液を得た。 According to the extraction and separation method of this embodiment, a sodium carbonate solution having a concentration of 1.5 mol/L was added to the lithium-containing raffinate, the volume ratio of the added sodium carbonate solution to the lithium-containing raffinate was 2:1, and after thoroughly washing the precipitate, a lithium carbonate solution was obtained.

本実施例の前記抽出・分離方法によれば、逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加した塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で15分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得た。 According to the extraction and separation method of this embodiment, in the back extraction process, 2 mol/L HCl was used as a back extraction agent, and the back extraction parameters were the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature was 24°C, the number of back extraction stages was 1, the mixing uniform stirring time was 30 minutes, and the mixing uniform stirring rotation speed was 300 r/min. After mixing well, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 15 minutes, followed by phase separation to obtain a nickel, cobalt, and manganese back extract and a regenerated organic phase.

実施例2の抽出実験結果は、以下の通りである。 The results of the extraction experiment in Example 2 are as follows:

Figure 0007548642000005
Figure 0007548642000005

本実施例において、一段抽出を経た後、ニッケル・コバルト・マンガンの抽出率がいずれも98%以上に達し、同時にラフィネート中で高純度のリチウム塩溶液が得られ、廃リチウム電池中のリチウムと遷移金属の有効な分離を実現した。 In this embodiment, after one-stage extraction, the extraction rates of nickel, cobalt, and manganese all reached 98% or more, and at the same time, a high-purity lithium salt solution was obtained in the raffinate, achieving effective separation of lithium and transition metals in waste lithium batteries.

本実施例により提供される疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法のフローチャートは、図1に示される。 The flowchart of the synergistic extractant of hydrophobic deep eutectic solvent and tributyl phosphate provided in this embodiment and the method for extracting and separating lithium and transition metals in waste lithium battery leachate is shown in Figure 1.

本実施例の模擬廃リチウム電池の酸性浸出液の成分は、以下の通りである。 The components of the acid leachate from the simulated used lithium battery in this example are as follows:

Figure 0007548642000006
Figure 0007548642000006

本実施例の前記抽出・分離方法によれば、調製された模擬廃リチウム電池の水相は、pH=3であり、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とが水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒をリン酸トリブチルに添加し、添加したリン酸トリブチルと疎水性深共晶溶媒の体積比は4:6で、有機相を得、
本実施例の前記抽出・分離方法によれば、水相に調製された有機相を添加し、抽出プロセスパラメータは水相と有機相の体積比(A/O)=3:1、抽出温度24℃、抽出段数1段、混合均一撹拌時間30分、回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得た。
According to the extraction and separation method of this embodiment, the aqueous phase of the simulated waste lithium battery prepared has a pH of 3,
According to the extraction and separation method of this embodiment, lidocaine and n-decanoic acid in the prepared hydrophobic deep eutectic solvent are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent.
According to the extraction and separation method of this embodiment, the prepared hydrophobic deep eutectic solvent is added to tributyl phosphate, and the volume ratio of the added tributyl phosphate to the hydrophobic deep eutectic solvent is 4:6, to obtain an organic phase;
According to the extraction and separation method of this embodiment, the prepared organic phase was added to the aqueous phase, and the extraction process parameters were the volume ratio of the aqueous phase to the organic phase (A/O) = 3:1, the extraction temperature was 24°C, the number of extraction stages was 1, the mixing and uniform stirring time was 30 minutes, and the rotation speed was 300 r/min. After thorough mixing, the mixture was put into a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

本実施例の前記抽出・分離方法によれば、リチウム含有ラフィネートに濃度1.5mol/Lの炭酸ナトリウム溶液を添加し、添加した炭酸ナトリウム溶液とリチウム含有ラフィネートの体積比は2:1であり、沈殿をよく洗浄した後炭酸リチウム溶液を得た。 According to the extraction and separation method of this embodiment, a sodium carbonate solution having a concentration of 1.5 mol/L was added to the lithium-containing raffinate, the volume ratio of the added sodium carbonate solution to the lithium-containing raffinate was 2:1, and after thoroughly washing the precipitate, a lithium carbonate solution was obtained.

本実施例の前記抽出・分離方法によれば、逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加した塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得た。 According to the extraction and separation method of this embodiment, in the back extraction process, 2 mol/L HCl was used as a back extraction agent, and the back extraction parameters were the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature was 24°C, the number of back extraction stages was 1, the mixing uniform stirring time was 30 minutes, and the mixing uniform stirring rotation speed was 300 r/min. After mixing well, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain a nickel, cobalt, and manganese back extract and a regenerated organic phase.

実施例3の抽出実験結果は、以下の通りである。 The results of the extraction experiment in Example 3 are as follows:

Figure 0007548642000007
Figure 0007548642000007

本実施例において、一段抽出を経た後、ニッケル・コバルト・マンガンの抽出率がいずれも93%以上に達し、同時にラフィネート中で高純度のリチウム塩溶液が得られ、廃リチウム電池中のリチウムと遷移金属の有効な分離を実現した。 In this embodiment, after one-stage extraction, the extraction rates of nickel, cobalt, and manganese all reached 93% or more, and at the same time, a high-purity lithium salt solution was obtained in the raffinate, achieving effective separation of lithium and transition metals in waste lithium batteries.

本実施例により提供される疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法のフローチャートは、図1に示される。 The flowchart of the synergistic extractant of hydrophobic deep eutectic solvent and tributyl phosphate provided in this embodiment and the method for extracting and separating lithium and transition metals in waste lithium battery leachate is shown in Figure 1.

本実施例の模擬廃リチウム電池の酸性浸出液の成分は、以下の通りである。 The components of the acid leachate from the simulated used lithium battery in this example are as follows:

Figure 0007548642000008
Figure 0007548642000008

本実施例の前記抽出・分離方法によれば、調製された模擬廃リチウム電池の水相は、pH=3であり、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とが水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒をリン酸トリブチルに添加し、添加したリン酸トリブチルと疎水性深共晶溶媒の体積比は4:6で、有機相を得、
本実施例の前記抽出・分離方法によれば、水相に調製された有機相を添加し、抽出プロセスパラメータは水相と有機相の体積比(A/O)=1:3、抽出温度24℃、抽出段数1段、混合均一撹拌時間30分、回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得た。
According to the extraction and separation method of this embodiment, the aqueous phase of the simulated waste lithium battery prepared has a pH of 3,
According to the extraction and separation method of this embodiment, lidocaine and n-decanoic acid in the prepared hydrophobic deep eutectic solvent are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent.
According to the extraction and separation method of this embodiment, the prepared hydrophobic deep eutectic solvent is added to tributyl phosphate, and the volume ratio of the added tributyl phosphate to the hydrophobic deep eutectic solvent is 4:6, to obtain an organic phase;
According to the extraction and separation method of this embodiment, the prepared organic phase was added to the aqueous phase, and the extraction process parameters were the volume ratio of the aqueous phase to the organic phase (A/O) = 1:3, the extraction temperature was 24°C, the number of extraction stages was 1, the mixing and uniform stirring time was 30 minutes, and the rotation speed was 300 r/min. After thorough mixing, the mixture was put into a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

本実施例の前記抽出・分離方法によれば、リチウム含有ラフィネートに濃度1.5mol/Lの炭酸ナトリウム溶液を添加し、添加した炭酸ナトリウム溶液とリチウム含有ラフィネートの体積比は2:1であり、沈殿をよく洗浄した後炭酸リチウム溶液を得た。 According to the extraction and separation method of this embodiment, a sodium carbonate solution having a concentration of 1.5 mol/L was added to the lithium-containing raffinate, the volume ratio of the added sodium carbonate solution to the lithium-containing raffinate was 2:1, and after thoroughly washing the precipitate, a lithium carbonate solution was obtained.

本実施例の前記抽出・分離方法によれば、逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加した塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得た。 According to the extraction and separation method of this embodiment, in the back extraction process, 2 mol/L HCl was used as a back extraction agent, and the back extraction parameters were the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature was 24°C, the number of back extraction stages was 1, the mixing uniform stirring time was 30 minutes, and the mixing uniform stirring rotation speed was 300 r/min. After mixing well, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain a nickel, cobalt, and manganese back extract and a regenerated organic phase.

実施例4の抽出実験結果は、以下の通りである。 The results of the extraction experiment in Example 4 are as follows:

Figure 0007548642000009
Figure 0007548642000009

本実施例において、一段抽出を経た後、ニッケル・コバルト・マンガンの抽出率がいずれも99%以上に達し、同時にラフィネート中で高純度のリチウム塩溶液が得られ、廃リチウム電池中のリチウムと遷移金属の有効な分離を実現した。 In this embodiment, after one-stage extraction, the extraction rates of nickel, cobalt, and manganese all reached 99% or more, and at the same time, a high-purity lithium salt solution was obtained in the raffinate, achieving effective separation of lithium and transition metals in waste lithium batteries.

本実施例により提供される疎水性深共晶溶媒とリン酸トリブチルの協同抽出剤及び廃リチウム電池浸出液中のリチウムと遷移金属を抽出・分離する方法のフローチャートは、図1に示される。 The flowchart of the synergistic extractant of hydrophobic deep eutectic solvent and tributyl phosphate provided in this embodiment and the method for extracting and separating lithium and transition metals in waste lithium battery leachate is shown in Figure 1.

本実施例の模擬廃リチウム電池の酸性浸出液の成分は、以下の通りである。 The components of the acid leachate from the simulated used lithium battery in this example are as follows:

Figure 0007548642000010
Figure 0007548642000010

本実施例の前記抽出・分離方法によれば、調製された模擬廃リチウム電池の水相は、pH=3であり、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒中のリドカインとn-デカン酸とが水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得、
本実施例の前記抽出・分離方法によれば、調製された疎水性深共晶溶媒をリン酸トリブチルに添加し、添加したリン酸トリブチルと疎水性深共晶溶媒の体積比は4:6で、有機相を得、
本実施例の前記抽出・分離方法によれば、水相に調製された有機相を添加し、抽出プロセスパラメータは水相と有機相の体積比(A/O)=1:2、抽出温度24℃、抽出段数1段、混合均一撹拌時間30分、回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得た。
According to the extraction and separation method of this embodiment, the aqueous phase of the simulated waste lithium battery prepared has a pH of 3,
According to the extraction and separation method of this embodiment, lidocaine and n-decanoic acid in the prepared hydrophobic deep eutectic solvent are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After the n-decanoic acid is heated and dissolved, it is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent.
According to the extraction and separation method of this embodiment, the prepared hydrophobic deep eutectic solvent is added to tributyl phosphate, and the volume ratio of the added tributyl phosphate to the hydrophobic deep eutectic solvent is 4:6, to obtain an organic phase;
According to the extraction and separation method of this embodiment, the prepared organic phase was added to the aqueous phase, and the extraction process parameters were the volume ratio of the aqueous phase to the organic phase (A/O) = 1:2, the extraction temperature was 24°C, the number of extraction stages was 1, the mixing and uniform stirring time was 30 minutes, and the rotation speed was 300 r/min. After thorough mixing, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain an organic phase carrying nickel, cobalt, and manganese, and a lithium-containing raffinate.

本実施例の前記抽出・分離方法によれば、リチウム含有ラフィネートに濃度1.5mol/Lの炭酸ナトリウム溶液を添加し、添加した炭酸ナトリウム溶液とリチウム含有ラフィネートの体積比は2:1であり、沈殿をよく洗浄した後炭酸リチウム溶液を得た。 According to the extraction and separation method of this embodiment, a sodium carbonate solution with a concentration of 1.5 mol/L was added to the lithium-containing raffinate, the volume ratio of the added sodium carbonate solution to the lithium-containing raffinate was 2:1, and after thoroughly washing the precipitate, a lithium carbonate solution was obtained.

本実施例の前記抽出・分離方法によれば、逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加した塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得た。 According to the extraction and separation method of this embodiment, in the back extraction process, 2 mol/L HCl was used as a back extraction agent, and the back extraction parameters were the volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt, and manganese = 2:1, the back extraction temperature was 24°C, the number of back extraction stages was 1, the mixing uniform stirring time was 30 minutes, and the mixing uniform stirring rotation speed was 300 r/min. After mixing well, the mixture was placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain a nickel, cobalt, and manganese back extract and a regenerated organic phase.

実施例5の抽出実験結果は、以下の通りである。 The results of the extraction experiment in Example 5 are as follows:

Figure 0007548642000011
Figure 0007548642000011

本実施例において、一段抽出を経た後、ニッケル・コバルト・マンガンの抽出率がいずれも98%以上に達し、同時にラフィネート中で高純度のリチウム塩溶液が得られ、廃リチウム電池中のリチウムと遷移金属の有効な分離を実現した。
In this embodiment, after one-stage extraction, the extraction rates of nickel, cobalt and manganese all reached 98% or more, and at the same time, a high-purity lithium salt solution was obtained in the raffinate, and effective separation of lithium and transition metals in waste lithium batteries was realized.

Claims (5)

疎水性深共晶溶媒を用いて廃電池からリチウムと遷移金属を選択的に分離する協同抽出法であって、
(1)水相の調製:廃リチウム電池浸出液の成分を模擬し、リチウム、ニッケル、コバルト、及びマンガンの金属イオンを含む水相を調製し、その際、水相のpHは、2~6、有価金属含有量はそれぞれLi=300~400mg/L、Ni=1300~1500mg/L、Co=600~700mg/L、Mn=800~900mg/Lとする工程
(2)疎水性深共晶溶媒の調製:リドカインとn-デカン酸とは、水素結合を介して結合し、その物質量の比は1:1となり、n-デカン酸を加熱溶解した後、前記リドカインに加え、50℃の水浴加熱条件下で混合して疎水性深共晶溶媒を得る工程、
(3)有機相の調製:前記工程(2)で得られた疎水性深共晶溶媒とリン酸トリブチルを混合して有機相を得て、その際、有機相中のリン酸トリブチルと疎水性深共晶溶媒の体積比は6:4~4:6とする工程
(4)前記工程(1)で得られた水相に前記工程(3)で得られた有機相を添加して混合抽出し、遠心分離して相分離した後、ニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得る工程、
(5)前記工程(4)のリチウム含有ラフィネートに沈殿剤を添加して炭酸リチウム沈殿物を得る工程、及び、
(6)前記工程(4)のニッケル・コバルト・マンガンを担持した有機相に逆抽出剤を添加してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得る工程
を含む
ことを特徴とする抽出法。
A synergistic extraction method for selectively separating lithium and transition metals from waste batteries using a hydrophobic deep eutectic solvent, comprising:
(1) Preparation of an aqueous phase: preparing an aqueous phase containing lithium, nickel, cobalt, and manganese metal ions by simulating the components of a waste lithium battery leachate, with the aqueous phase having a pH of 2 to 6 and a valuable metal content of Li=300 to 400 mg/L, Ni=1,300 to 1,500 mg/L, Co=600 to 700 mg/L, and Mn=800 to 900 mg/L, respectively ;
(2) Preparation of hydrophobic deep eutectic solvent: Lidocaine and n-decanoic acid are bonded via hydrogen bonds, and the ratio of the amounts of substances is 1:1. After heating and dissolving n-decanoic acid, the mixture is added to the lidocaine and mixed under a water bath heating condition of 50°C to obtain a hydrophobic deep eutectic solvent;
(3) Preparation of an organic phase: mixing the hydrophobic deep eutectic solvent obtained in the step (2) with tributyl phosphate to obtain an organic phase, in which the volume ratio of tributyl phosphate to the hydrophobic deep eutectic solvent in the organic phase is 6:4 to 4:6;
(4) adding the organic phase obtained in the step (3) to the aqueous phase obtained in the step (1), mixing and extracting the mixture, and then centrifuging to separate the phases, to obtain an organic phase carrying nickel, cobalt and manganese and a lithium-containing raffinate;
(5) adding a precipitant to the lithium-containing raffinate of the step (4) to obtain a lithium carbonate precipitate; and
(6) A method for extraction comprising the step of adding a stripping agent to the organic phase carrying nickel-cobalt-manganese from the step (4) to obtain a nickel-cobalt-manganese stripped solution and a regenerated organic phase.
工程(3)で調製された有機相には、次の構造式の物質:
Figure 0007548642000012
が含まれる
請求項1に記載の抽出法。
The organic phase prepared in step (3) contains a substance of the following structural formula:
Figure 0007548642000012
The method of claim 1, further comprising:
前記工程(4)中の抽出プロセスパラメータは、添加した水相と有機相の体積比(A/O)=3:1~1:3、抽出温度10~30℃、抽出段数1段、混合均一撹拌時間20~30分、混合均一撹拌回転数200~500r/分であり、水相と有機相をよく混ぜた後遠心分離機に入れ、遠心分離回転数6000~8000r/分で10~30分間遠心分離した後相分離して、ニッケル・コバルト・マンガンを担持した有機相及びリチウム含有ラフィネートを得る
請求項1に記載の抽出法。
The extraction process according to claim 1, wherein the extraction process parameters in the step (4) are: a volume ratio (A/O) of the added aqueous phase to the organic phase = 3:1 to 1:3, an extraction temperature of 10 to 30°C, a number of extraction stages of 1, a mixing and uniform stirring time of 20 to 30 minutes, and a mixing and uniform stirring rotation speed of 200 to 500 r/min; the aqueous phase and the organic phase are thoroughly mixed and then placed in a centrifuge, and centrifuged at a centrifugation rotation speed of 6000 to 8000 r/min for 10 to 30 minutes, followed by phase separation, to obtain an organic phase carrying nickel, cobalt, and manganese and a lithium-containing raffinate.
工程(5)で添加する沈殿剤は、1.5mol/Lの炭酸ナトリウム溶液であり、添加する炭酸ナトリウムとリチウム含有ラフィネートの体積比は2である
請求項1に記載の抽出法。
2. The extraction method according to claim 1, wherein the precipitant added in step (5) is a 1.5 mol/L sodium carbonate solution, and the volume ratio of the added sodium carbonate to the lithium-containing raffinate is 2.
前記工程(6)の逆抽出プロセスでは、2mol/LのHClを逆抽出剤として使用し、逆抽出パラメータは添加する塩酸とニッケル・コバルト・マンガンを担持した有機相の体積比(A/O)=2:1、逆抽出温度24℃、逆抽出段数1段、混合均一撹拌時間30分、混合均一撹拌回転数300r/分であり、よく混ぜた後遠心分離機に入れ、遠心分離回転数8000r/分で10分間遠心分離した後相分離してニッケル・コバルト・マンガン逆抽出液及び再生有機相を得る
請求項1に記載の抽出法。
The extraction method according to claim 1, wherein in the stripping process of step (6), 2 mol/L HCl is used as a stripping agent, the stripping parameters are a volume ratio (A/O) of the added hydrochloric acid to the organic phase carrying nickel, cobalt and manganese of 2:1, a stripping temperature of 24°C, a stripping stage number of 1, a mixing uniform stirring time of 30 minutes, and a mixing uniform stirring rotation speed of 300 r/min. After thorough mixing, the mixture is placed in a centrifuge and centrifuged at a centrifugation rotation speed of 8000 r/min for 10 minutes, followed by phase separation to obtain a nickel, cobalt and manganese stripped solution and a regenerated organic phase.
JP2023573586A 2022-06-29 2023-06-09 Synergistic extraction method for selective separation of lithium and transition metals from waste batteries using hydrophobic deep eutectic solvents Active JP7548642B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202210750305.9A CN115074551B (en) 2022-06-29 2022-06-29 Synergistic extraction method for selectively separating lithium and transition metal from waste battery by using hydrophobic eutectic solvent
CN202210750305.9 2022-06-29
PCT/CN2023/099256 WO2024001716A1 (en) 2022-06-29 2023-06-09 Synergistic extraction method for selectively separating lithium and transition metals from waste batteries by using hydrophobic deep eutectic solvent

Publications (2)

Publication Number Publication Date
JP2024526532A JP2024526532A (en) 2024-07-19
JP7548642B2 true JP7548642B2 (en) 2024-09-10

Family

ID=83254862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023573586A Active JP7548642B2 (en) 2022-06-29 2023-06-09 Synergistic extraction method for selective separation of lithium and transition metals from waste batteries using hydrophobic deep eutectic solvents

Country Status (3)

Country Link
JP (1) JP7548642B2 (en)
CN (1) CN115074551B (en)
WO (1) WO2024001716A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074551B (en) * 2022-06-29 2023-10-17 北京工业大学 Synergistic extraction method for selectively separating lithium and transition metal from waste battery by using hydrophobic eutectic solvent
CN115505757B (en) * 2022-10-21 2023-05-23 中国地质科学院郑州矿产综合利用研究所 Method for recycling lithium and manganese of waste lithium manganate lithium battery positive electrode material by eutectic solvent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515719A (en) 2018-01-10 2020-05-28 北京工業大学 Method for separating nickel and cobalt from solution
CN112553481A (en) 2020-12-11 2021-03-26 中南大学 Production method of electrolytic manganese
WO2021134515A1 (en) 2019-12-30 2021-07-08 荆门市格林美新材料有限公司 Battery-level ni-co-mn mixed solution and preparation method for battery-level mn solution
CN115029556A (en) 2022-06-14 2022-09-09 桐乡市思远环保科技有限公司 Method for recycling waste lithium ion battery cathode material
JP2023022934A (en) 2021-08-04 2023-02-16 国立大学法人九州大学 Recovery apparatus of metal, and recovery method of metal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10522884B2 (en) * 2012-04-04 2019-12-31 Worcester Polytechnic Institute Method and apparatus for recycling lithium-ion batteries
US9957459B2 (en) * 2014-11-03 2018-05-01 Exxonmobil Research And Engineering Company Low transition temperature mixtures or deep eutectic solvents and processes for preparation thereof
CN106319228B (en) * 2016-08-26 2018-06-19 荆门市格林美新材料有限公司 A kind of method of synchronous recycling nickel cobalt manganese in manganese waste slag from nickel and cobalt containing
US11591670B2 (en) * 2019-06-24 2023-02-28 William Marsh Rice University Recycling Li-ion batteries using green chemicals and processes
CN111187911A (en) * 2020-01-15 2020-05-22 中国科学院过程工程研究所 Method for selectively extracting lithium in waste ternary batteries by using functionalized ionic liquid
CN111270073A (en) * 2020-02-03 2020-06-12 广东省稀有金属研究所 Method for recovering valuable metals from leachate of waste lithium ion battery electrode material
US11932557B2 (en) * 2020-06-30 2024-03-19 University Of Kentucky Research Foundation Detection and extraction of plastic contaminants within water using hydrophobic deep eutectic solvents
CN111850302B (en) * 2020-07-16 2021-11-09 中国科学院青海盐湖研究所 Method for extracting metal ions from lithium battery
CN112226632B (en) * 2020-09-11 2022-06-21 江苏大学 Method for selectively extracting and precipitating lithium in lithium mother liquor by using hydrophobic eutectic solvent
CN112522517A (en) * 2020-11-30 2021-03-19 北京博萃循环科技有限公司 Method for recycling nickel, cobalt, manganese and lithium
CN112662877B (en) * 2020-12-02 2023-12-12 广西科技师范学院 Method for preparing high-purity nickel sulfate from electrolytic manganese sulfide slag
CN114438343B (en) * 2022-01-24 2023-03-17 中国科学院过程工程研究所 Difunctional hydrophobic eutectic solvent for selectively extracting lithium and preparation method and application method thereof
CN115074551B (en) * 2022-06-29 2023-10-17 北京工业大学 Synergistic extraction method for selectively separating lithium and transition metal from waste battery by using hydrophobic eutectic solvent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020515719A (en) 2018-01-10 2020-05-28 北京工業大学 Method for separating nickel and cobalt from solution
WO2021134515A1 (en) 2019-12-30 2021-07-08 荆门市格林美新材料有限公司 Battery-level ni-co-mn mixed solution and preparation method for battery-level mn solution
CN112553481A (en) 2020-12-11 2021-03-26 中南大学 Production method of electrolytic manganese
JP2023022934A (en) 2021-08-04 2023-02-16 国立大学法人九州大学 Recovery apparatus of metal, and recovery method of metal
CN115029556A (en) 2022-06-14 2022-09-09 桐乡市思远环保科技有限公司 Method for recycling waste lithium ion battery cathode material

Also Published As

Publication number Publication date
CN115074551A (en) 2022-09-20
WO2024001716A1 (en) 2024-01-04
JP2024526532A (en) 2024-07-19
CN115074551B (en) 2023-10-17

Similar Documents

Publication Publication Date Title
JP7548642B2 (en) Synergistic extraction method for selective separation of lithium and transition metals from waste batteries using hydrophobic deep eutectic solvents
KR101232574B1 (en) Method for separate recovery of nickel and lithium
CN108504868B (en) Method for recovering metal lithium in waste lithium ion battery
CN112981139B (en) Hydrophobic eutectic solvent for separating nickel and cobalt ions, preparation method thereof and method for separating nickel and cobalt ions
CN109439914B (en) Method for selectively separating lithium from leachate of anode material of waste lithium ion battery
CN105087935A (en) Method for recycling copper, indium and gallium from waste copper-indium-gallium target
CN111621643A (en) Method for selectively extracting lithium from waste lithium battery powder
CN103555954A (en) Method for recovering rare earth elements from waste nickel-metal hydride batteries
CN114657378B (en) Extraction separation recovery method for valuable metals in waste lithium battery anode material leaching solution
CN112342387A (en) Method for separating nickel and magnesium and application thereof
Yang et al. Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media
CN102286664B (en) Method for extracting copper from organic silicon chemical waste residue and recovering extraction liquid
CN111187911A (en) Method for selectively extracting lithium in waste ternary batteries by using functionalized ionic liquid
CN110643833A (en) Extraction system for separating magnesium from magnesium-containing brine by using secondary amide/tertiary amide composite solvent and extracting lithium, extraction method and application thereof
CN115029556A (en) Method for recycling waste lithium ion battery cathode material
CN114572949A (en) Production process of lithium dihydrogen phosphate
CN117701883B (en) Extractant for lithium battery recovery, extractant preparation method and application method
KR102067606B1 (en) A method for separation and recovery of Nd(III) and Dy(III) from nitrate leach solution of spent mobile phone camera module
CN116646633B (en) Method for recycling active substances in lithium ion positive electrode material
WO2024108876A1 (en) Method for preferentially recovering manganese from waste lithium-rich manganese-based positive electrode material
CN117163928A (en) Recovery method of waste lithium iron phosphate material
CN110527846B (en) Treatment method of waste NCM ternary positive electrode material leaching solution
EP4215630A1 (en) Method for separating nickel from lithium, and application thereof
CN115386731B (en) Synergistic extraction separation method for aluminum ions in acid leaching solution of waste ternary lithium battery
WO2024103568A1 (en) Method for preparing high-purity manganese sulfate from manganese solution containing calcium, copper, chromium and silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231129

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20231129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240822

R150 Certificate of patent or registration of utility model

Ref document number: 7548642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150